
Test of the ICARE platform fusion mechanism⋆

S. Dupuy-Chessa1 and L. du Bousquet2 and J. Bouchet1 and Y. Ledru2

1 CLIPS-IMAG, BP 38, 38041 Saint Martin d’Hères cedex 9, France
2 LSR-IMAG, BP 72, 38402 Saint Martin d’Hères cedex 2, France

E-mail:{sophie.dupuy,lydie.du-bousquet,jullien.bouchet,yves.ledru}@imag.fr

Abstract. Multimodal interactive systems offer a flexibility of interaction that
increases their complexity. ICARE is a component-based approach to specify and
develop multimodal interfaces using a fusion mechanism in amodality indepen-
dent way. ICARE being reused to produce several multimodal applications, we
want to ensure the correctness of its fusion mechanism. So wevalidate it using
a test architecture based on Java technologies. This paper presents our validation
approach, its results, its advantges and its limits.
Keywords : test, multimodality, fusion mechanism

1 Introduction

An increasing number of applications in the field of human computer interfaces sup-
port multiple interactions such as the synergistic use of speech, gesture and eye gaze
tracking. Multimodal applications are now being built in different application domain
including medecine [15], military [5] or telecommunication [12]. For example, lot of
mobile phones offer two input modalities, a keyboard and a voice recognizer, to inter-
act. Although many multimodal applications have been built, their development still
remains a difficult task. The major difficulty concerns the technical problem of the fu-
sion mechanism, such as the application of R. Bolt [1], in which a speech modality
“put that there” is blending with a gesture modality, specifying positions defined by the
deictic “that” and “there”. Here, the difficulty is to blend correctly the several data from
the modalities. Thus, the fusion algorithm must be rigorously and carefully developed
and validated, assuring that the multimodal action performed by the user is actually ac-
complished by the application. So several frameworks is dedicated to the multimodal
interactions, such as [6] and [13].

Here, we focus on a particular multimodal fusion approach: the ICARE approach
describing in [3]. ICARE is a component-based approach thatis independent of the
modalities. So it can be reused without modification in many multimodal applications.
Applications described in [2] are made with ICARE components, such as one multi-
modal user identification system and a prototype of an augmented reality system, al-
lowing to manipulate numeric notes in a real world.

As any other multimodal frameworks, ICARE must ensure a minimum level of
quality of its fusion mechanism. This need is increased by the reuse of the ICARE com-
position components which implements its fusion mechanism. That’s why we propose

⋆ Many thanks to Laurence Nigay responsible of the INTUITION project for providing the fu-
sion mechanism-ICARE components.

a validation that targets the composition components of theplatform. So our objective
is not to test traditional user interfaces, but to validate the way of blending modalities.

The validation is based on testing because we wanted the approach to be applicable
in practice. The test architecture is composed of a tool called Tobias [10] that generates
a large number of test cases from a scenario, JUnit [8] to execute these test cases and
JML assertions (Java Modelling Language [9, 4, 7]) to produce automatically the verdict
of test cases. The major interest of this architecture is that it fully supports the testing
process: it allows testers to generate many test cases that are automatically evaluated
by an oracle. The test case generation proposed by Tobias is an important point of the
architecture as it can easily produce a large number of modality combinations with
controlled characteristics. So we expect that ICARE can be efficiently tested.

This paper presents the ICARE platform (Sect. 2). It then details the testing infras-
tructure used for its validation (Sect. 3), focuses on the test methodology (Sect. 4) and
reports on the test results (Sect. 5) before drawing the conclusions of the experiment
(Sect. 6).

2 ICARE platform

2.1 Presentation

ICARE is the contraction of Interaction CARE (Complementarity Assignment, Redun-
dancy and Equivalence). It is a component-based approach that allows the easy and fast
development of multimodal interfaces with assembled components. ICARE framework
is based on a conceptual component model that describes the several software compo-
nents. A few ICARE components are called “elementary components”. Two types of
elementary components are defined: “device components” (DC) and “interaction lan-
guage components” (ILC). A modality is the coupling of a device and an interaction
language [13]. For example, in Fig. 1, a speech modality is defined by assembly of one
microphone (DC) and the “speech commands” (ILC).

Other ICARE components are called “composition components”. They describe
combined usages of modalities. The ICARE composition components suggest various
fusion mechanisms based on the CARE properties [14]: Complementarity, Assignment,
Redundancy and Equivalence. These fusion mechanisms can beapplied to any subset
of the available modalities. ICARE composition componentsdo not depend on a par-
ticular modality and can merge data from two ton modalities. While Equivalence and
Assignment express the availability and respective absence of choice among multiple
modalities for performing a given task, Complementarity and Redundancy describe re-
lationships between modalities for performing a given task. Thus, three composition
components are defined with their own fusion mechanism: the Complementarity one,
the Redundancy one and the Redundancy/Equivalence one.

These components have been used in several research applications. For each one,
an assembly of components has been set to define which modalities are used and how
the modalities are combined. For example, the Figure 1 showsa part of the architecture
of a future French military aircraft cockpit prototype. This prototype, called FACET, is
described with more details in [3]. Figure 1 shows the ICARE components assembly

in FACET, allowing the pilot to mark a specific point on the ground. For performing a
marking command, the pilot has the choice among two modalities. The HOTAS (Hands
On Throttle And Stick) modality and the speech modality are functionally equivalent
and can be used separately. However, they can also be used in aredundant way, thanks
to the Redundancy/Equivalence component. The HOTAS are made of two command
joysticks (one for each hand) to pilot the plane and to issue commands. If the pilot
presses the HOTAS button or speaks (the voice command<Mark>), one mark com-
mand is sent to the rest of the application. If the pilot uses both modalities at the same
time, still one mark command is sent. In addition, to detect the target point that the pilot
selected in the real world, two modalities are used in a complementary way, thanks to
theComplementarity-1component. One modality is for the orientation and locationof
the pilot and the other is for the orientation and location ofthe plane. Finally, in or-
der to obtain a complete marking command, the command<Mark> must be combined
(Complementarity-2component) with the target point defined by the pilot.

Redundancy/Equivalence

Complementarity-2

Complementarity-1

Speech

Microphone

commands

Mark a target point on the ground One application task

Elementary components

Composition components

& location
orientation

Plane Pilot

& location
orientation

HOTAS

Plane
orientation &

location tracker

Pilot orientation
& location

tracker

HOTAS

commands

interaction language component

device component
modality

Fig. 1.Part of ICARE specification of FACET input interaction

2.2 Composition Components

The Complementarity componentcombines all complementary data close in time. For
example in Figure 1, orientation and location of both, the pilot and the plane, must be
merged to detect the target point on the ground. The mechanism is mostly based on a
customizable temporal window, used to trigger the data fusion coming from the modal-
ities. All data coming from the modalities have a confidence factor and a timestamp. To
know if orientation and location data are in the same temporal window, the timestamp

of data is used. If the timestamps are too distant, the fusionis not accomplished. The
result of the fusion, in addition of the new data generated bythe fusion, is a new con-
fidence factor calculated from the merged modalities data. This factor is equal to the
average of confidence factors of the merging data.

The Redundancy componentis used when two or more modalities convey redundant
pieces of information that are close in time. In such cases, at least one of the user ac-
tions is ignored, because the output is exactly the same. To gain more security, the
Redundancy/Equivalence component in figure 1, can be replaced by a Redundancy
component. In this case, if only one modality is used (HOTAS or speech), the com-
mand<Mark> is not performed, avoiding ambiguous commands and errors. The Re-
dundancy component mechanism seems to be a Complementaritycomponent with the
substantial difference that all data coming from the several modalities must be equiva-
lent, corresponding to the same command. Such as Complementarity component, times-
tamps of data arriving of the modalities are used to detect the redundancy of the com-
mand. The new confidence factor is equal to the higher confidence factor among the
two modalities data.

The Redundancy/Equivalence componentis a mix of the two CARE properties Re-
dundancy and Equivalence. It corresponds to the Redundancycomponent, where the
redundancy can be optional. Clearly, if someone has two modalities to perform an ac-
tion, he can do it in an independent way or in a redundant way. In the redundancy case,
only one action is actually performed. As for other composition components, its mecha-
nism is based on a temporal window, but it includes two different strategies: the “eager”
and the “lazy” strategies. The “eager” strategy provides anefficient mechanism and the
“lazy” strategy provides a safe one. Adopting an “eager” strategy, the component does
not wait for further pieces of data to keep propagating data to the following connected
ICARE component. Each time a piece of data is sent to another ICARE component, the
component keeps its track. It starts a customizable timer inorder to detect the redun-
dant pieces of data that may be received later. The advantageof this approach is to give
to the user an immediate feedback. The drawback is that the piece of data propagated
is the first one received by the component and may not have the highest confidence
factor. Opposed to the “eager” strategy, the “lazy” strategy waits until the end of the
timer to propagate the piece of data. The advantage of this strategy is to guarantee the
propagation of the data containing the highest confidence factor.

3 Test Architecture

Although ICARE is only a research prototype, a minimum levelof software quality is
required to reuse it in the various projects of the our team. Therefore, an effort was
initiated in june 2004, in order to check the fusion mechanism of the three ICARE
composition components.

As ICARE is coded in Java, we looked for a light validation architecture based
on Java technologies. We chose a testing approach because itis the easiest validation
technique to carry out. We wanted a test platform that would generate many cases of
modality combination and automatically check whether the components react correctly.

3.1 Automated oracle

An important topic in software testing is to decide on the success or failure of a given
test. This is known as the “oracle problem”. In the simplest form of test, it is the test
engineer’s responsibility to look at the test results and decide on their success/failure
(human oracle). This approach requires a lot of effort from the test engineer and does
not favour the automation of the test process. Often, the judgement of the test engineer
is recorded, so that a replay of the same test can reuse this judgement, provided the
output of the program under test is deterministic. In the test of the ICARE platform, it
was impossible to use a human oracle:

– The behaviour of the platform is non-deterministic, due to the use of multi-threading
in the implementation. It is thus impossible to reuse the results of a test when re-
playing it.

– The success/failure of the test cannot be decided on what is directly observed by the
test engineer. Subtle timing properties must be obeyed thatcan only be observed
by instrumenting the code.

– We intended to play a large number of tests (several thousands), which would re-
quire too much interaction for the human oracle.

In this project, the oracle is provided by an executable specification, written in JML
(Java Modeling Language [9, 4, 7]). A JML specification is made up of assertions (in-
variants, history constraints, pre- and post-conditions)which express the properties of
the classes and constrain their behaviour. JML assertions appear as comments of the
java program. Their syntax is the syntax of java, augmented with several keywords.
The JML compiler instruments the code of the program under test, so that assertions
are evaluated before and after the execution of each method.As a result, an automated
oracle is provided which raises an exception as soon as the behaviour of the code differs
from the specified one.

3.2 Test execution infrastructure

Fig. 2 shows the various elements of our test execution infrastructure. The goal of the
test is to validate composition components, like Complementarity or Redundancy/Equi-
valence in Fig. 1. These components take as input a series of events, generated by the el-
ementary components, and turn them into higher level events(composed events) which
are sent to the application. The test infrastructure embedseach ICARE composition
component under test with two classes:

– an event generatorplays the role of the various modalities corresponding to the
elementary components of Fig. 1. The event generator simplifies significantly the
test effort, because it decouples the test activity from theconcrete aspects of the
modalities (e.g. voice and gesture recognition). The test of the elementary com-
ponents which turn these physical phenomena into computer events, is out of the
scope of the validation of the ICARE platform.

– an observercollects the events produced by the ICARE composition component.

Both classes are under the control of the popular unit testing tool JUnit [8], which
automates the execution of a test suite given as input.

Test suite

file

component

tool

(instrumented with JML)
ICARE composition component

exceptions
JML Composition

components

Modalities

One application taskObserver

JUNIT

Generator
Event

Fig. 2. The test execution infrastructure

3.3 Finding errors with this approach

The main purpose of the validation work was to find some errorsin the code. To be more
precise, we tried to find some inconsistencies between the code and the JML assertions.
When an error is reported, it can correspond to an error in either the code or in the JML
specification. Human analysis is necessary to give the rightdiagnostic.

Test execution may also lead to detect java run-time errors,e.g. when the Java Vir-
tual Machine runs out of memory. Once again, this may correspond to an error in the
java code, or can be the result of the evaluation of the JML assertions. Here again,
human diagnostic is needed.

3.4 Test suite generation

The test execution infrastructure requires a test suite. Inthis project, the test suite was
generated using the Tobias tool [10]. Tobias is a combinatorial testing tool which starts
from an abstract test scenario and unfolds it into a large number of test cases. These
test cases, named “abstract test cases”, are independent ofa specific target technology.
Tobias then supports the translation of these abstract testcases into an input file for JUnit
(concrete java test cases). Tobias was used to produce many ways to fusion modalities
among which some were identified to be particularly important to validate.

4 Test description methodology

4.1 Approach

As said previously, we applied a combinatorial testing approach to produce a lot of tests.
The idea is to (1) identify properties to be validated, (2) express interesting scenarios
allowing to observe behaviours with respect to these properties and (3) use Tobias to
unfold those scenarios into executable test cases. For example, one can identify that
“the Complementarity component combines all complementary data close in time”. The
time distance has to be defined by the application designer when using the composition
components. As said previously, data coming from the modalities have a confidence
factor and a timestamp. Thus, the following two points have to be checked:

1. if the timestamps of the data to be merged are too distant, anew data is not pro-
duced;

2. if the timestamps of the data to be merged are in the same temporal window, a new
data is produced and has a confidence factor equal to the average of confidence
factors of the merging data.

One way to do so is to produce tests which first initialise the test infrastructure (i.e.
ICARE component, event generator and the observer) This is called “test preambule”.
Then, the event generator should send several events with different timestamps and con-
fidence factors (“test body”). Finally, the ICARE componentshould be stopped (“test
postambule”).

This can be expressed as an abstract scenario in Tobias. In the scenarioSc (Fig. 3),
the preambule is composed of the five first events

(G.i; C1.3c; C1.d50; G.st; C1.startComplementatrity())
and the postambule is composed of the last event (C.end). The scenario body con-

sists in 6sendComp()events. ThesendComp()event is produced by a modality. The
majors parameters arep the communication port andf the confidence factor. The sce-
nario is unfolded into 2*6*1*6*2*6 = 864 executable tests. The unfolding operation in
Tobias takes only few seconds.

Sc = G.i; C1.3c; C1.d50; G.st; C1.startComplementatrity();
G.s1; G.sn; G.s2; G.sn; G.s3; G.sn; C.end;

with














































i = {G.setEvent(t)|t ∈ {1}}
3c = {CC .setNbOfComponents(v)|v ∈ {3}}
d50 = {CC .setDeltaT (v)|v ∈ {50}}
st = {setTrace(c)|c ∈ C1}
s1 = {sendComp(c, p, d , f , b)|c ∈ {C1}, p ∈ {1}, d ∈ {0, 20}, f ∈ {66}, b ∈ {false}}
s2 = {sendComp(c, p, d , f , b)|c ∈ {C1}, p ∈ {2}, d ∈ {0}, f ∈ {66}, b ∈ {false}}
s3 = {sendComp(c, p, d , f , b)|c ∈ {C1}, p ∈ {3}, d ∈ {0, 20}, f ∈ {66}, b ∈ {false}}
sn = {sendComp(c, p, d , f , b)|c ∈ {C1}, p ∈ {1, 2, 3}, d ∈ {0, 20}, f ∈ {33}, b ∈ {false}}
startComplementatrity() is a method with parameter of Complementarity component

Fig. 3. One abstract scenario for Tobias

4.2 Testing strategy

To validate the 3 components, we produced 19 test schemas, which were unfolded into
approximately 6000 test cases. The schemas were designed totest the components in
three different ways.

First, tests were designed to check the behavior of the components in normal sit-
uations. These tests consists in sending a sequence of various events which are differ-
entiated by their data, their delay i.e. the difference between their initial time and the
current time, their confidence factor and the port of the component where they are sent

to. Other parameters of these tests were the delay between two event sendings and the
durationdeltaTthat determines if an event is too old to be considered (see schemaSc).

The second part of our strategy consists in creating boundary cases that require an
intensive solicitation of the component. Some of these tests initialize the components
under test with a large number of input ports. Other tests sends a lot of events without
delay in between.

Finally some tests aim at considering specific aspects of theICARE components, in
particular their configuration.

We applied this strategy to the three components (Complementarity, Redundancy,
Redundancy/Equivalence). In fact, the tests of the Complementarity and Redundancy
components were similar as their behaviour is very close to each other: they have to
choose a group of input events to determine the information to be propagated. The Re-
dundancy/Equivalence component is different because it has to handle temporal win-
dows. So it was tested with specific test schemas.

5 Results of the experiment

5.1 Test results

The results of the tests of each ICARE composition componentcan be summarized into
three tables corresponding to the three test strategies. Each table contains four columns:
the first column presents the test, the second one the number of test cases produced for
this test, the third one the number of errors, the last one theerror(s) found. We consider
as an error anything that makes the test fail. So it can be a JML/Junit failures or a Java
error. These errors are more precisely explained in the comments of the tables.

Complementarity and Redundancy componentsTesting the Complementarity and
the Redundancy components gives the same results. It permits to find errors of different
types. There are programming bugs such as an event lost (Table 1(b)) or the propagation
of too old events (Tables 1(a) and 1(c)).

There is one error resulting from some differences between the specifications and
the program. The Redundancy component must check if the input events contain similar
data: its implementation checks that the data of input events have the same size whereas
the specification requires the same data. The code of the component can be considered
as correct if it is assumed that the event-sending device will always send consistent data.

Finally we found an error in the specifications. The specifications state that the num-
ber of input ports of a component is unlimited. But this runs the Java Virtual Machine
out of memory (Tables 1(c)). So, the specifications and the code of the components
should consider the practical constraints and limit the number of input ports.

Redundancy/Equivalence componentThe Redundancy/Equivalence component is
implemented differently from the other two components. Butit propagates events like
the Complementarity and the Redundancy components. So as the other components, it
has problems with the content of input events and the modification of parameters when
it is running (Table 2(c)).

Table 1.Tests for Complementarity and the Redundancy components

Tests nb TC nb E Error Description

(a) Normal situations
sending 6 events to the component 864 1 propagated events are too old
sending 50 events in a multithreaded
environment 784 10 propagated events are too old

(b) Boundary tests

creating a large number of input ports 8 1
Java error
(no more memory available)

sending 6 events to the component
without delay 864 10 propagated events are too old

sending 32 events in a multithreaded
environment at a high rate

1 1 one event lost

(c) Specific situations
changing the configuration of the com-
ponent while it receives events 196 10 propagated events are too old

initializing the component with various
values 12 1 propagated events are too old

nb TC : number of Test Cases for each component
nb E : number of error (incorrect behaviour observed during test execution

Its main difference is the use of threads in order to handle data concurrently. This
is the source of several errors found in the component implementation (Tables 2(a) and
2(c)) .

The processing of the component requires concurrent accessto the data structure.
This brings execution errors (Java errors in Table 2(a)) andan abnormal behavior of
the component in lazy strategy. In some cases, calculationsare made using accurate
information on the state of the data structure, but the result of the calculations is wrong
because the state has changed since the event arrival. In other cases, calculations are
made using outdated information causing a lack of internal consistency and thus an
incorrect behavior.

The eager and lazy strategies are based on the concept of temporal window. Even if
boundary tests with only one temporal window (Table 2(c)) donot bring error, many
test failures come from temporal windows (Tables 2(a)). In some cases, an event is
not processed at the end of its temporal window. In other cases, delayed events i.e.
events arriving into the component some time after their creation are not processed as
events arriving at their creation time: these events do not belong to the right temporal
window. Moreover the component do not remove events which has a delay longer than
the duration of the temporal window.

The Redundancy/Equivalence component being complex, its specification also con-
tains errors. They were found when the component has a correct behavior that the spec-
ifications consider incorrect. These cases are reported as “incorrect specification” in the
table below.

Table 2.Tests for Redundancy/Equivalence component

Tests nb TC nb E Error Description

(a) Normal situations

sending 4 events in the eager strategy192 30
10 wrong behaviors
5 to 36 incorrect specification

sending 4 events in the lazy strategy 192 20
13 wrong behaviors
5 incorrect specification
2 Java errors

(b) Boundary tests
sending 5 events during one temporal
window in the eager strategy 64 0 -

sending 5 events during one temporal
window in the lazy strategy 64 0 -

(c) Specific situations
changing the configuration of the com-
ponent while it receives events 196 71

66 wrong behaviors
5 incorrect specification

5.2 Advantages of the approach

The test infrastructure chosen is easy to manipulate. In approximately one week, the
tester has produced his first tests without all the JML properties. The main difficulty
was to write correct JML properties that can be executed. Thelanguage offers a large
set of constructions. But some construction combination are not executable.

As expected, we fully benefit from the generation of test cases by Tobias. With
test schemas, Tobias allows the tester to easily combine in many different ways sev-
eral modalities. These schemas produced expected test cases, but also unthought test
cases that reveals errors. So the combination approach of Tobias is appropriate for mul-
timodality.

One of the most difficult points in testing components is the non-deterministic test
execution. So adding JML assertions is a good way to obtain anautomatic oracle. But
assertions sometimes need access to variables or data that are not directly visible in the
program. They require to introduce new piece of code to make the program automati-
cally testable.

5.3 Limits of the approach

In theory, each test case should produce a reproducible behavior. However the way com-
ponents are conceived makes it difficult. In particular, thecomponent behavior is mainly
based on the timing of events. But this timing can vary from anexecution to another
one. So the results of a given test case can change over time. That is why the numbers
of failures given in the result tables must be considered as the result approximations of
several executions.

The time variations can also cause problems to give a correcttest result for the Re-
dundancy/Equivalence component. Because of the use of threads in its structure, some

properties are not verified at execution time even if the component behaves correctly.
The shift between the results and the actual behavior occursin three cases:

– when the temporal window is too small compared to the processing time of an
event;

– when the size of the temporal window is comparable to the timebetween two event
arrival;

– when an event delay is greater or equal than the size of the temporal window.

In these cases, the component is likely to be processing an event while the temporal
window is closing, making the JML specifications checking the existence of a removed
event. To avoid these problematic situations, we chose a “long” temporal window.

Finally failures can come from the specifications. In particular, several failures of
the Complementarity and the Redundancy components are related to too old events.
The JML processing time can make events become too long. So itis not possible to de-
termine if the failures come from JML or from a too long processing in the components.

6 Conclusion

Testing the ICARE composition components has revealed several errors. As expected
it permitted to find errors in the fusion mechanism. But it also reveals some cases of
modalities fusion that have not been anticipated. So ICARE has really been improved
by the experiment which can be considered as a real progress.

The testing tools used has shown the interests of an automatic oracle and of the
combinatory test generation for multimodality. Instrumenting the component code by
adding JML properties is a light solution to produce an automatic oracle. But it also
consumes resources and creates errors by slowing down the program. One way to avoid
these problems is to lighten the instrumentation when a problem is detected. For in-
stance, the properties that are necessary for a given test could be commented out. Then
the test is played again to see if the problem comes from instrumentation. On the other
hand, instrumentation can make some tests succeed by slowing down the execution. In
these cases, it is difficult to know that the program is incorrect as it has bad results when
it will not be possible to detect them.

In this experiment, we succeed in avoiding the traditional graphical user interface
testing pitfalls [11] of automatic test case generation andtest oracles. But this is partly
due to the fact that we test only components and not a completeinterface. So an interest-
ing perspective is to use the same testing infrastructure tovalidate a whole multimodal
application. Good candidates for validation are those thatare built with ICARE. First
it would be another way of testing the ICARE composition components. Secondly we
could use JML to check some ergonomic properties. For instance, we could verify that
at the end of the operation that marks a target point on the ground, the mark is really
displayed. Of course we could not check that the user sees it,but we could guarantee
that the application has a correct behaviour and displays the right information. It is clear
that testing real applications would be much more difficult than testing components, in
particular because of the multi-threading. This could require to change some parts of
the testing infrastructure, particularly JUnit that executes tests.

As a conclusion, the experiment related in this paper had a very positive result: the
ICARE framework is more robust than it used to be and the extensive test campaign has
increased our confidence in its quality. We believe that several test techniques are now
mature enough and sufficiently easy to use, to be applied to other fusion mechanisms,
and that this will help master the complex development of multimodal user interfaces.

References

1. R. A. Bolt. “Put-that-there”: Voice and gesture at the graphics interface. InSIGGRAPH’80,
pages 262–270, 1980.

2. J. Bouchet and L. Nigay. ICARE: A Component-Based Approach for the Design and De-
velopment of Multimodal Interfaces. InExtended Abstracts of CHI’04, pages 1325–1328,
Vienna, Austria, 2004.

3. J. Bouchet, L. Nigay, and T. Ganille. ICARE Software Components for Rapidly Developing
Multimodal Interfaces. InICMI’04, pages 251–258, State College, PA, USA, 2004.

4. L. Burdy, Y. Cheon, D. R. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and
E. Poll. An Overview of JML Tools and Applications. InEighth International Workshop on
Formal Methods for Industrial Critical Systems (FMICS’03), volume 80 ofElectronic Notes
in Theoretical Computer Science, pages 73–89. Elsevier, 2003.

5. P. R. Cohen, M. Johnston, D. McGee, S. Oviatt, J. Pittman, I. Smith, L. Chen, and J. Clow.
QuickSet: Multimodal interaction for distributed applications. In E. Glinert, editor,Proceed-
ings of the Fifth ACM International Multmedia Conference, pages 1325–1328. ACM Press,
New York, 1997.

6. F. Flippo, A. Krebs, and I. Marsic. A Framework for Rapid Development of Multimodal
Interfaces. InICMI’03, pages 109–116, 2003.

7. The Java Modeling Language (JML) Home Page. http://www.cs.iastate.edu/ leav-
ens/JML.html.

8. JUnit. http://www.junit.org.
9. G.T. Leavens, A.L. Baker, and C. Ruby. JML: A notation for detailed design. In H. Kilov,

B. Rumpe, and I. Simmonds, editors,Behavioral Specifications of Businesses and Systems,
pages 175–188. Kluwer, 1999.

10. Yves Ledru, Lydie du Bousquet, Olivier Maury, and PierreBontron. Filtering TOBIAS
combinatorial test suites. InFundamental Approaches to Software Engineering (FASE’04),
volume (to appear) ofLNCS, Barcelona, Spain, 2004. Springer.

11. A. Memon. GUI Testing: Pitfalls and Process.Software technologies, pages 87–88, 2002.
12. L. Nardelli, M. Orlandi, and D. Falavigna. A Multi-ModalArchitecture for Cellular Phones.

In ICMI 2004, pages 323–324, State College, PA, USA, 2004.
13. L. Nigay and J. Coutaz. A Generic Platform for Addressingthe Multimodal Challenge. In

CHI’95, pages 98–105, 1995.
14. L. Nigay and J. Coutaz. The CARE Properties and Their Impact on Software Design. In

Intelligence and Multimodality in Multimedia Interfaces, 1997.
15. S. Oviatt and al. Designing the user interface for multimodal speech and gesture applications:

State-of-the-art systems and research directions.HCI, 15-4:263–322, 2000.

