Applying Multi-agent Concepts to
Dynamic Plug-in Architectures

Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Heiko Rélke

University of Hamburg, Department of Computer Science,
Vogt-Kolln-Str. 30, D-22527 Hamburg
http://www.informatik.uni-hamburg.de/TGI/

Abstract. In this work we present the basic concepts for a dynamic
plug-in-based software architecture using concepts from the Petri net-
based MAS framework MuLAN. By transferring the concepts of agent-
orientation to a plug-in-based architecture we are able to design our
application and the plug-in-based system on an abstract level. More-
over, general problems that evolve from a highly dynamic and config-
urable architecture have been solved by basing the conceptual design on
multi-agent principles. In this paper we discuss the general properties of
extensible systems and the benefits that can be achieved when applying
the multi-agent view to their architecture.

In addition to the conceptual modeling of such architectures, we provide a
practical example where the concept has been successfully applied in the
development of the latest release of RENEw. Through the introduction
of the multi-agent concepts, the new architecture is now — at runtime
— dynamically extensible by registering plug-ins with the management
system.

Keywords: Components, dynamic software architectures, high-level Petri
nets, modeling, MULAN, multi-agent systems, nets-within-nets, plug-in
architectures, reference nets, RENEwW

1 Introduction

Today’s application software has to be adaptable, configurable and customizable
to fulfill the needs of the users. Many system developers approach this challenge
by introducing extensible systems as plug-in systems to extend or alter the func-
tionality of these applications. Some systems are augmented with simple plug-in
mechanisms, others reorganize the architecture of the application towards a sys-
tem that consists exclusively of plug-ins. While applications of the first category
usually resort to simple designs with extremely restrained possibilities of ex-
tending, the applications of the second category have to face many challenges to
assure consistency and interoperability of plug-in components.

Plug-in frameworks like those of Eclipse [5] or NetBeans [12] provide elab-
orated plug-in features in their practical environment. However, a conceptual
model of a plug-in is not discussed in this context.

By examining plug-in systems from the agent-oriented perspective, restric-
tions and problems of current systems can be discovered and attacked. Moreover,

J. Mueller, F. Zambonelli: Agent-Oriented Software Engineering VI, LNCS 3950, pp. 190204} 2006.
© Springer-Verlag Berlin Heidelberg 2006

Applying Multi-agent Concepts to Dynamic Plug-in Architectures

by basing the architectures of plug-in systems on agent-oriented principles, the
designs of the application architectures adopt the advantages of multi-agent sys-
tems. These advantages are the handling of problems such as concurrency, con-
flicting functionality, service dependencies, locality and privacy, compatibility
and dynamic extensibility. Challenges of plug-in systems can then be addressed
in a more general way in Multi-agent systems. One of the foremost benefits is,
that the plug-in architecture becomes dynamically extensible i.e. functionality
can be altered, added or removed at runtime without the need to restart the
application. For example, Bergenti and Huhns discuss and formally define the
aspect of reusability when using agents as components in [I, pp. 19-32].

In this paper we benefit from the expressiveness of our Petri net based model
of multi-agent systems. Based on agent-oriented Petri nets [I1] and the FIPA-
compliant MAS framework CAPA (see [4]) we present a conceptual model for
plug-in based systems. The idea is to structure and improve such systems using
important concepts from the agent-oriented area, along with a visual represen-
tation.

In the following Section 2l we give an introduction for the Petri net-based
multi-agent reference architecture MULAN. MULAN, the conceptual basis for
CAPA, uses the formalism of reference nets, a high-level Petri net formalism
to handle concurrency, distributedness and localities. The focus lies on the con-
cepts in the MAS, which are used in the design of our concept model of a general
plug-in architecture. In Section Bl we present our agent-oriented concept model
for a dynamic plug-in architecture. After a short sketch of a specialized concept
model for a plug-in system in Section [4] we discuss in Section [the realization
of the concept model in RENEW and discuss some pragmatic design decisions.

Note that the Petri net IDE RENEW is portraited here in two different ways.
First, it is used to act as modeling tool and virtual engine for the abstract
and the functional MULAN models. Second, it is used as the application, which
architecture is examined and presented as a realization of the concept model of a
general plug-in architecture. A similar manifold object of discussion is the agent
platform CAPA which is realized as a plug-in for RENEW, but also used in the
development of the concept model.

2 Agent System Architecture

In this section we will introduce the agent system architecture MULAN together
with the CAPA extension. MULAN is implemented using the reference net for-
malism (and Java) so we start with an overview on reference nets.

2.1 Reference nets
Reference nets [§] are expressive high-level Petri nets that allow nets to be nested

within nets in dynamical structures (nets-within-nets [17]). In contrast to ordi-
nary Petri nets, where tokens are passive elements, tokens in nets-within-nets

191

192 L. Cabac, M. Duvigneau, D. Moldt, and H. Rélke

are active elements, i.e. Petri nets. In general we distinguish between two differ-
ent kinds of token semantics: value semantics and reference semantics. In value
semantics tokens can be seen as direct representations of nets. This allows for
nested nets that are structured in a hierarchical order because nets can only be
located at one location. In reference semantics arbitrary structures of net-nesting
can be achieved because tokens represent references to nets. These structures can
be hierarchical, acyclic or even cyclic.

Reference nets may be modelled and executed using the Petri net-IDE RE-
NEW [9] (see Section []).

Reference nets are object-oriented nets. Similar to objects in object-oriented
programming languages, where objects are instantiations of classes, net instances
are instantiations of net templates. Net templates define the structure and be-
havior of nets just like classes define the structure and methods of objects. While
the net instance has a marking that determines its status, the net template deter-
mines only the behavior and initial marking that is common to all net instances
of one type.

Communication between different nets (net instances) is possible via syn-
chronous channels. Synchronous channels resemble method calls in object-orien-
ted programming languages, but they are more powerful. They temporarily fuse
two (or more) transitions and allow the passing of arguments in either directions.
Furthermore, the enabledness of the channel is determined by all participating
transitions, not only by one caller.

2.2 The Multi-agent System MULAN

Today, agents and multi-agent systems (MAS) are one of the most important
structuring concepts for complex software systems. By including attributes like
autonomy, cooperation, adaptability and mobility, agents go well beyond the
concept of objects and object-oriented software development.

multi agent system O9QA agent platform -~ agent P protocol
z T -

/ teinal / receive msg | send msg slan
communication / |:| |:|
platforms (| , knowledge base | .
% ()
-
add _~ remove subdall’] .
D

protocols in procgssie(")

@ conversations

communication
structure

@/ external

communication

remove stop!

Fig. 1. Agent system as nets-within-nets

The multi-agent system architecture MULAN [I1] is based on the nets-within-
nets paradigm, which is used to describe the natural hierarchies in an agent

Applying Multi-agent Concepts to Dynamic Plug-in Architectures

system. MULAN is implemented in reference nets using RENEW [9]. MULAN has
the general structure as depicted in Figure [[} Each box describes one level of
abstraction in terms of the net hierarchy. Each upper level net contains net
tokens, whose structures are made visible by the ZOOM lines[] The figure shows
a simplified version of MULAN, since for example several inscriptions and all
synchronous channels are omitted. Nevertheless, MULAN is an executable model.
In Figure [0l each box can be seen as a specific view on the multi-agent system.

The Multi-Agent System View. The net in the far left of Figure[Il describes
an agent system, whose places contain agent platforms as tokens. The transitions
describe communication or mobility channels that build up the infrastructure.
The multi-agent system net shown in the figure is just an illustrating example,
the number of places and transitions or the interconnections have no further
meaning.

The Platform View. By zooming into the platform token on place pl, the
structure of a platform becomes visible, shown in the second box. The central
place agents hosts all agents that currently reside on this platform. Each plat-
form offers services to the agents, some of which are indicated in the figure
Agents can be created (transition add) or destroyed (transition remove). Agents
can communicate by message exchange. Two agents of the same platform can
communicate by the transition internal communication, which binds two agents,
the sender and the receiver, to pass one message over a synchronous channel.
Transition external communication only binds one agent, since the other agent
is bound on a second platform somewhere else in the agent system. Also mobil-
ity facilities are provided on a platform: agents can leave the platform (via the
transition new) or enter the platform (via the transition destroy).

In the diagram some details of the platform are hidden for the reason of
simplicity. An important feature that cannot be seen is that a platform may
itself act as an agent. By this means, arbitrary hierarchies of agents and platforms
are possible, in particular a platform is able to encapsulate its agents from the
outside world.

The Agent View. An agent is a message processing entity. It must be able
to receive messages, possibly process them and generate messages of its own.
Each agent consists of exactly one agent net that is its interface to the outside
world (third box in Figure [[) and an arbitrary number of protocols (last box)
defining its behavior. The agent may exchange messages with other agents via the
platform. This is done using the transitions receive message and send message.
These two transitions are the only interconnection of the agent to the rest of
the (multi-) agent system, so the agent is a strongly encapsulated entity. Please

! This zooming into net tokens should not to be confused with place refinement.
2 Note that only mandatory services are mentioned here. A typical platform will offer
more and specialized services, for example implemented by special service agents.

193

194 L. Cabac, M. Duvigneau, D. Moldt, and H. Rélke

note, that communication of agents is asynchronous even though synchronous
channels are utilized for this cause.

The central point of activity of such an agent is the selection of protocols
and therewith the commencement of conversations. The protocol selection can
basically be performed pro-actively (the agent itself starts a conversation) or re-
actively (protocol selection based on a conversation activated by another agent).
In the case of the pro-active protocol selection, the place knowledge base is the
main enabling condition, the protocols are a side condition.

The Interaction View. The activities of an agent are modeled as protocol
Petri nets (or short: protocols) — an example is given in the far right box of
the figure. The variety of protocols ranges from simple linear step-by-step plans
to complex dynamic workflows. Petri nets are well suited for the modeling of
procedures or process flows, which can be seen by their wide-spread use in the
area of (business) process modeling [18].

2.3 Agents as Platforms

As stated before, platforms in a full featured MULAN system may act like agents
and encapsulate the hosted agents. It is therefore no problem to implement e.g. a
holonic MAS using MULAN agents. The logical consequence of this approach is
to exclusively use these “platform agents” as agents in the MAS. Following this
idea leads to a dynamically reconfigurable MAS structure, i.e. a new hierarchy
level may be introduced at run-time simply by creating a new (platform) agent
and migrating other agents into it.

ext.comm.

ext.comm.
receive msg. - send msg

Fig. 2. Agent as a platform

Figure2shows an agent that may serve as a platform for other agents. Instead
of protocol nets, agents serve as description of the platform agent’s behavior.
The internal agents are depicted in an abstract way. Each of them may be a
full-featured (platform) agent.

Applying Multi-agent Concepts to Dynamic Plug-in Architectures 195

2.4 CApPA

CAPA (Concurrent Agent Platform Architecture) [4] is a partial re-implementation
of the MULAN framework. CAPA ensures the compatibility of the MULAN frame-
work to the FIPA specifications [6]. The internal structure of the agents and the
possibilities sketched above are not changed by CAPA.

Part of the compliance to the FIPA specifications concerns the management
of an agent platform. In particular, an agent management system (AMS) and a
directory facilitator (DF) have to be provided. This is done by placing special
agents on each platform that offer the mandatory services. Additional services
may be offered by agents residing on the platform. Agents migrating to a plat-
form may offer new services previously lacking on this platform.

This migration idea may serve as a basis for the conceptualization of plug-in
architectures. This will be demonstrated in the next chapter.

3 Concept Model for a Dynamic Plug-in Architecture

A dynamic architecture is characterized by extensibility and adaptability. We
sketch some general concepts of plug-in systems and map these concepts to
agent-oriented concepts. In this work we conceive extensibility as a recursive
feature. We apply the idea of nested platform agents to our concept, which leads
to recursive extensibility. A system is extended by components, which again are
extended by plug-ins, which are (specialized) components. Finally, we show that
the recursive agent-oriented plug-in model is a full-fledged plug-in system that
allows for dynamic configuration. The realization of this concept in Renew 2.0
is described in Section

3.1 Extensibility

To construct extensible systems it is useful to get a notion of what is meant by
extensibility. In software engineering, components have been introduced as units
of extensibility. Sametinger gives a definition of a component:

Definition 1 Component [13, p. 68/

Reusable software components are self-contained, clearly identifiable artifacts
that describe and/or perform specific functions and have clear interfaces, appro-
priate documentation and a defined reuse status.

Likewise, extensibility in the agent-oriented view is a first-order concept.
An agent system is extended by creating or migrating agents onto a platform.
These agents provide additional functionality to all other agents in the system as
long as they exist within the system. Removing the agent subtracts its provided
functionality from the system.

Obviously we can map the concepts of components on the concepts of agents.
Agents are encapsulated (self-contained, clearly identifiable) artifacts. They have
the capability of action and reaction (specific functions). In FIPA-compliant

196 L. Cabac, M. Duvigneau, D. Moldt, and H. Rélke

platforms, the service directory, communication languages and ontologies provide
clear interfaces and documentation. MULAN agents are composed of reusable
protocols.

The platform net in Figure [I] visualizes the idea of extensibility: Net tokens
that provide functionality — agents — can be put onto and removed from the
central place of this net. These primitive platform services provide the component
management of the software system. In the platform net of Figure [l we are
able to say that the system is extensible on one level. This notion of one-level
extensibility [I5] expresses the fact that new components can be introduced to the
system but these components can not be extended themselves. The possibility to
extend the components leads us to a notion for a recursively extensible system.

The extended agent model shown in Figure 2] already provides recursive ex-
tensibility. Every agent can serve as a platform for an arbitrary number of agents,
which can be platforms again. Components that recursively extend other com-
ponents are plug-ins. We take the following definition from Schumacher:

Definition 2 Plug-in [T], p. 34/

Plug-ins are components that change the behavior of one or more other com-
ponents in the system. This is done by using the provided interface of the com-
ponents.

Up to now, we have a hierarchical structure of the system. The extension
relation is strongly tree-structured. The use of reference semantics enables us to
relax this condition. With reference nets we would be able to create arbitrary
structured extension relations, e.g. acyclic graphs. This would also be desirable
for a plug-in system, however, as long as we regard the containment relation
of agents within agents as a physical relationship, one agent cannot be located
at two platforms at the same time. Nevertheless, the logical platform concept
allows an agent to be residing at multiple platforms. Von Liide et. al. [I6] stress
the necessity of the use of multiple memberships of agents in platforms from a
sociological viewpoint in analogy to the membership of humans in communities.

3.2 Communication Between Components

In a multi-agent system, communication between agents is always carried out
through messages. These are transported horizontally by the platforms — this is
a basic platform service. In addition, the nesting of agent platforms introduces
vertical message passing as depicted in Figure [(ext. comm.).

In fact, the communication services provided by each platform allow us to see
the functionality of all agents inside that platform as functionality of that plat-
form, including the management services of that platform and its children. Thus,
the distinction between management and functionality that we made earlier can
be dropped now.

One of the advantages of the component-orientation is the re-usability (cf. [I3]
p. 68]). This means for instance that the functionality that is offered by the plug-
in can be utilized by all components that need this functionality. Therefore, a

Applying Multi-agent Concepts to Dynamic Plug-in Architectures

component has to be able to address another component / plug-in. For this we
need the notion of services that are offered by components. Services have to
be published and made accessible for other components. The service directory
provided by the directory facilitator (DF) of FIPA-compliant platforms serves
that purpose. If the DF is modeled as an agent, we can provide its service at any
platform in the hierarchy. However, for a software system it is more practical to
have one global service directory. Therefore, we require a DF only at the top-level
platform. Likewise, we demand for our system that every component (agent) is a
direct member of the top level platform. Although this is an enormous restriction
of our general model it simplifies the management of the plug-in system. If each
extensible component declares its extension management interface as a public
accessible service, potential plug-ins can query the platform for that service and
register themselves directly.

We enforce a life cycle for all plug-ins within the platform. The communica-
tion protocols induced by the life cycle enables the plug-in / agent to participate
during migration by reacting to migration requests issued by third parties. Also
the exact time of extension registration and configuration is determined by the
life cycle.

The participation of a plug-in can be realized by simply adding a synchronous
channel request to the add and remove transitions of a platform. These channel
requests must be confirmed by the added / removed plug-ins. This ensures that
the services of a plug-in cannot be used by components before the plug-in has
been properly initialized.

It should be noted that each containment relationship is accompanied by its
own life cycle. In this view we can map the agent life cycle, as standardized by
the FIPA [7], onto the life cycle of the plug-in on the top-level platform. The life
cycles in each containing sub-level should be handled by interaction protocols,
defined by the extended component.

A multi-agent system already defines per definition an extensible system.
By mapping some of the multi-agents concepts back to the model of a plug-in
architecture we are able to design a system that offers extensibility as first-order
concept. In addition, an agent-based view also takes into account that extensible
systems have to deal with conflicts, concurrency, redundant functionality and
also missing functionality. We have shown in this section that a concept model
for a dynamic plug-in system architecture can be developed on the basis of
multi-agent principles. We have achieved a formalization of plug-in systems that
enables plug-ins to be loaded dynamically at runtime. In the following section
we demonstrate the feasibility of our concepts in a real-world example.

4 Specialized Plug-in Model

In [2], we explain how we model the RENEW plug-in system using reference nets.
Although that model uses different notations and communication mechanisms,
it is rather similar to the one presented in the previous section. We refer to it
because it is more visual and helps to understand the agent based model. Also

197

198 L. Cabac, M. Duvigneau, D. Moldt, and H. Rélke

there exists an executable version of the model that proves the feasability of our
concepts.
4.1 Reference net based model of the plug-in system

We start with a simple abstract reference net model of extensibility, as shown
in Figure Bl The upper grey colored elements of the net define the extension

add functionality remove functionality

provide provide functionality
functionality by using functionality

Fig. 3. Extensibility (from [2])

management part of the system. The net shows the system as reference net in
which the central place acts as the container for extensions. Functionality is
added to the system by a synchronous channel at the transition labeled add
functionality and then put on the central container place. Functionality is
removed by the transition labeled remove functionality.

The white transitions in the lower part are representatives for the available
domain-specific functionality of the system. Some of the functionality may incor-
porate the functionality provided by extensions that lie in the central container
place. All elements f that are extending the system are net instances again,
according to the nets-within-nets paradigm.

In the paper [2], we refine the abstract model further until we obtain exe-
cutable reference nets, thereby introducing all concepts explained in Section [3]
like recursive extensibility, a service directory, a component lifecycle and a top-
level net called PluginManager. The refined model of a component is shown in
Figure [

4.2 Mapping between both models

A mapping between the agent-based model in this paper and the net model in
[2] is established easily. The agent platform of the MULAN model (see Figure [I))
has obviously the same add and remove channels as the basic concept of exten-
sibility shown in Figure[3l The internal and external communication channels of
the platform are not needed in the plug-in system because nested plug-ins use
vertical communication. To allow horizontal communication, the plug-in man-
ager provides the service directory where plug-ins can obtain direct references

Applying Multi-agent Concepts to Dynamic Plug-in Architectures

:add(p) p:configure() p:disconnect() :remove(p)

linit(pms) :shutdown() :getServices(sd)

pm: pm:
P

sd
§ pms
Service
e |:| Ij e Descriptions
:funcA() :funcB() :funcC()

p:funcl() pms:getService("func2", p)
p:func2()

Fig. 4. Refined component model (from [2])

to other plug-ins. In the agent system, these references are agent-identifiers and
reference-based horizontal communication is the normal case.

The agent net in Figure [2]is more generic than the component net, allowing
any message to enter and leave the agent, while the plug-in net only accepts other
plug-ins. The init and shutdown channels of the component net implement
the life-cycle of the plug-in inside the plug-in management system. In the FIPA
architecture, the life-cycle is implemented by message-based communication with
the AMS agent, adhering to standardized interaction protocols. Analogously, the
service lookup channels in the plug-in model are mapped onto message-based
communication with the DF agent.

In the reference net model of plug-ins, we use white transitions to indicate
domain-specific functionality of the plug-in. Such functionality is not directly
visible in the agent net of the agent model because a MULAN agent implements
such functionality by protocol nets on its lower layer.

The similarities between both models are not surprising given the fact that
we already thought of an agent-based design when we designed the reference net-
based model. It should be noted that the agent model of the plug-in system is
more generic and thus more flexible, while the reference net model is specialized
for the intended purpose. Therefore, the reference net model is more visual than
the agent model, the nets show more application-specific details that are hidden
in nested, dynamically changable protocols in the agent model.

Both models handle the same set of concepts and use similar means to acheive
the intended functionality. Besides the different notations and message passing
mechanisms, both models are the same. Both models are in fact agent-based
models. They use the key concepts of multi-agent system, namely encapsulation,
autonomy, cooperation, adaptability and mobility (although the latter is not
discussed extensively in this paper, plug-ins can surely move from one container
to another in our reference net model). But both models also restrict features
like autonomy at a certain level in order to obtain a predictable, well-organized
software system.

199

200 L. Cabac, M. Duvigneau, D. Moldt, and H. Rélke
5 RENEW Plug-in Architecture

We use our tool RENEW for a case study where the plug-in concept is applied.
RENEW (the Reference Net Workshop) is an open source IDE for Petri nets [9].
Its main functionality is provided by a simulation engine, which is accompanied
by a graphical editor for Petri nets. The transformation from graphical nets to
simulation code is realized as an abstract compiler interface so that the tool can
be extended to handle arbitrary Petri net formalisms. The tool is shipped with
a reference net compiler that provides the formalism sketched in Section 211

The RENEW tool has grown enormously since its first release in 1999, and
many application-specific extensions have been created in the meantime. These
extensions, like a workflow engine, an agent platform or an editor for UML in-
teraction diagrams, are themselves already grown to applications with their own
extensions. Up to RENEW 1.6, all extensions were compiled into one large ap-
plication. Some sets of functionality could be selected by specifying a mode at
startup, but mode switching at runtime was not possible. However, a user would
normally not need all extensions at the same time, but possibly in arbitrary com-
binations. Altogether, RENEW is very well suited as a case study for a dynamic,
recursive plug-in system.

The plug-in system along with the decomposed application has been released
as RENEW 2.0 and presented from the user’s point of view in [I0]. In this section
we want to show how the concepts developed in Section [3] are applied to the
RENEW plug-in system. Please note that our concepts have been modeled with
the reference net formalism provided by RENEW, so that we have a cyclic relation
between model and tool.

5.1 Functional Decomposition

From the user’s point of view, RENEW comprises two main components: the
simulation engine and the graphical net editor. Already in the first release it has
been stated that RENEwW supports multiple formalisms, since new formalisms
could easily be added by implementing the appropriate compiler. Clearly it is
desirable to separate each formalism into its own plug-in.

Figure [l shows some plug-ins of the current decompositionﬁ At the bottom,
there are some unnamed class libraries that are used by many or all plug-ins.
Some of these libraries are integrated into the application as a plug-in of their
own, but they do not provide any extension interfaces. At the right there is the
main plug-in of RENEW, the simulation engine.

The graphical editor comprises two plug-ins: JHotDraw and Gui. The Gui
plug-in enhances the JHotDraw application by Petri net specific figures and
control commands for the token game.

3 Tt has to be noted that the decomposition of an existing application with approxi-
mately 900 classes in 30 packages into several components is not unique and therefore
some functionalities might be reassigned between components in future releases. The
refactoring of RENEW is still work-in-progress.

Applying Multi-agent Concepts to Dynamic Plug-in Architectures 201

T = Capa
: FIPA-compliant
: agent platform

Component

Editor extension FormalismGu

Formalism
choice menu

Legend: I L+ - — [1

- T ~-=--+- -3 Formalism
Management
(and JavaNet formalism)

-=>
uses functionality

—>

is a plug-in of

Simulator

JHotDraw

Graph editor Engine

|

|

|

|

o I
division between

basic and graphic sy !

components A2 A2 s v

l Common libraries, plug-in management system

Fig. 5. Plug-ins and their dependencies as of RENEW 2.0

The management of formalisms is divided into two plug-ins, and an analogous
partitioning is suggested for each individual formalism as well as each other
extension to the simulation engine: One plug-in extends the simulation engine
and/or formalism management components. It provides the pure functionality
extension without graphical adornments, e.g. the formalism management, or
a compiler. The second component is a plug-in of the editor component and
provides additional menu entries, graphical representations of net structure and
tokens, formalism-specific tools, etc. to the user.

The two white plug-ins show the integration of the agent platform CAPA into
the system. It extends the simulation engine to set up additional services when
a simulation is started. Capa is also a plug-in of the Gui plug-in, it adds some
menus and graphical adornments for agent nets. The NetComponents plug-in
extends the graphical editor by toolbars of commonly used net patterns. Such
a toolbar is defined by the MulanComponents plug-in, these patterns have been
presented in [3].

5.2 Applied Concepts

The RENEW plug-in system is implemented along the concepts developed in
Section3l In the system there exists a PluginManager that acts like the platform
net shown in Figure[Il There is no distinction between components and plug-ins
because any component may also act as a plug-in to any other component.
Plug-ins can enter the system in two ways. At startup, a plug-in finder looks
at specific locations for pre-installed plug-ins, and during runtime plug-ins can be
loaded dynamically by supplying an URL to the plug-in loader. Analogously, all

202 L. Cabac, M. Duvigneau, D. Moldt, and H. Rélke

plug-ins are unloaded when the system shuts down. The removal of components
can also be initiated at runtime through an unload command.

The maintenance of the service directory is automated: Each plug-in is ac-
companied by a description of its provided services, the PluginManager main-
tains the directory during the initialization and shutdown transitions.

Optionally, the PluginManager may enforce dependencies between plug-
ins. If a plug-in is also accompanied by a description of required services, the
PluginManager will not include it in the system unless the required services are
available. This mechanism delegates some commonly needed autonomous deci-
sions of the plug-in to the PluginManager to simplify the plug-in development
process. Likewise, the unloading of a plug-in is prohibited as long as another
plug-in requires a service provided by the plug-in to remove. Of course, this
dependency enforcement only works for static service requirements—but this is
exactly what a Java programmer needs to ensure the availability of required
class definitions.

Recursive extensibility (as introduced in SectionB.1)) is included in the system
as a chain of component extensions. An example is the CAPA plug-in, which
extends the Gui plug-in to enhance the graphical simulation feedback. The Gui
plug-in in turn extends the simulation engine component to monitor and control
the simulation. Since the CAPA plug-in additionally extends the Simulator plug-
in to start up platform services along with the simulation, we also have an
example for the extension of multiple components by one plug-in.

We are able to use the refined nets as shown in Figure @] as implementation,
if we use the RENEW simulation engine as basic runtime environment. Since
the reference net based model is a simplified version of the agent based model
that has been developed in this paper, we have shown the executability of our
agent-based concept model.

The side condition that the plug-in system should not reduce the application’s
execution speed necessitated some pragmatic solutions. The concessions we made
are restricted to the Java implementation of the plug-in system, the precise and
concurrent Petri net semantics of the model in Sections[3land [are not weakened.

6 Conclusion

MULAN is an expressive modeling framework, based on the reference net formal-
ism, that is capable of modeling dynamic system architectures. Models that are
built with MULAN agents can profit from the multi-agent architecture, which
among other benefits provide the ability to construct arbitrary and dynamic
structures. The agent/platform model allows to express extensibility and de-
pendency relationships of system components. Furthermore, the possibility to
concretize the model by refinement leading to a functional model is of great
advantage when designing, discussing, prototyping and (re-)designing a system.

The presented generic — reference net multi-agent based — concept model
for a dynamic architecture proves to be an approach that is both, sufficiently
abstract for expressive modeling and sufficiently concrete to be able to transfer it

Applying Multi-agent Concepts to Dynamic Plug-in Architectures

to a real-world application. Moreover, it is the only modeling technique — to our
knowledge — that is able to represent a flexible, adaptable and dynamic design of
an application architecture. The level of abstractness is a benefit to the general
design decisions. The level of concreteness helps the architect and developer to
experiment and evaluate the model prior to the implementation.

The concept model comes with an explicit top-level net, the platform respec-
tively plug-in management system. Furthermore, the similarity of structures on
the top level and all other levels allows for the introduction of independent
service and extension management units on every level. Our model is capable
of describing a pluggable plug-in mechanism. Such a model is useful to merge
multiple systems with independent management architectures.

The Petri net IDE RENEW has undergone major refactorings and this process
is still in progress. However, the preliminary results are promising. It is safe to
say that the decision to refactor the system was the right way to go. We achieved
a lean and flexible plug-in mechanism that permits arbitrarily nested plug-ins.

Beside just another plug-in mechanism with specific features that are very
valuable in the context of our research and development, a visual modeling con-
cept for plug-ins has been presented. In fact, currently well-established modeling
techniques are highly elaborated and powerful but also oriented towards static
architecture design and very resistant against paradigm shifts. In order to im-
prove modern architecture design many dynamic aspects have to be included
as first-order concepts. Extensibility is one of them. Our model can cope with
extensibility because it roots as well in the multi-agent as in the nets-within-nets
paradigm.

We are looking forward to unleashing the full power of our architecture model
by supporting an interleaved multi-formalism simulation support. Thereby, sev-
eral advantages of different formalisms can be combined to the advantage of the
designed model.

References

1. Federico Bergenti, Marie Gleizes-Pierre, and Franco Zambonelli, editors. Method-
ologies and software engineering for agent systems: the agent-oriented software
engineering handbook. Number 11 in Multiagent systems, artificial societies, and
simulated organizations. Kluwer Academic, Boston [u.a.], 2004.

2. Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Heiko Rélke. Modeling
dynamic architectures using nets-within-nets. In Gianfranco Ciardo and Philippe
Darondeau, editors, Applications and Theory of Petri Nets 2005: 26th International
Conference, ICATPN 2005, Miami, USA, June 2005. Proceedings, number 3536 in
LNCS, pages 148-167, Berlin, 2005. Springer Verlag.

3. Lawrence Cabac, Daniel Moldt, and Heiko Rélke. A proposal for structuring Petri
net-based agent interaction protocols. In W.M.P. van der Aalst and E. Best, edi-
tors, Lecture Notes in Computer Science: 24th International Conference on Appli-
cation and Theory of Petri Nets, ICATPN 2003, Netherlands, Findhoven, volume
2679, pages 102-120, Berlin: Springer, June 2003.

4. M. Duvigneau, D. Moldt, and H. Rolke. Concurrent architecture for a multi-agent
platform. In Fausto Giunchiglia, James Odell, and Gerhard Weifs, editors, Third

203

204

®

10.

11.

12.
13.
14.

15.

16.

17.

18.

L. Cabac, M. Duvigneau, D. Moldt, and H. Rélke

International Workshop, AOSE 2002, Bologna, Italy, July 15, 2002, Revised Papers
and Invited Contributions, volume 2585 of LNCS, Berlin, 2003. Springer Verlag.
Eclipse Homepage. http://wuw.eclipse.org, 2005.

FIPA. Foundation for Intelligent Physical Agents. http://www.fipa.org, October
2005.

Foundation for Intelligent Physical Agents. FIPA Agent Management Spec., 2005.
Olaf Kummer. Referenznetze. Logos-Verlag, Berlin, 2002.

Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew — The Reference
Net Workshop. http://www.renew.de, October 2005. Release 2.0.

Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jérn Schumacher, Michael
Kohler, Daniel Moldt, Heiko Rolke, and Riidiger Valk. An extensible editor and
simulation engine for Petri nets: Renew. In Jordi Cortadella and Wolfgang Reisig,
editors, Applications and Theory of Petri Nets 2004: 25th International Confer-
ence, ICATPN 2004, Bologna, Italy, June 2004. Proceedings, number 3099 in
LNCS, pages 484-493, Berlin, 2004. Springer Verlag.

Michael Koéhler, Daniel Moldt, and Heiko Rolke. Modelling the structure and
behaviour of Petri net agents. In Proc. of 22nd International Conf. on Applications
and Theory of Petri Nets 2001 (ICATPN 2001) / J.-M. Colom, M. Koutny (Eds.),
Newcastle upon Tyne, UK, pages 224-242. Lecture Notes in Computer Science 2075,
edited by G. Goos, J. Hartmanis and J. van Leuwen, Springer, June 2001.
NetBeans Homepage. http://www.netbeans.com, 2005.

J. Sametinger. Software Engineering with Reusable Components. Springer Verlag,
Berlin, 1997.

Jorn Schumacher. Eine Plug-in-Architektur fiir Renew: Konzepte, Methoden, Um-
setzung. Diplomarbeit, University of Hamburg, Department of Computer Science,
October 2003.

Clemens Szyperski. Component software: beyond object-oriented programming.
ACM Press books. Addison-Wesley, 2. edition, 2002.

R. v. Lide, D. Moldt, and R. Valk. Sozionik: Modellierung soziologischer Theorie,
volume 2 of Reihe: Wirtschaft — Arbeit — Technik. Lit-Verlag, Miinster - Hamburg
- London, 2003.

Riidiger Valk. Petri Nets as Token Objects - An Introduction to Elementary
Object Nets. In J. Desel and M. Silva, editors, 19th International Conference on
Application and Theory of Petri nets, Lisbon, Portugal, number 1420 in LNCS,
pages 1-25, Berlin, 1998. Springer Verlag.

Wil van der Aalst, Jorg Desel, and Andreas Oberweis, editors. Business Process
Management: Models, Techniques, and Empirical Studies. Number 1806 in LNCS.
Springer-Verlag Berlin, 2000.

http://www.eclipse.org
http://www.fipa.org
http://www.renew.de
http://www.netbeans.com

	Applying Multi-agent Concepts to Dynamic Plug-in Architectures
	Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Heiko Rölke

