Skip to main content

A Self-assembly Model of Time-Dependent Glue Strength

  • Conference paper
Book cover DNA Computing (DNA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3892))

Included in the following conference series:

Abstract

We propose a self-assembly model in which the glue strength between two juxtaposed tiles is a function of the time they have been in neighboring positions. We then present an implementation of our model using strand displacement reactions on DNA tiles. Under our model, we can demonstrate and study catalysis and self-replication in the tile assembly. We then study the tile complexity for assembling shapes in our model and show that a thin rectangle of size k ×N can be assembled using \(O(\frac{\log N}{\log \log N})\) types of tiles.

The work is supported by NSF ITR Grants EIA-0086015 and CCR-0326157, NSF QuBIC Grants EIA-0218376 and EIA-0218359, and DARPA/AFSOR Contract F30602-01-2-0561.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://mrsec.wisc.edu/edetc/selfassembly/

  2. Adleman, L.: Towards a mathematical theory of self-assembly. Technical Report 00-722, University of Southern California (2000)

    Google Scholar 

  3. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-assembled squares. In: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 740–748. ACM Press, New York (2001)

    Google Scholar 

  4. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., de Espans, P.M., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of the thirty-fourth annual ACM symposium on Theory of computing, pp. 23–32. ACM Press, New York (2002)

    Google Scholar 

  5. Adleman, L., Kari, J., Kari, L., Reishus, D.: On the decidability of self-assembly of infinite ribbons. In: Proceedings of the 43rd Symposium on Foundations of Computer Science, pp. 530–537 (2002)

    Google Scholar 

  6. Aggarwal, G., Goldwasser, M.H., Kao, M.Y., Schweller, R.T.: Complexities for generalized models of self-assembly. In: Proceedings of 15th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 880–889. ACM Press, New York (2004)

    Google Scholar 

  7. Bowden, N., Terfort, A., Carbeck, J., Whitesides, G.M.: Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276(11), 233–235 (1997)

    Article  Google Scholar 

  8. Bruinsma, R.F., Gelbart, W.M., Reguera, D., Rudnick, J., Zandi, R.: Viral self-assembly as a thermodynamic process. Phys. Rev. Lett. 90(24), 248101 (2003)

    Article  MATH  Google Scholar 

  9. Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc. 126, 13924–13925 (2004)

    Article  Google Scholar 

  10. Chen, H.L., Cheng, Q., Goel, A., Huang, M.D., de Espanes, P.M.: Invadable self-assembly: Combining robustness with efficiency. In: Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 890–899 (2004)

    Google Scholar 

  11. Cheng, Q., de Espanes, P.M.: Resolving two open problems in the self-assembly of squares. Technical Report 03-793, University of Southern California (2003)

    Google Scholar 

  12. Cheng, Q., Goel, A., Moisset, P.: Optimal self-assembly of counters at temperature two. In: Proceedings of the first conference on Foundations of nanoscience: Self-assembled architectures and devices (2004)

    Google Scholar 

  13. Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 91–107. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Fujibayashi, K., Murata, S.: A method for error suppression for self-assembling DNA tiles. DNA Based Computing 10, 284–293 (2004)

    Google Scholar 

  15. Hughes, B.D.: Random Walks and Random Environments. Random Walks, vol. 1. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  16. Kao, M., Schweller, R.: Reduce complexity for tile self-assembly through temperature programming. In: Proceedings of 17th annual ACM-SIAM Symposium on Discrete Algorithms (SODA). ACM Press, New York (to appear, 2006)

    Google Scholar 

  17. Klavins, E.: Directed self-assembly using graph grammars. In: Foundations of Nanoscience: Self Assembled Architectures and Devices, Snowbird, UT (2004)

    Google Scholar 

  18. Klavins, E., Ghrist, R., Lipsky, D.: Graph grammars for self-assembling robotic systems. In: Proceedings of the International Conference on Robotics and Automation (2004)

    Google Scholar 

  19. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)

    Article  Google Scholar 

  20. Lagoudakis, M.G., LaBean, T.H.: 2-D DNA self-assembly for satisfiability. In: DNA Based Computers V. DIMACS, vol. 54, pp. 141–154. American Mathematical Society, Providence (2000)

    Google Scholar 

  21. Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004)

    Article  Google Scholar 

  22. Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999)

    Article  Google Scholar 

  23. Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling assemblies. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 248–260. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Reif, J.H., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive systems and self-destructible systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 101–112. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Robinson, R.M.: Undecidability and non periodicity of tilings of the plane. Inventiones Math. 12, 177–209 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rothemund, P.W.K.: Using lateral capillary forces to compute by self-assembly. Proc. Natl. Acad. Sci. USA 97(3), 984–989 (2000)

    Article  Google Scholar 

  27. Rothemund, P.W.K.: Theory and Experiments in Algorithmic Self-Assembly. PhD thesis, University of Southern California (2001)

    Google Scholar 

  28. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the thirty-second annual ACM symposium on Theory of computing, pp. 459–468. ACM Press, New York (2000)

    Google Scholar 

  29. Sa-Ardyen, P., Jonoska, N., Seeman, N.C.: Self-assembling DNA graphs. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 1–9. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  30. Sahu, S., Yin, P., Reif, J.H.: A self-assembly model of DNA tiles with time-dependent glue strength. Technical Report CS-2005-04, Duke University (2005)

    Google Scholar 

  31. Schulman, R., Lee, S., Papadakis, N., Winfree, E.: One dimensional boundaries for DNA tile self-assembly. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 108–125. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  32. Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic self-assembly. In: DNA Based Computers 10. LNCS (2006)

    Google Scholar 

  33. Schulman, R., Winfree, E.: Self-replication and evolution of DNA crystals. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS, vol. 3630, pp. 734–743. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  34. Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled patterns. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 125–135. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  35. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: DNA Based Computers 10. LNCS (2006)

    Google Scholar 

  36. Wang, H.: Proving theorems by pattern recognition ii. Bell Systems Technical Journal 40, 1–41 (1961)

    Article  Google Scholar 

  37. Winfree, E.: Simulation of computing by self-assembly. Technical Report 1998.22, Caltech (1998)

    Google Scholar 

  38. Winfree, E.: Self-healing tile sets (draft) (2005)

    Google Scholar 

  39. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  40. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  41. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: Some theory and experiments. In: Landweber, L.F., Baum, E.B. (eds.) DNA Based Computers II. DIMACS, vol. 44, pp. 191–213. American Mathematical Society, Providence (1999)

    Google Scholar 

  42. Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of DNA tile complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA 100(14), 8103–8108 (2003)

    Article  Google Scholar 

  43. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sahu, S., Yin, P., Reif, J.H. (2006). A Self-assembly Model of Time-Dependent Glue Strength. In: Carbone, A., Pierce, N.A. (eds) DNA Computing. DNA 2005. Lecture Notes in Computer Science, vol 3892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753681_23

Download citation

  • DOI: https://doi.org/10.1007/11753681_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34161-1

  • Online ISBN: 978-3-540-34165-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics