Skip to main content

Use of DNA Nanodevices in Modulating the Mechanical Properties of Polyacrylamide Gels

  • Conference paper
Book cover DNA Computing (DNA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3892))

Included in the following conference series:

Abstract

Here we show that bulk materials can be given new properties through the incorporation of DNA-based nanodevices. In particular, by employing simple nanodevices as crosslinks in polyacrylamide gels we have made the mechanical properties of these gels responsive to the presence of particular DNA strands. Two examples will be focused on here. One consists of a polymer system that can be switched between a sol and a gel state though the application of DNA strands that either form crosslinks or remove crosslinks. The other consists of a hydrogel whose crosslinks incorporate a motor domain. The stiffness of this hydrogel can be altered through the application of fuel strands, which stiffen and lengthen the crosslinks, or through the application of removal strands which remove the fuel strands form the motor domain. Such DNA-responsive gels may find applications in biomedical technology ranging from drug delivery to tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mao, C., Sun, W., Shen, Z., Seeman, N.C.: A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144 (1999)

    Article  Google Scholar 

  2. Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNAfuelled molecular machine made of DNA. Nature 406, 605 (2000)

    Article  Google Scholar 

  3. Simmel, F.C., Yurke, B.: Using DNA to construct and power a nanoactuator. Phys. Rev. E 63, 041913 (2001)

    Article  Google Scholar 

  4. Simmel, F.C., Yurke, B.: A DNA-based molecular device switchable between three distinct mechanical states. Appl. Phys. Lett. 80, 883 (2002)

    Article  Google Scholar 

  5. Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62 (2002)

    Article  Google Scholar 

  6. Yurke, B., Mills Jr., A.P.: Using DNA to power nanostructures. Genet. Program. Evol. Mach. 4, 111 (2003)

    Article  Google Scholar 

  7. Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills Jr., A.P., Blakey, M.I., Simmel, F.C.: DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003)

    Article  Google Scholar 

  8. Feng, L., Park, S.H., Reif, J.H., Yan, H.: A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Ed. 42, 4342 (2003)

    Article  Google Scholar 

  9. Li, J.J., Tan, W.: A single DNA molecule nanomotor. Nano Lett. 2, 315 (2002)

    Article  Google Scholar 

  10. Alberti, P., Mergny, J.L.: DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl. Acad. Sci. U.S.A. 100, 1569 (2003)

    Article  Google Scholar 

  11. Dittmer, W.U., Reuter, A., Simmel, F.C.: A DNA-based machine that can cyclically bind and release thrombin. Angew. Chem. Int. Ed. 43, 3549 (2004)

    Article  Google Scholar 

  12. Liao, S.P., Seeman, N.C.: Translation of DNA signals into polymer assembly instructions. Science 306, 2072 (2004)

    Article  Google Scholar 

  13. Sherman, W.B., Seeman, N.C.: A precisely controlled DNA biped walking device. Nano Lett. 4, 1203 (2004)

    Article  Google Scholar 

  14. Shin, J.S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834 (2004)

    Article  Google Scholar 

  15. Lin, D.C., Yurke, B., Langrana, N.A.: Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126, 104 (2004)

    Article  Google Scholar 

  16. Lin, D.C., Yurke, B., Langrana, N.A.: Use of rigid spherical inclusions in Young’s moduli determination: Application to DNA-crosslinked gels. J. Biomech. Eng. 127, 571 (2005)

    Article  Google Scholar 

  17. Lin, D.C., Yurke, B., Langrana, N.A.: Inducing reversible stiffness changes in DNA-crosslinked gels. J. Mater. Res. 20, 1456 (2005)

    Article  Google Scholar 

  18. Nagahara, S., Matsuda, T.: Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym. Gels Networks 4, 111 (1996)

    Article  Google Scholar 

  19. Lin, D.C., Langrana, N.A., Yurke, B.: Force-displacement relationships for spherical inclusions in finite elastic media. J. Appl. Phys. 97, 043510 (2005)

    Article  Google Scholar 

  20. Semler, E.J., Moghe, P.V.: Engineering hepatocyte functional fate through growth factor dynamics: The role of cell morphologic priming. Biotechnol. Bioeng. 75, 510 (2001)

    Article  Google Scholar 

  21. Semler, E.J., Ranucci, C.S., Moghe, P.V.: Mechanochemical manipulation of hepatocyte aggregation can selectively induce or repress liver-specific function. Biotechnol. Bioeng. 69, 359 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yurke, B., Lin, D.C., Langrana, N.A. (2006). Use of DNA Nanodevices in Modulating the Mechanical Properties of Polyacrylamide Gels. In: Carbone, A., Pierce, N.A. (eds) DNA Computing. DNA 2005. Lecture Notes in Computer Science, vol 3892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753681_33

Download citation

  • DOI: https://doi.org/10.1007/11753681_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34161-1

  • Online ISBN: 978-3-540-34165-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics