Skip to main content

A Bias-Variance-Complexity Trade-Off Framework for Complex System Modeling

  • Conference paper
Book cover Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3980))

Included in the following conference series:

Abstract

This study proposes a new complex system modeling approach by extending a bias-variance trade-off into a bias-variance-complexity trade-off framework. In the framework, the computational complexity is introduced for system modeling. For testing purposes, complex financial system data are used for modeling. Empirical results obtained reveal that this novel approach performs well in complex system modeling and can improve the performance of complex systems by way of model ensemble within the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4, 1–58 (1992)

    Article  Google Scholar 

  2. Myung, I.J., Pitt, M.A.: Applying Okham’s razor in modeling cognition: A Bayesian approach. Psychonomic Bulletin & Review 4, 79–95 (1996)

    Article  Google Scholar 

  3. Moody, J.: Prediction risk and architecture selection for neural networks. In: Cherkassky, V., Friedman, J.H., Wechsler, H. (eds.) From Statistics to Neural Networks: Theory and Pattern Recognition Applications. NATO ASI Series F. Springer, Heidelberg (1994)

    Google Scholar 

  4. Hardle, W., Hall, P., Marron, J.S.: How far are automatically chosen regression smoothing parameters from their optimum? Journal of the American Statistical Association 83, 86–95 (1988)

    Article  MathSciNet  Google Scholar 

  5. Akaike, H.: Statistical predictor information. Annals of the Institute of Statistical Mathematics 22, 203–217 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  6. Shwartz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  7. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 993–1001 (1990)

    Article  Google Scholar 

  8. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  9. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  10. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Machine Learning: Proceedings of the 13th International Conference, pp. 148–156 (1996)

    Google Scholar 

  11. Krogh, A., Sollich, P.: Statistical mechanics of ensemble learning. Physical Review E 55, 811–825 (1997)

    Article  Google Scholar 

  12. Perrone, M.P., Cooper, L.N.: When neural networks disagree: Ensemble methods for hybrid neural networks. In: Mammone, R.J. (ed.) Neural Networks for Speech and Image Processing, pp. 126–142. Chapman-Hall, Boca Raton (1993)

    Google Scholar 

  13. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Tesauro, G., Touretzky, D., Leen, D. (eds.) Advances in Neural Information Processing Systems, pp. 231–238. MIT Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, L., Lai, K.K., Wang, S., Huang, W. (2006). A Bias-Variance-Complexity Trade-Off Framework for Complex System Modeling. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751540_55

Download citation

  • DOI: https://doi.org/10.1007/11751540_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34070-6

  • Online ISBN: 978-3-540-34071-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics