Skip to main content

Reduction of the Search Space in the Edge-Tracing Algorithm for the Voronoi Diagram of 3D Balls

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3980))

Abstract

Voronoi diagram for 3D balls can be applicable to various fields in science and engineering. The edge-tracing algorithm constructs the Voronoi diagram in O(mn) time in the worst-case where m and n are the numbers of edges and balls, respectively. The computation time of the algorithm is dominated by finding the end vertex of a given edge since all edges in the Voronoi diagram should be traced essentially. In this paper, we define the feasible region which a ball to define the end vertex of a given edge should intersect. Then, balls which do not intersect the feasible region are filtered out before finding an end vertex since they cannot define an end vertex. Therefore, we improve the runtime-performance of the edge-tracing algorithm via the feasible region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. John Wiley & Sons, Chichester (1999)

    Google Scholar 

  2. Goede, A., Preissner, R., Frömmel, C.: Voronoi cell: New method for allocation of space among atoms: Elimination of avoidable errors in calculation of atomic volume and density. Journal of Computational Chemistry 18(9), 1113–1123 (1997)

    Article  Google Scholar 

  3. Kim, D.S., Cho, Y., Kim, D., Cho, C.H.: Protein sructure analysis using Euclidean Voronoi diagram of atoms. In: Proceedings of the International Workshop on Biometric Technologies (BT 2004), pp. 125–129 (2004)

    Google Scholar 

  4. Kim, D.S., Cho, C.H., Kim, D., Cho, Y.: Recognition of docking sites on a protein using β-shape based on voronoi diagram of atoms. Computer-Aided Design (2005) (in printing)

    Google Scholar 

  5. Richards, F.M.: The interpretation of protein structures: Total volume, group volume distributions and packing density. Journal of Molecular Biology 82, 1–14 (1974)

    Article  Google Scholar 

  6. Aurenhammer, F.: Power diagrams: Properties, algorithms and applications. SIAM Journal on Computing 16, 78–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boissonnat, J.D., Karavelas, M.I.: On the combinatorial complexity of Euclidean Voronoi cells and convex hulls of d-dimensional spheres. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 305–312 (2003)

    Google Scholar 

  8. Gavrilova, M.: Proximity and Applications in General Metrics. PhD thesis, Department of Computer Science, The University of Calgary, Calgary, Canada (1998)

    Google Scholar 

  9. Gavrilova, M., Rokne, J.: Updating the topology of the dynamic Voronoi diagram for spheres in Euclidean d-dimensional space. Computer Aided Geometric Design 20(4), 231–242 (2003)

    MATH  MathSciNet  Google Scholar 

  10. Kim, D.S., Cho, Y., Kim, D.: Euclidean Voronoi diagram of 3D balls and its computation via tracing edges. Computer-Aided Design 37(13), 1412–1424 (2005)

    Article  MATH  Google Scholar 

  11. Luchnikov, V.A., Medvedev, N.N., Oger, L., Troadec, J.P.: Voronoi-Delaunay analysis of voids in systems of nonpherical particles. Physical Review E 59(6), 7205–7212 (1999)

    Article  Google Scholar 

  12. Will, H.M.: Computation of Additively Weighted Voronoi Cells for Applications in Molecular Biology. PhD thesis, Swiss Federal Institute of Technology, Zurich (1999)

    Google Scholar 

  13. Cho, Y., Kim, D., Kim, D.S.: Topology representation for the Voronoi diagram of 3D spheres. International Journal of CAD/CAM 5(3) (2005) (in printing)

    Google Scholar 

  14. RCSB Protein Data Bank Homepage (2005), http://www.rcsb.org/pdb/

  15. Halperin, D., Overmars, M.H.: Spheres, molecules, and hidden surface removal. In: Proceedings of the 10th ACM Symposium on Computational Geometry, pp. 113–122 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cho, Y., Kim, D., Lee, H.C., Park, J.Y., Kim, DS. (2006). Reduction of the Search Space in the Edge-Tracing Algorithm for the Voronoi Diagram of 3D Balls. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751540_13

Download citation

  • DOI: https://doi.org/10.1007/11751540_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34070-6

  • Online ISBN: 978-3-540-34071-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics