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Abstract. We extend Post’s programme to finite levels of the Ershov
hierarchy of ∆2 sets, and characterise, in the spirit of Post [9], the de-
grees of the immune and hyperimmune d.c.e. sets. We also show that
no properly d.c.e. set can be hh-immune, and indicate how to generalise
these results to n-c.e. sets, n > 2.

1 Introduction

In 1944, Post [9] set out to relate computational structure to its underlying
information content. Since then, many computability-theoretic classes have been
captured, in the spirit of Post, via their relationships to the lattice of computably
enumerable (c.e.) sets. In particular, we have Post’s [9] characterisation of the
non-computable c.e. Turing degrees as those of the simple, or hypersimple even,
sets; Martin’s Theorem [6] showing the high c.e. Turing degrees to be those
containing maximal sets; and Shoenfield’s [10] characterisation of the non-low2

c.e. degrees as those of the atomless c.e. sets (that is, of co-infinite c.e. sets
without maximal supersets).

In this article, and in Afshari, Barmpalias and Cooper [1], we initiate the
extension of Post’s programme to computability-theoretic classes of the n-c.e.
sets.

For basic terminology and notation, see Cooper [4], Soare [11], or Odifreddi
[7].

2 On the degrees of immune and hyperimmune d.c.e. sets

Theorems 1 and 2 below fully characterise the degrees of the immune and hy-
perimmune d.c.e. sets. The techniques needed are somewhat more complicated
— and different — to those applicable in the c.e. cases.

Theorem 1. Every non-computable d.c.e. bT (that is, wtt) degree contains an
immune d.c.e. set.
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Proof. Suppose we are given a non-computable d.c.e. set W . We wish to con-
struct a d.c.e. set A ≡bT W which is immune i.e. for every infinite c.e. set V ,
V 6⊆ A. We consider each number enumerated in V as a guess about members of
A. We want to construct A such that it is impossible for such a guessing proce-
dure to guess always correctly. We consider an effective enumeration V0, V1, . . .
of all c.e. sets filtered in the following way: we enumerate n into Vj at stage s if
it currently belongs to both the j-th c.e. set and A, the set we are constructing.
These c.e. sets may not exhaust the class of c.e. sets, but if a c.e. set is subset
of A it will be in that list. So (Vj) is an enumeration of all potential opponents
and it suffices to construct A ≡bT W such that

Ij : ∃i(i ∈ Vj ∧ i 6∈ A) or Vj is finite

for all j. An I requirement asks to extract a number which has appeared in A.
Without loss of generality we can assume that W is not immune and that (pkt)
is a double sequence of members of W which is increasing on both arguments
(indeed, every d.c.e. set is bT -equivalent with a non-immune d.c.e. set). Let
P ⊂ W be the set of these terms and

Pj = {pjk | k ∈ N}.

In the d.c.e. approximation of W that we use we assume that numbers in P are
never extracted. For any n, j ∈ N define the j-sequence of n to be (pj,k−j , . . . , pjk)
where k is the largest such that pjk < n. That is, the sequence of the largest
j + 1 numbers in Pj which are smaller than n. Note that for each j almost
all n have a j-sequence. If some Ij acts by extracting some n /∈ P then the
j-sequence of n becomes the Ij-sequence for the rest of the construction. The
idea of the construction is to control the membership of n w.r.t. A according
to its membership w.r.t. W and simultaneously let the I requirements extract
numbers. The problem is that some n may be extracted from W while n has
been previously extracted from A by some Ij . In that case we notify A by
enumerating the largest number of the j-sequence of n into A. This notification
may later be extracted from A by some Ii, i < j but then the previous term of
that j-sequence will enter A. Eventually (since there are only j requirements of
higher priority than Ij) some notification will remain in the j-sequence of n. The
priority ordering of the requirements is the obvious one (Ii has higher priority
than Ij iff i < j). There will be no injury: once a requirement is satisfied it will
remain so. Let U be a c.e. non-computable set such that U ≤bT W . Assume an
effective 1–1 enumeration (us) of U .

Construction At stage s do the following.

Step 1 (Coding)

• If some n 6∈ P enters W then n ↘ A.
• If some n is extracted from W and n ∈ A, extract n from A.



3

• If some n is extracted from W but n /∈ A then find which Ij has extracted
n from A and enumerate into A the largest term of the Ij sequence.

Step 2 (Satisfaction of I) We say that Ij requires attention if it has not acted so
far, Vj ⊆ A and one of the following cases holds.
• There is n ∈ Vj such that n /∈ P , us < n and there is a j-sequence of n.
• There is n ∈ Vj such that n ∈ Pi for some i > j and us < n.

Consider the least j such that Ij requires attention and act as follows (saying
that Ij acts on n):
• If n /∈ P extract n from A and define the Ij sequence to be the j-sequence

of n.
• If n ∈ Pi extract n from A and enumerate its predecessor in the Ii

sequence.
Go to the next stage.

Verification

Lemma 1. A is d.c.e.

Proof. We show that in the approximation to A given by the construction no
number n can be extracted from A and later re-enter A. Indeed, if n /∈ P then
it follows from the fact that the approximation of W is d.c.e. If n ∈ P and is
part of the sequence of Ij , once extracted Ij will not act again and only smaller
terms of the sequence can change in the approximation (via the actions of Ii,
i < j).

Lemma 2. If the sequence of some Ij is defined during the construction (i.e. Ij

acts on some m /∈ P ) then the only elements of Pj that may ever be enumerated
into A are the terms of that sequence (the j-sequence of m). In particular, for
each j only finitely many numbers in Pj will ever be enumerated into A.

Proof. The sequence of Ij is defined when Ij acts on (i.e. extracts) a number
m ∈ N − P . This happens at most once and no number Pj can enter A before
that. Once the sequence is defined its terms will be used one by one from the
larger to the smaller ones. If the largest enters A (because of the extraction of
m from W ), it may later be extracted and in this case its predecessor will enter
A, and so on. This progression happens by the action of some Ii, i < j (which
extracts an element of Pj). So it can happen at most j + 1 times (including the
initial enumeration due to W ), the length of the sequence.

Lemma 3. Every Ij acts at most once and is satisfied.

Proof. Suppose that this holds for Ii, i < j. When Ij acts it extracts a number
from A which has already been enumerated in that set. According to the proof of
lemma 1 this will not re-enter A and so Ij will remain satisfied. If it does not act
it means that it never requires attention after a certain stage; then Vj must be
finite (by the usual permitting argument, since U is non-computable and higher
priority requirements act only finitely many times) and so Ij is satisfied.
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Lemma 4. A ≤bT W .

Proof. It suffices to show A ≤bT W ⊕ U . To decide ‘n ∈ A?’ do the following

– If n /∈ P , find a stage s where U � n has settled; then n ∈ A iff n ∈ W unless
it has been extracted by stage s (in which case n /∈ A). This is because
extraction via the I strategies needs a change in U � n.

– If n ∈ Pj computably find a number t which bounds the (finitely many)
numbers in N−P which have n as a member of their j-sequence. Find a stage
s at which U � t has settled and the approximation to W � t is correct. Then
the approximation of the membership of n to A is also correct: if n ∈ A it
cannot be extracted as there is no U � n permission (only I strategies extract
numbers in P ); if n /∈ A it cannot be enumerated by some I (as this requires
U � t-permission). If it was later enumerated due to the extraction of some m
from W , m would be one of the numbers in N−P whose j-sequence contains
n. That m < t must be in W at s, since Ij cannot act on (i.e. extract) m
after s (there will be no U -permission). But that is a contradiction by the
choice of s.

Lemma 5. W ≤bT A.

Proof. Suppose we want to answer ‘n ∈ W ?’ for n 6∈ P (otherwise n ∈ W since
P ⊂ W ). Wait until a stage s where the approximation to A � (n + 1) is correct.
Then the approximation to W (n) is also correct:

– if n ∈ W and n ∈ A at s then n cannot be extracted from A, and so n cannot
be extracted from W ;

– if n ∈ W and n /∈ A at s then the extraction of n from W would imply an
enumeration t ↘ A � n (a member of the sequence of Ij which extracted n).
Of course t may later be extracted but another t1 < t (of the same sequence)
would enter A and so on, eventually guaranteeing that A � n at s is different
than the final limit;

– if n /∈ W at s and it is enumerated later, A � (n + 1) at s will be different
than the final limit: n would enter A and even if it is extracted by some Ij ,
some member of the j-sequence of n (whose members are not in A at s) will
stay in A.

This concludes the proof of the theorem.

For more information on the behaviour of hyperimmunity in the weak truth
table degrees (particularly in the c.e. case) see [2, 3].

Theorem 2. Every non-computable d.c.e. degree contains a hyperimmune d.c.e.
set.

Proof. Suppose we are given a d.c.e. set W . Then there is a non-computable c.e.
set U ≤T W . We wish to construct a d.c.e. set A ≡T W which is hyperimmune
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i.e. for every computable sequence D = (Di) of disjoint segments of N there is an
i such that Di∩A = ∅. We consider each member of D as a guess about members
of A. We want to construct A such that it is impossible for such a guessing proce-
dure to guess always correctly. We consider an effective enumeration D0, D1, . . .
of all partial computable sequences of disjoint segments of N (Dj = (Dj

i )) i.e.
an enumeration of all potential opponents. It suffices to construct A ≡T W such
that

Hj : ∃i(Dj
i ∩ A = ∅) or Dj is not total

for all j. There are two main differences with the proof of theorem 1 where we
just have to consider immunity. One is that now it is harder to keep the codes
small, as our opponent can guess with entire segments of N of unbounded length.
The other one, perhaps less apparent, is that the requirements H do not just
ask to extract elements but also not to let numbers enter A in certain segments
(even if they have not appeared yet).

Without loss of generality assume that W is not immune and that (pkt) is a
double sequence of members of W which is increasing on both arguments. Let
P ⊂ W be the set of these terms. At all stages of the construction of A, every
n /∈ P will have a code c(n) which corresponds to A. The default is c(n) = n.
By ensuring

n ∈ W ⇐⇒ c(n) ∈ A

at all times we code W to A. We sometimes think of these codes as c-markers on
N. During the construction the code c(n) of n may change to a larger number for
the sake of the H requirements; but it will eventually reach a limit. These limits
will be computable in A. This suggests some additional coding in A, which will
be made via the positions in P (which initially are free of c-codes). Positions in

Pj = {pjk | k ∈ N}

will be exclusively used by Hj (at the beginning of the construction no number
has been used). Since we also want A ≤T W we need some kind of permitting
and for this reason we use a non-computable c.e. set U ≤T W . Note that this
introduces some non-uniformity in the proof as such a U cannot be found uni-
formly given an index of W . Now we will require any change of a c-code to be
permitted by U .

The H strategies can have one of the following two states during the con-
struction: satisfied and unsatisfied with the latter being the default. Strategy
Hj will find a suitable member of Dj and evacuate all numbers belonging to
that segment in the characteristic sequence of A, thus becoming satisfied. That
member of Dj is now an attack segment of Hj . Higher priority strategies (which
do not take into account Hj) may later put a number into A which belongs to
that segment. Then Hj is set back to unsatisfied (a kind of injury) and it has
to perform a new attack in a new segment. Eventually each strategy will settle
satisfied and having used finitely many attack intervals. The priority ordering of
the requirements is the obvious one (Hi has higher priority than Hj iff i < j).
Assume an effective 1–1 enumeration (us) of U .
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Construction At stage s do the following.

Step 1 (Coding) For all n 6∈ P ensure

n ∈ W ⇐⇒ c(n) ∈ A

by enumerating in or extracting c(n) from A (if needed).
Step 2 (Satisfaction of H). We say that Hj requires attention if it is unsatisfied and

there is some k such that
• Dj

k ↓ and us < min Dj
k

• there exists t such that us < pjt < min Dj
k and pjt is larger than all

numbers in attack intervals used so far by Hi, i ≤ j and larger than any
number pik that has been used by Hi, i ≤ j.

Consider the highest priority strategy Hj which requires attention and act
as follows:
• Call pjt the base code of this attack and put pjt ↘ A; set all Hi, i > j

to unsatisfied.
• Take all numbers of Dj

k out of A and if any number in this interval is
a code c(n) for some n, redefine c(n) to be a fresh number in Pj (i.e.
greater than s and any number or interval used in the construction so
far).

• Set Hj to satisfied and say that pjt and the numbers in Pj which received
c-markers under the previous step were used by Hj .

Go to the next stage.

Verification The verification consists of the following lemmas.

Lemma 6. A is d.c.e.

Proof. We show that in the approximation to A given by the construction no
number can enter A, then be extracted from A and later be enumerated into
A again. Indeed, if n ∈ P , say n = pjk, it can only enter A as the base code
of some attack or as a c-code (if it carries a c-marker, c(m) = n for some m).
If it is later extracted from A it must be either because of some attack interval
which contains n or (in the latter case) because m is extracted from W . After
this happens, according to the construction, n will not be the base code of Hj

again and it will not carry any c-marker again. So it will stay permanently out
of A.

If n 6∈ P it can only enter A as a c-code. But the only c-code it will ever carry
is the default c(n) = n. After the enumeration of n ↘ W it can be extracted
from A either because n is extracted from W (and n is still the c-code of n)
or because an attack interval contains n. In the former case n will not enter W
again and since n will not carry other c-codes (or be a base code) it will stay
out of A. In the latter case n will again stay outside A as it will not be assigned
a new c-code (or a base code).
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Lemma 7. All Hj are satisfied and cease requiring attention at some stage.

Proof. Suppose that the lemma holds for Hi, i < j and that these strategies
have been settled at stage s. Any attack intervals or base codes used by these
strategies will be finitely many and so, bounded by some number. Since U is
non-computable, by the usual permitting argument Hj will require attention at
some stage after s (or (Dj) is partial). It will choose an attack interval D and
empty A on this interval thus being satisfied. Moreover, it will stay satisfied as
no strategy can enumerate numbers of D into A from now on (as Hi, i < j have
settled and lower priority strategies cannot do this).

Lemma 8. Every c-marker reaches a limit (i.e. for all n 6∈ P , lims c(n)[s] < ∞).
Moreover, if c(n)[s] changes to a different number c(n)[s + 1] then (A � c(n))[s]
is never part of the A-approximation of the construction after s (in particular it
is not an initial segment of A).

Proof. Indeed at first c(n) = n (for n 6∈ P ). If it is later moved by some Hj it
will sit on some number in Pj . Then it can only be moved by some Hi, i < j
and so on. So it can move at most j + 1 times.

For the second claim, if c(n)[s] changes to a different number c(n)[s + 1] it
must be because of an action of some Hj . By construction, some number t ∈ Pj

(the base code of the attack) which has never appeared in A before will enter
A. If this is never extracted the claim holds. Otherwise another attack will have
taken place which used a base code t1 < t (where t1 has not been enumerated
before) and so on. Eventually one of these base codes must remain in A which
proves the claim.

Lemma 9. W ≤T A

Proof. If n /∈ P (otherwise n ∈ W ) to answer ‘n ∈ W ?’ wait until a stage s
where A � c(n) is a correct approximation of (the first c(n) bits of) A. This will
be found since, according to lemma 8 c(n) has a limit. It is enough to show that
c(n) will not change in latter stages since, in that case,

n ∈ W ⇐⇒ c(n) ∈ A.

Now if c(n) changed, according to lemma 8 (A � c(n))[s] will not be part of any
approximation of A at stages larger than s. In particular, it will not be a correct
approximation of A, a contradiction.

Lemma 10. A ≤T W

Proof. It is enough to show A ≤T W ⊕U . To answer ‘n ∈ A?’ find a stage s > n
such that U � n has settled. Then no more attack intervals D with n ∈ D and
no base codes ≤ n will be used after s. If n is not a c-code at s then it will not
become later on (as c-markers are defined at fresh numbers) and it will also not
be chosen as a base code for an attack (since no U -permission will be given). So,
according to the construction n ∈ A iff it is there at stage s.
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If on the other hand n has a c-marker on it, i.e. n = c(m) for some m at stage
s, then this marker will not be moved after s (since U will not give permission
for an attack which can do this). So

n ∈ A ⇐⇒ c(m) ∈ A ⇐⇒ m ∈ W.

This concludes the proof of the theorem.

The proof of theorem 2 generalizes to all finite levels of the difference hier-
archy giving the following result.

Theorem 3. If n is even, every nonzero n-c.e. degree contains an n-c.e. hy-
perimmune set. If n is odd, every nonzero n-c.e. degree contains an n-c.e. co-
hyperimmune (in the sense that no strong array intersects its complement) set.

We sketch the proof of this generalised statement: an important fact that we
used in the proof of theorem 2 is that no H- requirement asks the for extraction
of a number which has reached the maximum number of of membership changes
(which is 2 for the d.c.e. case). This enables us to prove that the set we are
constructing is in the particular level of the difference hierarchy; also this is the
reason why the cases n even and n odd slit. Note that e.g. in the 3-c.e. case
if the H requirements require co-hyperimmunity, i.e. ask for certain segments
of the characteristic sequence of A to be filled with 1s (instead of 0s, as in the
hyperimmunity case), then this condition still holds. In the 4-c.e. case we have
H requiring hyperimmunity and again no requirement asks the for extraction of
a number which has reached the maximum number of of membership changes,
and so on.

After this modification on the content of the requirements H the proof (the
construction and the verification) is entirely similar to that of theorem 2. The
only difference is that step 1 of the construction may force up to n A-membership
changes to the code of a number (which is within our limits in making A n-c.e.).

3 HH-Immunity and D.C.E. Sets

The purpose of this section is to show that hh-immunity in the finite levels of
the difference hierarchy reduces to hh-immunity in the co-c.e. sets. We start with
the following iterated version of Owings’ spitting theorem.

Theorem 4. Suppose that A, D are c.e. sets such that A ∪ D is not c.e. Then
there are uniform sequences of c.e. sets (Ee), (Fe) such that

1. Ee ∪ D, Fe ∪ D are not c.e.

2. for all n, A = (∪i<nEi) ∪ Fn

3. Ei are pairwise disjoint and for all n, i < n, Fn ∩ Ei = ∅.
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Proof. The Owings splitting theorem [8] says that given effective enumerations
of A, D we can uniformly define effective enumerations of C0, C1 such that A =
C0 ∪C1, C0 ∩C1 = ∅ and Ci ∪D are not c.e. Our claim follows by iterating this
procedure: since C1 ∪ D is not c.e. we can apply the Owings procedure to get
two disjoint c.e. sets C10, C11 such that C1 = C10 ∪ C11 and C10 ∪ D, C11 ∪ D
are not c.e.; we continue with C11 and so on (see figure 1).

A

C0 C1

C10 C11

C110 C111

Fig. 1: Iterating the Owings Splitting theorem.

Define F0 = A and for all k ∈ N,

Ek = C1k0

Fk = C1k

It is clear that these c.e. sets have been obtained uniformly and so the sequences
(Ek), (Fk) are uniform sequences of c.e. sets. Moreover they have the properties
(1)–(3) above since they have been obtained via Owings splittings as described
above.

Theorem 5. If A is d.c.e. and hh-immune then A is co-c.e.

Proof. Fix a d.c.e. approximation of A and consider the set PA of the numbers
that have appeared in A at some stage of its approximation. Also, let DA be the
set of numbers in PA which do not belong to A (i.e. those which have entered
and later been removed from A, see figure 2). Note that both PA and DA are c.e.
(the latter because once a number is extracted from A it cannot enter again).
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PA

.

Fig. 2: Approximation of a d.c.e. set A

It is enough to show that if A is not co-c.e. then there is a uniform sequence
of finite pairwise disjoint c.e. sets such that each of its members intersects A. If
A is not co-c.e., PA ∪DA cannot be c.e. Now apply theorem 4 and get a uniform
sequence of pairwise disjoint sets (Ei), subsets of PA, such that Ei ∪ DA is not
c.e. for any i. In particular, Ei 6⊆ DA and so Ei ∩ A 6= ∅ for all i. But Ei are
infinite, so define:

Êi[s] =

{

Êi[s − 1], if Êi[s − 1] ∩ A[s] 6= ∅;

Ei[s], otherwise

where [s] denotes the state of an object at the end of stage s (the enumeration
is based on that of A and (Ei)). Since Ei ∩ A 6= ∅, each Êi will be finite and
Êi ∩ A 6= ∅ for all i.

Theorem 6. If A is n-c.e. and hh-immune then A is co-c.e.

Proof. Suppose n > 2 and A is n-c.e. and not i-c.e. for any i < n. By induction
(and the previous theorem) we may assume that the claim holds for all i < n. It
is enough to show that A is not hh-immune. Suppose that it is for the sake of a
contradiction. Consider an n-c.e. approximation of A and the set TA of numbers
that enter A dn

2
e times (dxe is the least integer ≥ x). Note that any number

during the approximation can enter A at most dn
2
e times.

Now for n odd we immediately get a contradiction since (as a properly n-
c.e. set) A contains an infinite c.e. set and so it cannot by hh-immune. If n is
even, A ∩ TA is infinite (as A is properly n-c.e.), d.c.e. and hh-immune (as an
infinite subset of a hh-immune set). By induction hypothesis A ∩ TA is co-c.e.
and so A is (n − 2)-c.e. Indeed, for an approximation with at most n − 2 mind
changes run an enumeration of A ∪ TA and the n-c.e. approximation of A with
the following modification: when a number has already n−3 mind changes (and
so it is currently a 1) we only change it to 0 if

– our n-c.e. approximation requires it and
– the number has appeared in A ∪ TA
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(and after that this number does not change anymore). This is an (n − 2)-c.e.
approximation and it is not hard to see that the set we get is A. This is a
contradiction since we assumed that A is not (n − 2)-c.e.

Corollary 1. If A is n-c.e. and cohesive then A is co-c.e.
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