Test of the ICARE platform fusion mechanism*

S. Dupuy-Chessaand L. du Bousquétand J. Bouchétand Y. Ledri

! CLIPS-IMAG, BP 38, 38041 Saint Martin d’'Heres cedex 9, Fan
2 LSR-IMAG, BP 72, 38402 Saint Martin d'Héres cedex 2, France
E-mail: {sophie.dupuy,lydie.du-bousquet,jullien.bouchet,yeesu} @imag.fr

Abstract. Multimodal interactive systems offer a flexibility of intetion that
increases their complexity. ICARE is a component-basedoggh to specify and
develop multimodal interfaces using a fusion mechanismmodality indepen-
dent way. ICARE being reused to produce several multimopplieations, we
want to ensure the correctness of its fusion mechanism. Sealidate it using
a test architecture based on Java technologies. This pegmams our validation
approach, its results, its advantges and its limits.

Keywords : test, multimodality, fusion mechanism

1 Introduction

An increasing number of applications in the field of human patar interfaces sup-
port multiple interactions such as the synergistic use etsh, gesture and eye gaze
tracking. Multimodal applications are now being built irffdient application domain
including medecine [15], military [5] or telecommunicatifl?]. For example, lot of
mobile phones offer two input modalities, a keyboard andieescecognizer, to inter-
act. Although many multimodal applications have been hthlkir development still
remains a difficult task. The major difficulty concerns thehteical problem of the fu-
sion mechanism, such as the application of R. Bolt [1], inalh& speech modality
“put that there” is blending with a gesture modality, spgicif) positions defined by the
deictic “that” and “there”. Here, the difficulty is to blendwectly the several data from
the modalities. Thus, the fusion algorithm must be rigolpasad carefully developed
and validated, assuring that the multimodal action peréatiny the user is actually ac-
complished by the application. So several frameworks isodéeld to the multimodal
interactions, such as [6] and [13].

Here, we focus on a particular multimodal fusion approakh:ICARE approach
describing in [3]. ICARE is a component-based approach ihatdependent of the
modalities. So it can be reused without modification in mamjtimodal applications.
Applications described in [2] are made with ICARE composestich as one multi-
modal user identification system and a prototype of an autgdarality system, al-
lowing to manipulate numeric notes in a real world.

As any other multimodal frameworks, ICARE must ensure a mimh level of
quality of its fusion mechanism. This need is increased by¢hise of the ICARE com-
position components which implements its fusion mechani@mat’s why we propose

* Many thanks to Laurence Nigay responsible of the INTUITIONject for providing the fu-
sion mechanism-ICARE components.

a validation that targets the composition components optaiorm. So our objective
is not to test traditional user interfaces, but to validateway of blending modalities.

The validation is based on testing because we wanted theagpto be applicable
in practice. The test architecture is composed of a tookdalbbias [10] that generates
a large number of test cases from a scenario, JUnit [8] toutzebese test cases and
JML assertions (Java Modelling Language [9, 4, 7]) to predaugtomatically the verdict
of test cases. The major interest of this architecture isithially supports the testing
process: it allows testers to generate many test casesrthatitomatically evaluated
by an oracle. The test case generation proposed by Tobiasnspertant point of the
architecture as it can easily produce a large number of nigdaimbinations with
controlled characteristics. So we expect that ICARE carfii@ently tested.

This paper presents the ICARE platform (Sect. 2). It theaitiethe testing infras-
tructure used for its validation (Sect. 3), focuses on tkerteethodology (Sect. 4) and
reports on the test results (Sect. 5) before drawing thelasions of the experiment
(Sect. 6).

2 ICARE platform

2.1 Presentation

ICARE is the contraction of Interaction CARE (Complemeityghssignment, Redun-
dancy and Equivalence). It is a component-based approathltbws the easy and fast
development of multimodal interfaces with assembled camepts. ICARE framework
is based on a conceptual component model that describeswbmbsoftware compo-
nents. A few ICARE components are called “elementary coreptsi. Two types of
elementary components are defined: “device components) éD@ “interaction lan-
guage components” (ILC). A modality is the coupling of a @evand an interaction
language [13]. For example, in Fig. 1, a speech modalityfiside by assembly of one
microphone (DC) and the “speech commands” (ILC).

Other ICARE components are called “composition comporiefitsey describe
combined usages of modalities. The ICARE composition camepts suggest various
fusion mechanisms based on the CARE properties [14]: Camgrarity, Assignment,
Redundancy and Equivalence. These fusion mechanisms cgpplied to any subset
of the available modalities. ICARE composition componetdsiot depend on a par-
ticular modality and can merge data from twortanodalities. While Equivalence and
Assignment express the availability and respective alessehchoice among multiple
modalities for performing a given task, Complementaritg &edundancy describe re-
lationships between modalities for performing a given tadkus, three composition
components are defined with their own fusion mechanism: thaflementarity one,
the Redundancy one and the Redundancy/Equivalence one.

These components have been used in several research appic&or each one,
an assembly of components has been set to define which nieslalie used and how
the modalities are combined. For example, the Figure 1 slhaguest of the architecture
of a future French military aircraft cockpit prototype. $turototype, called FACET, is
described with more details in [3]. Figure 1 shows the ICAREponents assembly

in FACET, allowing the pilot to mark a specific point on the gnal. For performing a

marking command, the pilot has the choice among two modslifihe HOTAS (Hands
On Throttle And Stick) modality and the speech modality anectionally equivalent

and can be used separately. However, they can also be useddoradant way, thanks
to the Redundancy/Equivalence component. The HOTAS areerofitivo command

joysticks (one for each hand) to pilot the plane and to issaramands. If the pilot

presses the HOTAS button or speaks (the voice commavidrk>), one mark com-

mand is sent to the rest of the application. If the pilot usah Imodalities at the same
time, still one mark command is sent. In addition, to detieettirget point that the pilot
selected in the real world, two modalities are used in a cemphtary way, thanks to
the Complementarity-tomponent. One modality is for the orientation and locatibn
the pilot and the other is for the orientation and locatioriha& plane. Finally, in or-

der to obtain a complete marking command, the commalerk> must be combined
(Complementarity-2omponent) with the target point defined by the pilot.

Mark a target point on the ground‘ One application task

‘ Complementarity-2 ‘

! !

. i Composition components
Complementarity-1 Redundancy/Equivalenc

:’ ”””””””””” .’””"”””””””‘;iii::iiii:::“:

| 'Planel . PI|0F HOTAS : Speech ! !

1 orientation orientation commands Il commands b

; & location & location 1 : | Elementary components
I U | I

; interactioﬁ language compon%ﬂ I 1 I L}

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S

e i

| N N . | I

: .Plan(le Pilot onelntanon HOTAS !| Microphone i

| orientation & & location i "

i | location tracker tracker | i

| 0 i

3 ' modality it

I

Fig. 1. Part of ICARE specification of FACET input interaction

2.2 Composition Components

The Complementarity componeavmbines all complementary data close in time. For
example in Figure 1, orientation and location of both, tHetgind the plane, must be
merged to detect the target point on the ground. The meahagimostly based on a
customizable temporal window, used to trigger the datafusoming from the modal-
ities. All data coming from the modalities have a confideraadr and a timestamp. To
know if orientation and location data are in the same tenipeiradow, the timestamp

of data is used. If the timestamps are too distant, the fusiowt accomplished. The
result of the fusion, in addition of the new data generatethleyfusion, is a new con-
fidence factor calculated from the merged modalities daté factor is equal to the
average of confidence factors of the merging data.

The Redundancy componeist used when two or more modalities convey redundant
pieces of information that are close in time. In such cagdeaat one of the user ac-
tions is ignored, because the output is exactly the same.aifo mgore security, the
Redundancy/Equivalence component in figure 1, can be regplag a Redundancy
component. In this case, if only one modality is used (HOTASmeech), the com-
mand<Mark> is not performed, avoiding ambiguous commands and errdres.Re-
dundancy component mechanism seems to be a Complemeutariponent with the
substantial difference that all data coming from the sdvamalities must be equiva-
lent, corresponding to the same command. Such as Complaritgnbmponent, times-
tamps of data arriving of the modalities are used to detecteddundancy of the com-
mand. The new confidence factor is equal to the higher cordaléactor among the
two modalities data.

The Redundancy/Equivalence componénfn mix of the two CARE properties Re-
dundancy and Equivalence. It corresponds to the Redundzomponent, where the
redundancy can be optional. Clearly, if someone has two fitiedato perform an ac-
tion, he can do it in an independent way or in a redundant wetyd redundancy case,
only one action is actually performed. As for other compositomponents, its mecha-
nism is based on a temporal window, but it includes two déffeistrategies: the “eager”
and the “lazy” strategies. The “eager” strategy providesféinient mechanism and the
“lazy” strategy provides a safe one. Adopting an “eagedtsiyy, the component does
not wait for further pieces of data to keep propagating dathé following connected
ICARE component. Each time a piece of data is sent to ano@®RE component, the
component keeps its track. It starts a customizable timerdier to detect the redun-
dant pieces of data that may be received later. The advaatdlgis approach is to give
to the user an immediate feedback. The drawback is that due mif data propagated
is the first one received by the component and may not haveiginest confidence
factor. Opposed to the “eager” strategy, the “lazy” strategits until the end of the
timer to propagate the piece of data. The advantage of tiaitegl is to guarantee the
propagation of the data containing the highest confideraterfa

3 Test Architecture

Although ICARE is only a research prototype, a minimum lesfesoftware quality is
required to reuse it in the various projects of the our teaher&fore, an effort was
initiated in june 2004, in order to check the fusion mechandd the three ICARE
composition components.

As ICARE is coded in Java, we looked for a light validationtatecture based
on Java technologies. We chose a testing approach becasigbdteasiest validation
technique to carry out. We wanted a test platform that woeldegate many cases of
modality combination and automatically check whether th@ponents react correctly.

3.1 Automated oracle

An important topic in software testing is to decide on thecgss or failure of a given
test. This is known as the “oracle problem”. In the simplestif of test, it is the test
engineer’s responsibility to look at the test results ancidkeon their success/failure
(human oracle). This approach requires a lot of effort frbentiest engineer and does
not favour the automation of the test process. Often, thgguatkent of the test engineer
is recorded, so that a replay of the same test can reuse tigement, provided the
output of the program under test is deterministic. In thedéshe ICARE platform, it
was impossible to use a human oracle:

— The behaviour of the platform is non-deterministic, dudneuse of multi-threading
in the implementation. It is thus impossible to reuse thelts®f a test when re-
playing it.

— The success/failure of the test cannot be decided on whinéistlyf observed by the
test engineer. Subtle timing properties must be obeyedcdrabnly be observed
by instrumenting the code.

— We intended to play a large number of tests (several thos3awtiich would re-
quire too much interaction for the human oracle.

In this project, the oracle is provided by an executableifipation, written in JML
(Java Modeling Language [9, 4, 7]). A JML specification is magb of assertions (in-
variants, history constraints, pre- and post-conditievisich express the properties of
the classes and constrain their behaviour. JML assertippsaat as comments of the
java program. Their syntax is the syntax of java, augmentitid several keywords.
The JML compiler instruments the code of the program undsr g® that assertions
are evaluated before and after the execution of each me#soa result, an automated
oracle is provided which raises an exception as soon as ttavilmeir of the code differs
from the specified one.

3.2 Test execution infrastructure

Fig. 2 shows the various elements of our test executionstrirature. The goal of the

test is to validate composition components, like Completamity or Redundancy/Equi-

valence in Fig. 1. These components take as input a seriesiofs generated by the el-
ementary components, and turn them into higher level eeatsposed events) which
are sent to the application. The test infrastructure emikadh ICARE composition

component under test with two classes:

— an event generatormplays the role of the various modalities corresponding & th
elementary components of Fig. 1. The event generator dieghignificantly the
test effort, because it decouples the test activity fromciwecrete aspects of the
modalities (e.g. voice and gesture recognition). The téshe elementary com-
ponents which turn these physical phenomena into compuésrtg is out of the
scope of the validation of the ICARE platform.

— an observercollects the events produced by the ICARE composition carepb

Both classes are under the control of the popular unit tg$tinl JUnit [8], which
automates the execution of a test suite given as input.

Observer One application task

ICARE composition componen Composition
(instrumented with JML) components

Test suite

Event
Generator

Modalities

Fig. 2. The test execution infrastructure

3.3 Finding errors with this approach

The main purpose of the validation work was to find some eindise code. To be more
precise, we tried to find some inconsistencies between tte aod the JIML assertions.
When an error is reported, it can correspond to an errorlreethe code or in the IML
specification. Human analysis is necessary to give the diglgnostic.

Test execution may also lead to detect java run-time ereogs when the Java Vir-
tual Machine runs out of memory. Once again, this may comedfo an error in the
java code, or can be the result of the evaluation of the JMEréiess. Here again,
human diagnostic is needed.

3.4 Test suite generation

The test execution infrastructure requires a test suitthifnproject, the test suite was
generated using the Tobias tool [10]. Tobias is a combiratmsting tool which starts
from an abstract test scenario and unfolds it into a largebmurof test cases. These
test cases, named “abstract test cases”, are independespetific target technology.
Tobias then supports the translation of these abstraatasss into an input file for JUnit
(concrete java test cases). Tobias was used to produce maysytavfusion modalities
among which some were identified to be particularly impdrtawvalidate.

4 Test description methodology

4.1 Approach

As said previously, we applied a combinatorial testing apph to produce a lot of tests.
The idea is to (1) identify properties to be validated, (2press interesting scenarios
allowing to observe behaviours with respect to these ptmseand (3) use Tobias to
unfold those scenarios into executable test cases. Forptgaone can identify that

“the Complementarity component combines all complemgmtata close in time”. The

time distance has to be defined by the application designenwhking the composition

components. As said previously, data coming from the mbdalhave a confidence
factor and a timestamp. Thus, the following two points havied checked:

1. if the timestamps of the data to be merged are too distamwadata is not pro-
duced;

2. if the timestamps of the data to be merged are in the sanpor@hwindow, a new
data is produced and has a confidence factor equal to thegavefaonfidence
factors of the merging data.

One way to do so is to produce tests which first initialise ##t infrastructure (i.e.
ICARE component, event generator and the observer) Thillisdc“test preambule”.
Then, the event generator should send several events \fghedit timestamps and con-
fidence factors (“test body”). Finally, the ICARE componshbuld be stopped (“test
postambule”).

This can be expressed as an abstract scenario in Tobiag $ceharid,. (Fig. 3),
the preambule is composed of the five first events

(G.i;C1.3¢; C1.d50; G.st; Cl.startComplementatrity())

and the postambule is composed of the last evéntr{d). The scenario body con-
sists in 6sendComp(events. ThesendComp(event is produced by a modality. The
majors parameters agethe communication port anfithe confidence factor. The sce-
nario is unfolded into 2*6*1*6*2*6 = 864 executable testd€Tunfolding operation in
Tobias takes only few seconds.

Se = G.i; C1.3¢; C1.d50; G.st; Cl.startComplementatrity();
G.s1; G.sn; G.s2;G.sn; G.s3; G.sn; Cl.end,
with

i = {G.setEvent(t)|t € {1}}

3c = {CC.setNbOfComponents(v)|v € {3}}

d50 = {CC.setDeltaT (v)|v € {50}}

st = {setTrace(c)|c € C1}

s1 = {sendComp(c, p, d,f,b)|lc € {C1},p € {1},d € {0,20}, f € {66},b € {false}}

s2 = {sendComp(c, p,d,f,b)|lc € {C1},p € {2},d € {0}, f € {66},b € {false}}

s3 = {sendComp(c,p, d,f,b)|lc € {C1},p € {3},d € {0,20}, f € {66},b € {false}}

sn = {sendComp(c,p, d,f,b)|lc € {C1},p € {1,2,3},d € {0,20}, f € {33},b € {false}}
startComplementatrity() is a method with parameter of Complementarity component

Fig. 3. One abstract scenario for Tobias

4.2 Testing strategy

To validate the 3 components, we produced 19 test schemas) whre unfolded into
approximately 6000 test cases. The schemas were desigtest the components in
three different ways.

First, tests were designed to check the behavior of the caemgs in normal sit-
uations. These tests consists in sending a sequence ofisavents which are differ-
entiated by their data, their delay i.e. the difference leetwtheir initial time and the
current time, their confidence factor and the port of the comemt where they are sent

to. Other parameters of these tests were the delay betweeevent sendings and the
durationdeltaTthat determines if an event is too old to be considered (deensas.).

The second part of our strategy consists in creating boyrwdees that require an
intensive solicitation of the component. Some of thesestimitialize the components
under test with a large number of input ports. Other testdsariot of events without
delay in between.

Finally some tests aim at considering specific aspects dXARE components, in
particular their configuration.

We applied this strategy to the three components (Complt&arign Redundancy,
Redundancy/Equivalence). In fact, the tests of the Cometearity and Redundancy
components were similar as their behaviour is very closeath ether: they have to
choose a group of input events to determine the informatidretpropagated. The Re-
dundancy/Equivalence component is different becausesittnéandle temporal win-
dows. So it was tested with specific test schemas.

5 Results of the experiment

5.1 Testresults

The results of the tests of each ICARE composition comporembe summarized into
three tables corresponding to the three test strategieh.tBble contains four columns:
the first column presents the test, the second one the nurhtest cases produced for
this test, the third one the number of errors, the last onetitee(s) found. We consider
as an error anything that makes the test fail. So it can be aJMit failures or a Java
error. These errors are more precisely explained in the camtsrof the tables.

Complementarity and Redundancy componentsTesting the Complementarity and
the Redundancy components gives the same results. It gaomfiind errors of different
types. There are programming bugs such as an event lose(T@#)) or the propagation
of too old events (Tables 1(a) and 1(c)).

There is one error resulting from some differences betwkerspecifications and
the program. The Redundancy component must check if theé @vemts contain similar
data: its implementation checks that the data of input eveste the same size whereas
the specification requires the same data. The code of theamenpcan be considered
as correctif it is assumed that the event-sending devidalwitlys send consistent data.

Finally we found an error in the specifications. The spedifice state that the num-
ber of input ports of a component is unlimited. But this rums §ava Virtual Machine
out of memory (Tables 1(c)). So, the specifications and thke af the components
should consider the practical constraints and limit the n@nof input ports.

Redundancy/Equivalence componentThe Redundancy/Equivalence component is
implemented differently from the other two components. Bpropagates events like
the Complementarity and the Redundancy components. Se& athtr components, it
has problems with the content of input events and the motldicaf parameters when

it is running (Table 2(c)).

Table 1. Tests for Complementarity and the Redundancy components

|Tests [nb TCnb E[Error Description |

(a) Normal situations
sending 6 events to the component | 864 | 1 [propagated events are too old
sending 50 events i a multithreadedt,
environment

10 |propagated events are too old

(b) Boundary tests

creating a large number of input porfs g | 1 [Javaerror .
(no more memory available)

sending 6 evenis to the component
without delay 864 | 10 |propagated events are too old

sending 32 events in a multithreaded
. . 1 1 |one event lost
environment at a high rate

(c) Specific situations
changing the configuration of the com-
ponent while it receives events 196 | 10 |propagated events are too old
initializing the component with variolis
values
nb TC : number of Test Cases for each component
nb E : number of error (incorrect behaviour observed duriegttexecution

12 | 1 |propagated events are too old

Its main difference is the use of threads in order to handia dancurrently. This
is the source of several errors found in the component imgteation (Tables 2(a) and

2(c)) .

The processing of the component requires concurrent ateele data structure.
This brings execution errors (Java errors in Table 2(a))amdbnormal behavior of
the component in lazy strategy. In some cases, calculatiomsnade using accurate
information on the state of the data structure, but the tedthe calculations is wrong
because the state has changed since the event arrival.dnaatbes, calculations are
made using outdated information causing a lack of interoakistency and thus an
incorrect behavior.

The eager and lazy strategies are based on the concept afr@mindow. Even if
boundary tests with only one temporal window (Table 2(c)ndbbring error, many
test failures come from temporal windows (Tables 2(a)).dms cases, an event is
not processed at the end of its temporal window. In others;adelayed events i.e.
events arriving into the component some time after theiattwa are not processed as
events arriving at their creation time: these events do elutriy to the right temporal
window. Moreover the component do not remove events whishaldelay longer than
the duration of the temporal window.

The Redundancy/Equivalence component being complexétsification also con-
tains errors. They were found when the component has a ¢tebavior that the spec-
ifications consider incorrect. These cases are reportadestect specification” in the
table below.

Table 2. Tests for Redundancy/Equivalence component

[Tests [nb TC|nb E[Error Description
(a) Normal situations
10 wrong behaviors
5 to 36 incorrect specification
I3 wrong behaviors
sending 4 events in the lazy strategy] 192 | 20 |5 incorrect specification
2 Java errors

(b) Boundary tests
sending 5 events during one tempéral
window in the eager strategy 6410 -
sending 5 events during one temporal
window in the lazy strategy 64 | 0 |

sending 4 events in the eager strate&;ylgz 30

(c) Specific situations
changing the configuration of the com- 66 wrong behaviors
ponent while it receives events 196 | 71 |5 incorrect specification

5.2 Advantages of the approach

The test infrastructure chosen is easy to manipulate. Imoxppately one week, the
tester has produced his first tests without all the JML prig®rThe main difficulty
was to write correct JML properties that can be executed.ldihguage offers a large
set of constructions. But some construction combinatiemat executable.

As expected, we fully benefit from the generation of test sdse Tobias. With
test schemas, Tobias allows the tester to easily combineaimyrdifferent ways sev-
eral modalities. These schemas produced expected test tagelso unthought test
cases that reveals errors. So the combination approactb@dsits appropriate for mul-
timodality.

One of the most difficult points in testing components is tha-deterministic test
execution. So adding JML assertions is a good way to obtaautwmatic oracle. But
assertions sometimes need access to variables or datadmaitalirectly visible in the
program. They require to introduce new piece of code to miakgtogram automati-
cally testable.

5.3 Limits of the approach

In theory, each test case should produce a reproducibletoehdowever the way com-
ponents are conceived makes it difficult. In particularabeponent behavior is mainly
based on the timing of events. But this timing can vary froneaecution to another
one. So the results of a given test case can change over tmeisTwhy the numbers
of failures given in the result tables must be consideret@sdsult approximations of
several executions.

The time variations can also cause problems to give a cagstiesult for the Re-
dundancy/Equivalence component. Because of the use afdhie its structure, some

properties are not verified at execution time even if the comept behaves correctly.
The shift between the results and the actual behavior ogttinsee cases:

— when the temporal window is too small compared to the pracgdsme of an
event;

— when the size of the temporal window is comparable to the beteseen two event
arrival;

— when an event delay is greater or equal than the size of theaehwindow.

In these cases, the component is likely to be processing emt ghile the temporal
window is closing, making the JML specifications checking ¢éxistence of a removed
event. To avoid these problematic situations, we choseray"ltemporal window.
Finally failures can come from the specifications. In parttc, several failures of
the Complementarity and the Redundancy components atedeia too old events.
The JML processing time can make events become too long.i$nat possible to de-
termine if the failures come from JML or from a too long pragiag in the components.

6 Conclusion

Testing the ICARE composition components has revealedaesgors. As expected
it permitted to find errors in the fusion mechanism. But ibaleveals some cases of
modalities fusion that have not been anticipated. So ICAR& really been improved
by the experiment which can be considered as a real progress.

The testing tools used has shown the interests of an aut@tle and of the
combinatory test generation for multimodality. Instrurtieg the component code by
adding JML properties is a light solution to produce an awtticnoracle. But it also
consumes resources and creates errors by slowing downageapt. One way to avoid
these problems is to lighten the instrumentation when alprolis detected. For in-
stance, the properties that are necessary for a given talst lse commented out. Then
the test is played again to see if the problem comes fromunmstntation. On the other
hand, instrumentation can make some tests succeed by gldwimn the execution. In
these cases, it is difficult to know that the program is inearas it has bad results when
it will not be possible to detect them.

In this experiment, we succeed in avoiding the traditiorapdical user interface
testing pitfalls [11] of automatic test case generationtastioracles. But this is partly
due to the fact that we test only components and not a cornriptetéace. So an interest-
ing perspective is to use the same testing infrastructuvalidate a whole multimodal
application. Good candidates for validation are those dnatbuilt with ICARE. First
it would be another way of testing the ICARE composition comgnts. Secondly we
could use JML to check some ergonomic properties. For instame could verify that
at the end of the operation that marks a target point on thengiahe mark is really
displayed. Of course we could not check that the user sebstitye could guarantee
that the application has a correct behaviour and displaysght information. Itis clear
that testing real applications would be much more diffidudtrt testing components, in
particular because of the multi-threading. This could negto change some parts of
the testing infrastructure, particularly JUnit that exesutests.

As a conclusion, the experiment related in this paper hadyapasitive result: the
ICARE framework is more robust than it used to be and the sktertest campaign has
increased our confidence in its quality. We believe thatrsdvest techniques are now
mature enough and sufficiently easy to use, to be appliechi&r ddsion mechanisms,
and that this will help master the complex development oftimaldal user interfaces.

References

1. R. A. Bolt. “Put-that-there”: Voice and gesture at thegdnas interface. I'8SIGGRAPH’80
pages 262-270, 1980.

2. J. Bouchet and L. Nigay. ICARE: A Component-Based Apphndac the Design and De-
velopment of Multimodal Interfaces. IBxtended Abstracts of CHI'Q4ages 1325-1328,
Vienna, Austria, 2004.

3. J. Bouchet, L. Nigay, and T. Ganille. ICARE Software Comgats for Rapidly Developing
Multimodal Interfaces. INCMI'04, pages 251-258, State College, PA, USA, 2004.

4. L. Burdy, Y. Cheon, D. R. Cok, M. Ernst, J. Kiniry, G. T. Lems, K. R. M. Leino, and
E. Poll. An Overview of JML Tools and Applications. Eighth International Workshop on
Formal Methods for Industrial Critical Systems (FMICS’08plume 80 ofElectronic Notes
in Theoretical Computer Sciengeages 73—-89. Elsevier, 2003.

5. P. R. Cohen, M. Johnston, D. McGee, S. Oviatt, J. Pittmamith, L. Chen, and J. Clow.
QuickSet: Multimodal interaction for distributed appticas. In E. Glinert, editoProceed-
ings of the Fifth ACM International Multmedia Conferenpages 1325-1328. ACM Press,
New York, 1997.

6. F. Flippo, A. Krebs, and I. Marsic. A Framework for Rapidv@mpment of Multimodal
Interfaces. INCMI'03, pages 109-116, 2003.

7. The Java Modeling Language (JML) Home Page. http://wenastate.edu/ leav-

ens/JML.html.

. JUnit. http://www.junit.org.

9. G.T. Leavens, A.L. Baker, and C. Ruby. JML: A notation fetalled design. In H. Kilov,
B. Rumpe, and I. Simmonds, editoBehavioral Specifications of Businesses and Systems
pages 175-188. Kluwer, 1999.

10. Yves Ledru, Lydie du Bousquet, Olivier Maury, and PidBentron. Filtering TOBIAS
combinatorial test suites. IRundamental Approaches to Software Engineering (FASE'04)
volume (to appear) dINCS Barcelona, Spain, 2004. Springer.

11. A. Memon. GUI Testing: Pitfalls and ProceS&oftware technologiepages 87—-88, 2002.

12. L. Nardelli, M. Orlandi, and D. Falavigna. A Multi-Modalrchitecture for Cellular Phones.
In ICMI 2004, pages 323-324, State College, PA, USA, 2004.

13. L. Nigay and J. Coutaz. A Generic Platform for AddresshregMultimodal Challenge. In
CHI'95, pages 98-105, 1995.

14. L. Nigay and J. Coutaz. The CARE Properties and Their thpa Software Design. In
Intelligence and Multimodality in Multimedia Interfacek997.

15. S. Oviattand al. Designing the user interface for mudtiad speech and gesture applications:
State-of-the-art systems and research directibl@, 15-4:263-322, 2000.

(o]

