Abstract
Voronoi diagrams are among the most extensively studied objects in computational geometry with useful applications in different areas of science. To understand impacts of non-Euclidean geometry on computational geometry, this paper investigates the Voronoi diagram in hyperbolic space specially the one in the Poincaré hyperbolic disk, which is a 2-dimensional manifold with negative curvature. We first prove some lemma in Poincaré hyperbolic disk and then give an incremental algorithm to construct Voronoi diagram.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alt, H., Schwarzkopf, O.: The Voronoi diagram of curved objects. In: Proc. 11th Annu. ACM Sympos. Comput. Geom., pp. 89–97 (1995)
Anderson, J.W.: Hyperbolic Geometry. Springer, New York (1999)
Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, J. (eds.) Hand book of Computational Geometry, pp. 201–290. Elsevier Science publishers B. V., North Holand (2000)
Boissonat, J.-D., Yvinec, M.: Non-Euclidean metrics, §18.5 in Algorithmic Geometry, pp. 449–454. Cambridge University Press, Cambridge (1998)
Chew, L.P., Drysdale, R.L.: Voronoi diagram based on convex distance functions. In: Proc. 1st Ann. Symp. Comp. Geom., pp. 235–244 (1985)
Drysdale, S.: Voronoi Diagrams: Applications from Archaology to Zoology. Regional Geometry Institute. Smith College (July 19, 1993)
Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg (1987)
Françcois, A.: Voronoi diagrams of semi-algebraic sets. Ph.D Thesis. Department of Computer Science. The University of British Colombia (January 2004)
Goodman-Strauss, C.: Compass and Straightedge in the Poincaré Disk. Amer. Math. Monthly 108, 33–49 (2001)
Green, P.J., Sibson, R.: Computing Dirichlet Tesselation in the plane. The Computer Journal 21, 168–173 (1978)
Karavelas, M.: 2D Segment Voronoi Diagrams. CGAL User and Reference Manual. All parts. Chapter 43 (December 20, 2004)
Karavelas, M.I., Yvinec, M.: The voronoi diagram of planar convex objects. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 337–348. Springer, Heidelberg (2003)
Kim, D.-S., Kim, D., Sugihara, K.: Voronoi diagram of a circle set from Voronoi diagram of a point set: 2. Geometry. Computer Aided Geometric Design 18, 563–585 (2001)
Koltun, V., Sharir, M.: Polyhedral Voronoi diagrams of polyhedra in three dimensions. In: Proc. 18th Annu. ACM Sympos. Comput. Geom., pp. 227–236 (2002)
Koltun, V., Sharir, M.: Three dimensional Euclidean Voronoi diagrams of lines with a fixed number of orientations. In: Proc. 18th Annu. ACM Sympos. Comput. Geom., pp. 217–226 (2002)
Lee, D.T.: Two-dimensional Voronoi diagrams in the Lp metric. JASM 27(4), 604–618 (1980)
Morgan, F.: Riemannian Geometry: A Beginner’s Guide. A K Peters. Ltd (1993)
Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tesselations: concepts and applications of Voronoi diagrams, 2nd edn. John Wiley & Sons Ltd., Chichester (2000)
Onishi, K., Takayama, N.: Construction of Voronoi diagram on the Upper halfplane. IEICE TRANS. Fundamentals E00-X(2) (Febrauary 1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nilforoushan, Z., Mohades, A. (2006). Hyperbolic Voronoi Diagram. In: Gavrilova, M.L., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751649_81
Download citation
DOI: https://doi.org/10.1007/11751649_81
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34079-9
Online ISBN: 978-3-540-34080-5
eBook Packages: Computer ScienceComputer Science (R0)