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Abstract. In this paper we present models and languages to specify 3D
interfaces for accessing knowledge bases. In this approach, a specification
has an abstract and a concrete level. The abstract specification language
describes the contents of nodes, obtained by selecting knowledge base ob-
jects, and different categories of links on these nodes. It serves to generate
an abstract interface which is a 3D spatial hypertext. The concrete spec-
ification language associates styles and layout managers to the abstract
interface components, so as to produce a concrete interface in which the
nodes have a presentation and a position. This concrete interface is then
easily translated in a 3D scene representation language such as VRML
or X3D to be displayed.

Keywords. knowledge base, 3D interface, interface specification, spatial
hypertext.

1 Introduction

The use of knowledge organisation systems is spreading rapidly to support or
enhance new computerized applications. For instance, the implementation of
the semantic web idea will require the development of ontologies; multi-agent
systems must refer to common ontologies to communicate ; many e-learning
environments include knowledge representation components for modelling the
domain, the user profiles, etc. In addition, traditional databases or document
repositories are often complemented with a knowledge representation layer to
form machine treatable knowledge bases.

Several authors have shown that 3D visualisation techniques can enhance the
usability of user interfaces, at least for certain tasks. In addition, 3D spaces offer
a wide spectrum of opportunities to develop visual metaphors and interaction
objects. However, the 3rd dimension has rarely been used to represent knowledge
bases. This comes probably from the lack of tools to specify and implement such
interfaces.

The aim of our work is to develop a specification language and system to pro-
duce three-dimensional interfaces to view and search the content of a knowledge
bases. Moreover, we require that the generated interfaces have all the navigation



and representation features of 3D spatial hypertexts. That is, it must be possible
to navigate the scene by activating hypertext links, and the geometric positions
of the objects must represent some semantic relationship that hold between the
knowledge base elements they represent.

In the rest of this section we give some background on knowledge representa-
tion and visualisation and on interface specification. In section 2, we introduce
the abstract interface model and the abstract specification language. In section
3 we present the concrete model and language. In section 4 we briefly show the
current implementation strategy. Section 5 gives our conclusion.

1.1 Knowledge Representation and Knowledge Bases

“Knowledge base” is a general term for a place that contains organized informa-
tion about a chosen topic. There are many different kinds of knowledge bases. In
artificial intelligence, they typically contain formal information on objects, facts
or rules; it is thus possible to apply automatic processing to them. Knowledge
bases that are used in companies for knowledge management purposes tend to
be less formal. They are often made of an indexed document base describing
“lessons learned”, “best practices”, FAQs, etc. [8], [20].

The knowledge elements present in knowledge bases may have different level
of formalisation and abstraction. For instance, domain ontologies contain ab-
stract formalized knowledge while text documents may contain factual (concrete)
non-formalized knowledge, and databases contain factual formalized knowledge.
To deal with this diversity, we selected the RDF-RDFS family of data / knowl-
edge representation models [17].

RDF is a very simple semi-structured data model based on (subject, pred-
icate, object) triples that form a semantic graph. The subject and object are
resources (identified by their URI (Universal Resource Identifier)). The predi-
cate is a name that indicates the relation holding between the subject and the
object. RDF is mainly intended to create a semantic layer to describe web re-
sources (e.g. HTML pages). It can be considered as the data layer of the semantic
web.

RDFS adds a schema layer on top of RDF. RDFS mainly adds the notions
of class (of resource), class instance, subclass, and property. RDFS schemas
are similar to class specifications in object-oriented systems and languages. The
RDFS layer is expressed in terms of RDF triples. For instance, a triple (R,
rdf:type, C) indicates that the resource R is an instance of the class C.

Several query languages have been proposed for RDF, the most recent one
being SPARQL [22]. They are mostly based on triple patterns. A triple pattern
is a triple in which zero ore more components are replaced by variables. Such
a pattern matches all the RDF triples that have the same constant values as
the pattern. For instance, the pattern (?X author Bob) matches all the triples
with predicate author and object Bob. And thus a query of the form SELECT ?X

FROM (?X author Bob) returns all the resources X such that the author of X

is Bob.



In the rest of this paper we will consider that a knowledge base consists of doc-
ument fragments (resources) described by an RDF/RDFS layer. The documents
are intended to store the non-formalized knowledge, while the RDF/RDFS layer
stores the formalized facts (data) and general knowledge (concept definitions).

1.2 Data and Knowledge Visualization

During the last decade, human-computer interaction researchers have invented
various visualization techniques to efficiently present and interact with different
data types (linear structures, two-dimensional maps, three-dimensional worlds,
temporal structures, multi-dimensional data, trees, and networks). Here we are
particularly interested in techniques for visualizing the network structure of a
formal ontology.The techniques used until now remain simple and traditional:
hypertext interfaces, tabular views, graphs, etc.. As mentioned by Schneiderman
[26], there is still much to do in this area. Apart from basic graph drawing, one
can mention general techniques like fisheye views [25], or lenses to visualize large
networks on a single screen. When a tree structure exists (or can be extracted
from the network), techniques like hyperbolic trees [18] or 3-dimensional embed-
ded objects can be used. These techniques have been evaluated with users to
assess their effectiveness, see for instance [14] and [7].

The SemNet system [11] is one of the rare attempts at proposing a 3-
dimensional view of a knowledge base. It represents concepts and their semantic
links as a 3D graph. Another system called MUT [30] proposes a virtual mu-
seum metaphor with nested boxes for representing nodes and links from network-
structured knowledge bases. Some systems let the user rearrange the visual el-
ements according to their own cognitive model, for instance Workscape [1] or
Web Forager [6].

Another knowledge visualization technique is the spatial hypertext. Spatial
hypertexts are hypertext systems in which the usual hypertext navigation links
are complemented with implicit spatial links [27]. The idea is that the spatial
proximity of two nodes implicitly indicates a semantic relationship between these
nodes. In spatial hypertexts the nodes are generally (rectangular) objects that
lie on a 2D surface. However, some 3D spatial hypertext have been recently
developed [13].

1.3 Interface specification techniques and languages

Although formal specification techniques have been extensively studied in the
software engineering field, there are only few works on formal specification lan-
guages for user interfaces. Among these works we can cite [15] in which Jacob
defines a language for specifying direct manipulation interfaces. Other authors
have incorporated formal specification techniques (transition diagrams, Petri
nets, grammars, etc.) in the interface specification or in dialogue specification,
see for instance [5], [2], [21], [3] or [16]. In fact most of the interface specification
languages can be found in an interface development environment. In particular,



model based environments such as MECANO [23], MOBI-D [24], MASTER-
MIND [29], TRIDENT [4] or Teallch [12] have a declarative specification lan-
guage. They generally include a domain model, a task model, a dialogue model,
a presentation model, and a user model. These models have often an abstract
level and a concrete level that associates abstract elements to concrete interface
objects (widgets, Java components, ...). More recently, interface specification
language have been defined with XML, see for instance [19]. Nevertheless, these
languages generally have no formal semantics and describe interfaces in terms
of “standard” widgets like menus, input field, buttons, etc.

In the database interface field, several tools have been proposed for the declar-
ative specification of Web interfaces, for instance Strudel [10] or Lazy [9].

1.4 A Two-Level Approach to the Specification of 3D Interfaces

Our aim is to specify and generate a 3D spatial hypertext that represents the
content of the knowledge base.

The distance between the knowledge representation in the knowledge base
model and its representation in the 3D interface model can be large. In partic-
ular if we consider 3D representations that are not just graphical views of the
objects and relations of the knowledge base (KB). The 3D representation can,
for instance, utilize metaphors or geometric relations to convey the meaning of
the knowledge base. Thus it is difficult to directly specify the concrete represen-
tation of each KB element in the interface. In addition, we want to isolate the
general structure of the interface (the semantic content of the interface objects
and their links) from the presentation itself (object properties like color, shape,
position, etc. ). For this purpose, an interface specification consists of two lev-
els: the specification of an abstract interface and the specification of a concrete
interface.

The abstract interface specification defines a mapping from a knowledge base
content (state) to abstract interface objects, which are abstract spatial hyper-
text nodes and links. It is expressed in terms of the knowledge base model and
the abstract interface model. The concrete specification maps abstract interface
components (nodes and links) to concrete components (3D objects and naviga-
tion actions).

2 Specification of the abstract interface

At the abstract level, the specification of a 3D interface for a knowledge base
consists in specifying how to build a spatial hypertext that represents the content
of the knowledge base.

2.1 Abstract interface model

The abstract interface model is based on a three-dimensional version of the
spatial hypertext paradigm. In a 3D hypertext each hypertext node is presented



as a three-dimensional object in a 3D scene. Each node can have active elements
to trigger link following actions.

An abstract hypertext node can be simple or compound, in this last case the
node includes other nodes. The inclusion link between a compound node an a
component can have attributes that will play a role in the positioning of the
node.

Formally, thus an abstract spatial hypertext is a quadruple (N, I, V, S) where
N is a set of nodes, and I, V , and S are sets of inclusion, navigation, and semantic
links respectively.

A node is a pair (i, c) where i is a node identifier c is a node content, which
is a hierarchy of typed elements. The element contents will be interpreted in the
concrete interface where they can give rise to geometric or appearance properties,
or texts, or references to other resources, etc. .

The different kinds are defined as follows:

– A navigation link is a pair (s, d) where s is the identifier of the source node,
and d is the identifier of the destination node.

– An inclusion link is a quadruple (s, a, u, v) where s is the compound node,
a is the element in which the node u is to be included, and v is a set of
attribute-value pairs. The attribute values are indications that can be used
at the concrete level to position the included node or to determine some
presentation attribute.

– A semantic link is a 4-tuple(s, d, t, v) where s is the source node, d is the
destination node, t is the type of the link, and v is set of attribute-value
pairs. Here again, the attribute values will be interpreted at the concrete
level for positioning or presenting the linked nodes.

2.2 Abstract interface specification

An abstract specification is a set of node type specification. A node type specifica-
tion is a 4-tuple (name, parameters, selection, content). An abstract specification
can be viewed as a parameterized query to the knowledge base, the results of
which are then used to build the node content and links to other nodes. The se-
lection expression is a selection expression of the knowledge base query language.
Its free variables represent objects (resources) of the knowledge base.

The content specification is an ordered tree of element specifications. An
element specification is a triple (t, l, c) where t is the element’s type, l is a,
possibly empty, link specification, and c is a content specification. The content
specification can be

– a literal specification
– a formal parameter name
– a knowledge base variable
– a list of element specifications

In addition, the content specification c may contain a subtree citer called the
iterated content. All the elements under the root of the iterated content belong



to the iterated content. The purpose of the iterated content is to define a part
of the content that will be instantiated for each result yielded by the selection
expression. Knowledge base variables may appear only in this subtree.

A link specification is made of a link category (inclusion, navigation, or se-

mantic), a target node designation, a link type name, and a set of link attribute
specifications.

Semantics The semantic function I maps a knowledge base state K, a node
specification N = (n, p, s, c), and a list of parameter values A = (p1 = a1, . . . , pk =
ak) to an abstract node and a set of abstract links of the abstract interface model.

This function is formally defined as follows. Let S = 〈s1, . . . , sl〉 be the result
of the selection expression (with the parameter names replaced by their actual
values) evaluated on the current state of the database. If the selection has n

free variables x1, . . . , xn, its evaluation’s result is a list of n-tuples of the form
(x1 : v1, . . . , xn : vn).

The following table defines the interpretation Ir(e) of a content element for
a given result tuple r = (x1 : v1, . . . , xn : vn) (and for the given parameter
assignment A)

element Ir(e)
constant c c

parameter pi ai

KB variable xi vi

function f(e1, . . . , em) I(f)(Ir(e1), . . . , I
r(em))

<type>(e1, . . . , ep) <type>(Ir(e1), . . . , I
r(ep))

If the element contains a link specification (cat, target, type, attr), its inter-
pretation will yield a link of the appropriate category to the target node, with
the specified type and attribute values. The target node designation is composed
of a node type name n and a list of parameter specifications (e1, . . . , ek), where
each ei is an atomic element specification (constant, node parameter name, KB
variable name, or function call). The target node is thus (n, (Ir(e1), . . . , I

r(ek)).
The attribute list is interpreted similarly (each attribute value is an atomic ele-
ment).

2.3 An example

In this example we start with a simple knowledge base that contains concepts,
relations between these concepts, and typed links from these concepts to URI
of documents (a document can be an example or a description of a concept).
The goal is to create a scene that is like an exhibition hall. In the exhibition,
each concept is a stand with a large sign on top and posters with examples
and descriptions on the walls. The examples must be on the left wall and the
descriptions on the right one.

The abstract specification goes as follows:



abstract-node: Exhibition

selection: (?c rdf:type rdf:Class)

content: { inclusion-link: to: ConceptPresentation[c] }

The iterated content of the node is placed between { and }.

abstract-node: LabelAndSuperClassesOf [c]

selection: (c rdfs:label ?l).(c rdfs:subClasseOf ?c2)

content:

<label>(l),

{navigation link: to: ConceptPresentation[c2]

type: "subsumption"

attributes: (position: "top")

}

abstract-node: ConceptPresentation [c]

selection: (c ?r ?c2)(?c2 rdf:type rdf:Class)

content:

inclusion-link: to: LabelAndSuperClassesOf[c]

attributes: (position: "center")

inclusion-link: to: ExamplesOf[c]

attributes: (position: "left")

inclusion-link: to: DescriptionsOf[c]

attributes: (position: "right")

abstract-node: ExamplesOf [c]

selection: (c ex:example ?d)

content: { inclusion-link: to: TextPanel[d] }

abstract-node: TextPanel [d]

content: <theText>(d)

3 Specification of the concrete interface

The concrete interface is a 3D spatial hypertext this means that the information
is conveyed by node (3D) objects that have a shape, a color, a position, etc. and
by their linking structure. In spatial hypertext there are implicit links, which are
represented by the geometric proximity of nodes, and explicit navigation links,
which are represented by anchor objects (buttons) that can lead the user to other
nodes when activated. Explicit links can also have a graphical representation (for
instance solid lines, or tubes, or roads).

The aim of the concrete specification is to define the interface objects that
will represent the knowledge base. A concrete specification determines a mapping
from an abstract interface to the concrete 3D objects and actions that form a
spatial hypertext. A concrete specification is similar to a style sheet for document



presentation. But it must be more sophisticated about the positionning of sub-
objects. For this reason, we have chosen to separate this aspect of the concrete
interface from the rest, we take a layout manager approach, i.e. we consider that
there exist layout managers that will take care of all the necessary computation
to determine the position of each element of the scene. More precisely, each
concrete node has its own layout manager take places all its sub-nodes.

A layout manager is essentially an algorithm that takes as input a set of (sub-
)nodes and computes their location according to their content and to constraints
represented by semantic links. A layout manager can have parameter of two kinds

– global parameters, for instance to set the minimum distance between two
objects, or to set the number of lines and columns in a grid style layout.

– constaints (will be associated to implicit links)

3.1 Concrete interface model

What distinguishes the concrete model from the abstract one is essentially the
addition of a geometry, an appearance, and a position for each node. The main
difficulty in going from the abstract to the concrete interface is to compute the
position of each node so as to represent the inclusion (of subnodes into nodes)
and the semantic relationships of the abstract model. The positioning of nodes
is represented by associating a layout manager to each node. The association
between a node and its layout manager is in fact a binding of the layout manager
parameters with values which can be constants (numeric or texte) or semantic
relations.

Formally, thus a concrete spatial hypertext is a 6-tuple (N, I, V, S, M, B)
which denotes (nodes, inclusion links, navigation links, semantic links, layout
managers, a node to layout managers bindings)

N , I, V , and S are as in the abstract model, except that nodes are triples
(i, c, p) where i is the node identity, c is its content tree, and p is a set of attribute-
value pairs used for presentation, such as shape, color, visibility, etc.

A binding b from a node to a layout manager is a set of pairs (p, v) where p is
a parameter of the layout manager and v is a value. The value of a parameter is
either a simple value (number, string, etc.) or the name of a semantic link type.

Although we call it “concrete”, this model is still more abstract than models
like VRML, X3D, or Java3D because the positioning of the objects is not given
by 3D coordinates but left to layout managers.

There are two strategies to translate a concrete interface into a 3D scene in
one of these implemented models. In the static approach, the concrete interface is
given as input to the different layout managers that compute the node positions
and create a static scene. In the dynamic approach, the 3D scene is created with
“active” components that dynamically recompute the object positions each time
an event occurs. For instance, a hyperbolic tree layout manager must recompute
the positions each time the user selects a new object to become the center of the
view.



3.2 Concrete interface specification

A concrete specification is a triple (n, a, l) where n is the abstract node type to
which this specification applies; a is a list of attribute: value pairs; and l is a
layout specification.

The attribute values are either constants (as in shape: Box, position: (5,

3, 2.5)) or expressions computed from some values found in the abstract node
(element contents or element attribute values), as in size: ./size.

The layout specification is comprised of a layout name and a list of bindings
that determine either parameter values or which semantic relation to use for
which type of geometric constraint. The binding may include some value trans-
lation. For instance, if the color attribute takes its value from a content element
that has a text value, each possible text value must be associated to a color.

The semantics of a concrete specification is quite straightforward. The value
of expressions is obtained by evaluating literal values, path expressions in the
abstract node contents, and functions on these values.

3.3 Example (cont. from previous section)

concrete-node: Exhibition

shape: Box;

layout-manager: 2DSpringDistances(spring => "semanticRel")

concrete-node: ConceptPresentation[c]

shape:Box

layout-manager:BoxBorder(location => position("left"-> north,

"rigth"-> south, "center"-> center))

concrete-node: LabelAndSuperClassesOf

shape: Panel

layout-manager:layout-clrtb-LinksRes(linkObject: "cone")

concrete-node: ExamplesOf

shape: Wall

layout-manager: Sequence

concrete-node: TextPanel

shape: Panel

layout-manager:HTMLViewer(content: ./theText)

Figure 1 shows a 3D interface generated from a knowledge base and the
specifications shown here.



Fig. 1. A 3D view of a hyperbook knowledge base as an exhibition hall

4 Implementation

We have developed specification interpreters for abstract and concrete specifica-
tions. The abstract specification interpreter takes as input an abstract specifica-
tion and a knowledge base and produces an abstract interface. The interpretation
starts with a parameterless root node and then recursively interprets the nodes
that are referred to (through any kind of links).

In order to re-use existing generation tools, the knowledge base is stored in a
relational database and the abstract node specifications are translated to Lazy1

node specifications. Then the Lazy system is invoked to generate the abstract
interface as an XML file.

The interpretation of the concrete specification consists essentially in invok-
ing the selected layout managers to compute the concrete node positions. This
is a static approach (as mentioned in the concrete model description), the posi-
tions are defined once and for all. The concrete specification interpreter is a Java
program that loads the abstract interface through an XML parser, transforms
the abstract nodes to (partial) X3D nodes and then invokes the layout manager.
The layout manager are Java classes that implement the Layout interface.

5 Conclusion

We have shown that a relatively simple specification language is sufficient to gen-
erate arbitrarily complex 3D scenes to represent the content of knowledge bases.

1 Lazy is a declarative hypertext view specification language. It produces XML or
HTML contents by querying the database and assembling the query results



The specification process has two phases: the abstract specification produces an
abstract hypertextual interface and then the concrete specification generates the
factual 3D objects and actions. These languages are declarative, and therefore
more abstract than other procedural (even object-oriented) frameworks.
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