Skip to main content

Analysis of Compatibility with Experimental Data of Fractal Descriptions of the Fracture Parameters

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3980))

Included in the following conference series:

Abstract

In order to check if the Fractal theory could be a useful tool for some quantitative descriptions of the fracture parameters, the present work studied different theoretical models (e.g. the Bazant’s Size Effect Law (SEL) [1], the Modified Size Effect Law [2,3] and the Carpinteri’s MultiFractal Scaling Law (MFSL) [4] of the fracture parameters of concrete specimen, and the compatibility of some of the above studied theoretical models relative to the experimental data, using certain recent procedures to study the global and local compatibility. The fracture parameters can be considered as main quantities for computational procedures for modeling the fracture of a certain ensemble (a suddenly emerging phenomena). In the next phase, the thermoelastic generation of ultrasonic perturbations in semitransparent solids was analyzed (using computer simulation) so as to find similarities with material properties as fractal dimensions, when the heat source is a laser radiation. The algorithm, the numerical analysis has taken into account three main physical phenomena: the absorption of electromagnetic energy in substance with heat generation; thermal diffusion with electromagnetic energy based heat source and elastodynamic wave generation by thermoelastic expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazant, Z.P.: Size effect in blunt fracture: Concrete, rock, metal. Journal of Engineering Mechanics, ASCE Journal of Engineering Mechanics, ASCE 110, 518–535 (1984)

    Google Scholar 

  2. Kim, J.K., Eo, S.H.: Size effect in concrete specimens with dissimilar initial cracks. Magazine of Concrete Research 42, 233–238 (1990)

    Article  Google Scholar 

  3. Bazant, Z.P., Kazemi, M.T., Hasegawa, T.: Size effects in Brazilian split-cylinder tests.: measurements and fracture analysis. J. Mazers, ACI Materials Journal 88, 325–332 (1991)

    Google Scholar 

  4. Carpinteri, A.: Fractal nature of material microstructure and size effects on apparent mechanical properties. Mechanics of Materials 18, 89–101 (1994)

    Article  Google Scholar 

  5. Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  6. Rybaczuk, M., Zielinski, W.: The concept of fractal dimension, Chaos. Solitons and Fractals 12, 2517–2535 (2001) (part I) and 2537–2552 (part II)

    Article  MATH  MathSciNet  Google Scholar 

  7. van Vliet, M.R.A.: Ph. D. Dissertation, Tehnical University of Delft (January 31 2000)

    Google Scholar 

  8. Carpinteri, A., Ferro, F.: Scaling behaviour and dual renormalization of experimental tensile softening responses. Materials and Structures 31, 303–309 (1998)

    Article  Google Scholar 

  9. Carpinteri, A., Chiaia, B.: Size Effects on Concrete Fracture Energy: dimensional transition from Order to disorder. Materials and Structures 29, 259–264 (1996)

    Article  Google Scholar 

  10. Iordache, D.: On the Compatibility of some Theoretical Models relative to the Experimental Data. Proceedings of the 2nd Colloquium Mathematics in Engineering and Numerical Physics, Bucharest 2, 169–176 (2002)

    Google Scholar 

  11. Mandelbrot, B.B., Passoja, D.E., Paullay, A.J.: Fractal character of fracture surfaces of metals. Nature 6, 721–722 (1984)

    Article  Google Scholar 

  12. Mandelbrot, B.B.: Opinions. Fractals (Complex Geometry, Patterns, and Scaling in Nature and Society) 1(1), 117–123 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Delsanto, P.P., Iordache, D., Pusca, S.: Study of the Correlations between different effective fractal dimensions used for fracture parameters descriptions. In: First South-East European Symposium on Interdisciplinary approaches in fractal analysis, Bucharest (May 7-10 2003)

    Google Scholar 

  14. Carpinteri, A., Ferro, F.: Scaling behaviour and dual renormalization of experimental tensile softening responses. Materials and Structures 31, 303–309 (1998)

    Article  Google Scholar 

  15. Jánossy, L.: Theory and Practice of the Evaluation of Measurements. Oxford University Press, Oxford (1965)

    MATH  Google Scholar 

  16. Gukhman, A.A.: Introduction to the Theory of Similarity. Academic Press, New York (1965)

    Google Scholar 

  17. Eadie, W.T., Drijard, D., James, F.E., Roos, M., Sadoulet, B.: Statistical Methods in Experimental Physics. North-Holland Publ. Company, Amsterdam (1982)

    Google Scholar 

  18. Eadie, W.T., Drijard, D., James, F.E., Roos, M., Sadoulet, B.: Handbook of Applicable Mathematics, chief editor Walter Ledermann. Statistics, vol. VI. John Wiley & Sons, New York (1984)

    Google Scholar 

  19. John, P.W.M.: Statistical Methods in Engineering and Quality Assurance. John Wiley & Sons, New York (1990)

    Book  MATH  Google Scholar 

  20. Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)

    MATH  MathSciNet  Google Scholar 

  21. Marquardt, D.W.: An algorithm for the least-square estimation of non-linear parameters. J. of Soc. Industr. Appl. Math. 11, 431–441 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gaelle, R., Pandora, P., Roland, O., Sophie, C., Christian, C.: Simultaneous Laser Generation and Laser Ultrasonic Detection of Mechanical Breakdown of a Coating – Substrate Interface, Ultrasonics (2001)

    Google Scholar 

  23. Storkely, U.: GHz Ultrasound Wave Packets in Water Generated by an Er Laser. J. Phys. D: Appl. Phys (1998)

    Google Scholar 

  24. Kritsakorn, L., Wonsiri, P., Laurence, J.J.: Guided Lamb Wave Propagation in Composite Plate. Journal of Engineering Mechanics, 1337–1341 (2002)

    Google Scholar 

  25. Andrea, F., Gottfried, L., Alexey, L., Peter, H.: Linear and Nonlinear Elastic Surface Waves; From Seismic Waves to Materials Science. Analytical Sciences 17, 9–12 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iordache, D., Pusca, S., Toma, G., Paun, V., Sterian, A., Morarescu, C. (2006). Analysis of Compatibility with Experimental Data of Fractal Descriptions of the Fracture Parameters. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751540_87

Download citation

  • DOI: https://doi.org/10.1007/11751540_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34070-6

  • Online ISBN: 978-3-540-34071-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics