Skip to main content

Nonlinear Visualization of Incomplete Data Sets

  • Conference paper
Computer Science – Theory and Applications (CSR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3967))

Included in the following conference series:

Abstract

Visualization of large-scale data inherently requires dimensionality reduction to 1D, 2D, or 3D space. Autoassociative neural networks with bottleneck layer are commonly used as a nonlinear dimensionality reduction technique. However, many real-world problems suffer from incomplete data sets, i.e. some values may be missing. Common methods dealing with missing data include deletion of all cases with missing values from the data set or replacement with mean or “normal” values for specific variables. Such methods are appropriate when just a few values are missing. But in the case when a substantial portion of data is missing, these methods may significantly bias the results of modeling. To overcome this difficulty, we propose a modified learning procedure for the autoassociative neural network that directly takes into account missing values. The outputs of the trained network may be used for substitution of the missing values in the original data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldi, P., Hornik, K.: Neural networks and principal component analysis: learning from examples without local minima. Neural Networks 2, 53–58 (1989)

    Article  Google Scholar 

  2. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics 59, 291–294 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hastie, T., Stuetzle, W.: Principal curves. Journal of the American Statistical Association 84, 502–516 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jolliffe, I.T.: Principal component analysis. Springer, New York (1986)

    Book  MATH  Google Scholar 

  5. Kegl, B., Krzyzak, A., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 281–297 (2000)

    Article  Google Scholar 

  6. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. Journal of the American Institute of Chemical Engineers 37, 233–243 (1991)

    Article  Google Scholar 

  7. Kruskal, J.B., Wish, M.: Multidimensional Scaling. Sage Publications, Newbury Park (1978)

    Book  Google Scholar 

  8. Oja, E.: Data compression, feature extraction, and autoassociation in feedforward neural networks. In: Kohonen, T., Makisara, M., Simula, O., Kangas, J. (eds.) Proceedings of the International Conference on Artificial Neural Networks, vol. 1, pp. 737–745 (1991)

    Google Scholar 

  9. Pearson, K.: On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Sciences 6, 559–572 (1901)

    Article  MATH  Google Scholar 

  10. Roweis, S.: EM algorithm for PCA and SPCA. Neural Information Processing Systems 10, 626–632 (1997)

    Google Scholar 

  11. Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychometrika 17, 401–419 (1952)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Popov, S. (2006). Nonlinear Visualization of Incomplete Data Sets. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds) Computer Science – Theory and Applications. CSR 2006. Lecture Notes in Computer Science, vol 3967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753728_53

Download citation

  • DOI: https://doi.org/10.1007/11753728_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34166-6

  • Online ISBN: 978-3-540-34168-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics