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Abstract. Mutual trust is essential in performing economical transac-
tions. In modern internet-based businesses, however, traditional trust
gaining mechanisms cannot be used and new ways to build trust be-
tween e-business partners have to be found. In consequence, a lot of
models describing trust and the mechanisms to build it were developed.
Unfortunately, most of these models neither provide the right formalism
to model relevant aspects of the trust gaining process (e.g., context and
time of a trust-related interaction), nor they allow refinement proofs ver-
ifying that a trust management tool implements a certain trust model.
Therefore, we propose the temporal logic-based specification and veri-
fication technique cTLA which provides a formalism enabling to model
context- and time-related aspects of a trust building process. Moreover,
c¢TLA facilitates formal refinement proofs. In this paper, we discuss the
application of ¢cTLA to describe trust purposes by means of simple ex-
ample systems which are used to decide about the application of certain
policies based on the reputation of a party. In particular, we introduce
a basic and a refined reputation system and sketch the proof that the
refined system is a correct realization of the simple one.

1 Introduction

Since the very beginnings of mankind, trust is an essential ingredient for human
cooperation. In a society based on the division of labor, people often are willing
to rely on others, even though they might face negative consequences. According
to McKnight and Chervany [1], however, this is exactly the definition of trust.
Ways to build trust include personal experience with the party, one relies on,
recommendation by third parties as well as the reduction of the negative con-
sequences in the case of unfounded trust (e.g., by using an insurance covering
financial losses in case of malicious behavior of a trusted party).

These traditional trust gaining mechanisms, however, can hardly be applied
in modern internet-based businesses. Here, one performs transactions on an ad-
hoc basis with often changing anonymous partners living in other countries with
different legal systems. Thus, it is difficult to gain any personal experience about
transaction partners and trustworthy third persons which can give meaningful
recommendation are also hardly available. Furthermore, suing for ones personal



rights in another legal system is stressful. In some cases, security mechanisms
(e.g., authentication, non-repudiation techniques) can be applied to facilitate
cooperations. But especially in an electronic environment providing ad hoc co-
operations between anonymous parties, security mechanisms are often of limited
benefit. For example, it is tedious to use a traditional password-based authenti-
cation system with proof of identity and exchange of passwords if the user wants
to perform a business transaction only once. Instead, a party needs mechanisms
to foster the building of well-founded trust to its partner based, for instance,
on recommendations by trustworthy third parties or by the partner’s reputa-
tion. The creation of this kind of mechanisms is a goal followed up by the Trust
Management research discipline.

To support the trust building process by a computer, one has to find suitable
representations of trust, so-called trust values (cf. [2,3]). Moreover, one needs
mechanisms to compute the trust values in a way that the natural way to build
up trust is modeled fairly realistically. Thus, these mechanisms should be able
to consider experiences and recommendations of computer users to compute
suitable trust values. As pointed out by Falcone and Castelfranchi [4], new trust
is influenced by already existing trust in rather complex ways which should
also be reflected by a trust value computation mechanism. Furthermore, the
mechanism has to consider the context in which building of trust takes place
(cf. [1,5]). Relevant aspects of a trust context are according to Jgsang et al. [6]
the utility of possible outcomes, environmental factors (e.g, law enforcement,
contracts, security mechanisms) as well as the risk attitude of the trusting party.

Another important aspect of a trust building mechanism is time. Falcone
and Castelfranchi, for instance, call in [4] trust as a very dynamic phenomenon
evolving in time and having a history. Likewise, a Cheskin Research study [7]
examining trust concepts of e-commerce cites describes trust as “function of time
and specific formal characteristics of sites”. Also Mezzetti [8] states that trust
values may be changed in the course of time. He considers recent events more
relevant than older events for building trust, “since obsolete information is not
considered to accurately describe more recent behaviors”. In consequence, his
trust building mechanism uses a decay function reducing a trust value in the
course of time.

In between, several trust models describing formats for trust values as well
as trust building mechanisms were proposed (cf. Sec. 2). Some of these models
focus on the description of relevant aspects of the human trust building process
per se which may be viewed from a rather formal mathematical or philosophical
perspective (e.g. [9, 10]) as well as from a more sociological-cognitive view (e.g. [5,
8,11]). Other models are devoted to computer-implementable solutions fostering
the gaining of the trust [12-16]. While these approaches offer a variety of very
useful concepts to specify and compute the generation of trust, most of them,
however, miss the sufficient formalism to model all relevant aspects of trust
building including context and time. Moreover, they do not allow to carry out
deduction proofs that an implementation of a trust management system fulfills
a trust model and particular trust properties. For this reason, we propose the



temporal logic cTLA (compositional Temporal Logic of Actions [17]) as a method
to model and to verify trust mechanisms. It provides the formalism to define trust
values and to model context- and time-dependent building of trust. Furthermore,
it enables to carry out refinement proofs in a relatively suitable way. Yet, we do
not intend to create a completely new trust model but adapt existing approaches
like Jgsang’s Subjective Logic [9] or Mezzetti’s work [8] to ¢cTLA.

c¢TLA is based on Lamport’s Temporal Logic of Actions (TLA, [18]). It sup-
ports the modular description of processes which, in contrast to TLA, can be
coupled to system models both in a resource-oriented and a constraint-oriented
specification style (cf. [19]). In contrast to a resource-oriented style, where a
process describes a physical system resource in its entirety, processes in the
constraint-oriented style model certain functional properties of a system which
may be realized by several cooperating resources. This specification style facili-
tates system descriptions by composing models of the various system constraints
which reflects the logical connections and dependencies of a system very well.
c¢TLA also enables the description of continuous flows [20]. Thus, it is possible to
model the dynamic trust building process as a continuous process which is influ-
enced by discrete events (e.g., the selection of an access policy based on positive
or negative valuations of a party). In consequence, we can specify trust creation
by means of continuous-discrete models similar to those describing computer-
driven technical processes like a chemical plant.

The composition of ¢cTLA processes to a system has the character of su-
perposition (cf. [21]) guaranteeing that all relevant properties of a process or a
subsystem are also properties of the systems embedding it. Therefore, one can
simplify formal deduction proofs of properties by considering only a subsystem
guaranteeing the property to be verified. In combination with the constraint-
oriented specification style, one can define often very small subsystems which
can easily been proven to realize a certain property. Thus, the structuring of a
verification process into relatively simple proof steps is supported.

In the remainder, we discuss several trust models (Sec. 2) followed by an
introduction to ¢TLA (Sec. 3). Thereafter we will point out the specification
of trust management systems by means of two example systems. A more ab-
stract system introduced in Sec. 4 describes a simple reputation system collect-
ing good and bad experiences based on which one of two policies is selected. In
Sec. 5 we introduce a refined system collecting the experiences from two sepa-
rate users which have to be combined in a fair manner. Afterwards, in Sec. 6
we sketch the carrying out of refinement proofs in ¢TLA by outlining the veri-
fication that the more complex system correctly implements the more abstract
one. The ¢cTLA processes and proofs can also be looked at in the WWW (URL:
http://www.item.ntnu.no/~herrmann/specs/trust).

2 Trust Model Survey

Trust is a rather complex human emotion and the models describing it tend to
be complex as well. To reduce the complexity, however, most models consider



only certain aspects of trust building. A class of trust models specifies relevant
issues of trust very realistically without being devoted directly to implementation
purposes. These models tend to be relatively formal and describe trust gaining
from a mathematical-philosophical or from a sociological-cognitive perspective.

An approach to describe trust by uncertain probabilities is Josang’s Subjec-
tive Logic [9]. Here, a trust value is modeled by a so-called opinion which consists
of three values' in the interval between 0 and 1 modeling the belief resp. dis-
belief in the honesty of a party as well as the uncertainty about it. The sum of
these values have always to be 1. The trust values can be computed by means
of a metric [22] which is outlined to more detail in Sec. 4. Operators of the logic
enable various combinations of trust values. Unfortunately, it does not allow to
model time-dependent behavior yet. Relevant aspects of this logic, however, can
be easily implemented (cf. e.g., [23]). In contrast, Jones and Firozabadi [10] use a
modal logic of action to describe that a party a receiving a piece of information
by a party b has to decide based on b’s credibility if the information is true.
Based on this, they discuss a species of deception in which b exploits a’s trusting
nature to make him to believe something which b does not believe himself. The
trust gaining processes are modeled in a rather descriptive way and can hardly
be realized on a computer.

Falcone and Castelfranchi [5] provide an extensive model to describe trust
building from a sociological and cognitive-psychological view. Their so-called
Socio-Cognitive Model of Trust considers various forms of social dependence be-
tween parties which lead to different forms of beliefs (i.e., ability/competence,
disposition/availability, unharmfulness, opportunity and danger beliefs). Based
on these forms of beliefs, methods to rate the degree of trusts and to perform
decisions are discussed. A formalization of the model based on fuzzy cognitive
maps is introduced in [11]. Mezzetti [8] defined a simpler model consisting of
a set of rules which specify the building of trust from experience and recom-
mendations based on aspects like competence, willingness, and dependence. As
already mentioned, this model reflects time aspects of experiences and uses a
decay function.

Other approaches concentrate more on an easy realization of trust values
and trust building mechanisms on computers. An early approach to integrate
trust issues into computer software emerges from the field of access control.
Since traditional access control models are not adequate for the Internet with a
large number of fluctuating participants, so-called credential-based systems like
PolicyMaker, REFEREE or KeyNote were designed (cf. [12]). Parties interested
to access a resource have to pass credentials to the resource provider stating that
the credential issuer considers the credential owner as trustworthy. Based on his
own trust in the recommendations of the credential issuers, the resource owner
decides to provide access or not. Another framework for trust-based policies was
developed by Grandison and Sloman [13]. It enables descriptions of trust policies

L A forth value to describe the expected probability of an event is less important in
our context.



by means of Prolog statements which may be evaluated in order to support trust-
based decisions about granting access to certain resources.

Abdul-Rahman and Hailes [14] designed a trust management system to be
implemented on the base of mobile agents with strict resource constraints. It
enables to rate experiences with a party by different values. The trust in recom-
mendations of a party is computed by the so-called semantic distance describing
the difference between the values of a recommendation and the later evaluation
of the recommended party. Thus, the semantic distance describes the bias of
the recommender towards the recommended party. Later recommendations of
the recommender are adapted by adding the semantic distance to it. Azzedin
and Maheswaran [15] developed a system to negotiate trust in grid computing
systems. They rate recommenders based on advice of so-called trusted allies and
compute the direct trust in a party from recommendations by considering the
recommender’s trust values. The dependency on the trusted allies seems to be
a major drawback of this approach. Another contribution to the use of trust
management in completely decentralized environments is provided by Aberer
and Despotovic [16] who define trustworthiness of a party by the absence of
complaints on it. The core of model consists of methods to store and retrieve
complaints on a party in a distributed way. The problem of this approach is that
the ratio between complaints and the overall number of transactions cannot be
retrieved. Thus, uncertainty about a party is handled as high trust which seems
not to be a good perception of the reality.

Of these interesting and innovative models we consider Jgsang’s Subjective
Logic, the formalization of Falcone’s and Castelfranchi’s Socio-Cognitive Model
of Trust, Mezzetti’s work as well as the more practical-oriented approaches as
well suited to be integrated into our ¢TLA-based approach. One may even think
to combine different models in order to get a better description of the actual
building of trust. For instance, a combination of different approaches is used
in our example models in which we combine elements of Jgsang’s Subjective
Logic [9] with a decay function similar to that proposed by Mezzetti (cf. [8]).

3 cTLA

TLA [18] is a linear time temporal logic describing properties of state transition
systems by means of often lengthy and complex canonical formulas. To provide
a better understanding of specifications, in contrast, ¢TLA [17,20] omits the
canonical parts of TLA formulas. It is oriented at programming languages and
introduces the notion of processes. A specification is structured into modular
definitions of process types. An instantiation of a process type forms a process
which either has the form of a simple process or that of a process composition.
Simple processes, which directly refer to state transition systems, are used to
model single system resources or system constraints.

Fig. 1 depicts the example of a simple process type used to model a part
of our example trust systems. The header declares the process type name (e.g.,
PolicyDecider and generic module parameters (e.g., beliefThreshold). These pa-



PROCESS PolicyDecider (beliefThreshold : real;
disbeliefThreshold : real)

CONSTANTS A
TrustValues = [[ b : real; d : real; u : real 1];
BODY
VARIABLES
policy : {"lowTrust","highTrust"};
INIT 2 policy = "lowTrust";
ACTIONS

retrievePolicy (p : {"lowTrust", "highTrust"}) 2
p = policy A policy’ = policy;
CONT (INPUT i : TrustValues) =
policy’ = IF i.b > beliefThreshold A i.d < disbeliefThreshold
THEN "highTrust"

ELSE "lowTrust";
END

Fig. 1. ¢cTLA Process Type Policy Decider

rameters facilitate the modeling of similar but not identical processes by a single
process type specification. The part headed by the keyword CONSTANTS en-
ables the definition of constant expressions (e.g., the record type TrustValues).

The process type body defines the state transition system. The state space is
specified by state variables (e.g., policy) and the subset of initial states is modeled
by the predicate INIT. Moreover, the body contains actions. An action (e.g.,
retrievePolicy) is a predicate on pairs of current and next states and specifies
a set of state transitions. The state variables referring to the current state are
noted in simple form (e.g., policy) while variables describing the successor state
occur in the primed form (e.g., policy’). An action may have action parameters
enabling to specify different actions by a single representation. The disjunction
of the actions forms the next state relation of the process. In the course of time, a
process may perform action steps (i.e., it changes its state in accordance with an
action) or stuttering steps (i.e., it does not change its state while the environment
performs a state transition).

Following [24], real-time is represented by means of a real-valued state vari-
able mow which is incremented lively by a clock action tick. Unlike other vari-
ables, which are private in exactly one process, now can be read by all processes
of a system. Additional real-time constructs specify minimum waiting times and
maximum reaction times for actions.

Continuous properties of a process are expressed by means of the special ac-
tion type CONT. The CONT-actions of all processes modeling a system and the
tick-action of the clock occur simultaneously. A CONT-action specifies difference
equations and, since an execution corresponds to a very small time step, con-
tinuous behavior is approximated well. In the difference equations, we express
the time steps by now’-now. The inputs and outputs of continuous processes are



PROCESS OneUserReputationSystem
CONSTANTS A

TrustValues = [[ b : real; d : real; u : real 1];
PROCESSES

E : TrustValueEngine(0.01,0.04,0.001,0.004);

PD : PolicyDecider(0.99,0);
ACTIONS A
reportGoodExperience =
E.reportGoodExperience A PD.stutter;
reportBadExperience 2
E.reportBadExperience A PD.stutter;
retrievePolicy (p : {"lowTrust", "highTrust"}) =
PD.retrievePolicy(p) A E.stutter;
CONT (OUTPUT o : TrustValues) =

E.CONT(; o) A PD.CONT(o; );
END

Fig. 2. System One User Reputation System

modeled by action parameters. In Fig. 1, the variable policy is set according to
the IF-THEN-ELSE-statement depending on input value 1.

Systems and subsystems are described as compositions of concurrent process
instances. The coupling of the processes is specified by synchronously executed
process actions while, with exception of now, the process variables are encap-
sulated and cannot be read or modified by other processes. In consequence, a
system state is the vector of the process variables. The system transitions are
modeled by system actions and each process contributes to a system action by
either exactly one process action or a stuttering step. In consequence, a system
action is a conjunction of process actions and process stuttering steps. Fig. 2
shows an example of a system specification. In the part PROCESSES, the pro-
cesses of the system are listed as instantiations of process types (e.g., process E
of the type TrustValueEngine and process PD of the process type PolicyDecider
depicted in Fig. 1). In addition, the instantiations of the module parameters
are listed (e.g., the module parameters beliefThreshold and disbeliefThreshold of
process PD are replaced by the values 0.99 resp. 0).

In the part headed by ACTIONS, the system actions are defined as conjunc-
tions of process actions and stuttering steps. For instance, the system action
retrievePolicy models that process PD performs its process action retrievePolicy
while F carries out a stuttering step.

4 Simple Trust Management Model

As already mentioned, we introduce the application of cTLA to specify trust
models by means of two example systems. The first trust management model
describes a very simple reputation-based policy decision system. In particular,
users report positive and negative experience reports about a party in question
from which trust values are computed. Based on the trust values, the system
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Fig. 3. Opinion Triangle (taken from [25])

selects one out of two trust-based policies to be used, for instance, to decide
about granting access to a resource. The system specification is a composition
of two ¢TLA processes. One of them models the collection of experience reports
and the computation of the trust values while the other specifies the trust policy
selection.

The specification and computation of the trust values is based on Jgsang’s
Subjective Logic [9]. There, trust values are described as so-called opinions which
are triples of real values b, d and u in the range between 0 and 1. b and d state
the belief resp. disbelief in a party while u describes uncertainty. Thus, one can
distinguish if the lack of trust results from malicious experience or from missing
knowledge about a party. Since a trust value fulfills the constraint b+d+u = 1,
it can be modeled by a point in the so-called opinion triangle (cf. Fig. 3). A
trust value stating a high degree of uncertainty is described by a point close to
the top of the triangle while points on the right or left bottom state great belief
resp. disbelief based on a lot of experience with a party.

Trust values are used to describe both the direct trust in a party itself and the
trust in the recommendation of a party about another one. Jgsang and Knapskog
introduce the following metric [22] to compute trust values from the number p
of positive valuations and n of negative valuations of the party in question:

b= d=—"1_ w=—1 (1)

p+£+1 prn+tl = pfntl

Unfortunately, this metric does not reflect the time when an experience report
was handed over. In reality, the trust resp. distrust in a party is definitely higher
if it is based on more recent experience in comparison to older impressions which
leads to a higher degree of uncertainty (cf. e.g., [5]). Therefore, we combine the
trust value-computation metric with a decay function reducing the numbers p
of positive and n of negative experience reports in the cause of time. In order to
model the decay per time-unit in a flexible way, we do not describe it by a fixed
function but enforce that it has to stay within certain borders. Therefore we
define four values pDMin, pDMax, nDMin and pDMazx describing the minimum
resp. maximum decay rates of positive and negative valuations as stated in the



PROCESS TrustValueEngine (pDMin, pDMax, nDMin, nDMax : real)
CONSTANTS A

TrustValues = [[ b : real; d : real; u : real 1];
BODY

VARIABLES

p : real;

n : real;

INIT 2 p =0 A n = 0;
ACTIONS

reportGoodExperience 2

p' =p+1An' = n;

reportBadExperience 2
n’ =n+1Ap = p;

CONT (OUTPUT o : TrustValues) =
o=[MIb+—p/ Q+p+mn);d—n/ ({1 +p+n);
ur— 1/ @ +p+mn) 1A

max(0,p - (now’-now) - pDMin) A

max(0,p - (now’'-now) - pDMax) A

max(0,n - (now’-now) - nDMin) A

max(0,n - (now’-now) - nDMax);

8B B0 T
IV IA IV IA

END

Fig. 4. Process Type Trust Value Engine

following formula?:

p— At -pDMazxz <p' < p— At-pDMin (2)
n—At-nDMaz <n' <n— At-nDMin

The time-related generation of trust values is modeled by the ¢TLA pro-
cess type TrustValueEngine depicted in Fig. 4. Here, the values pDMin, pDMax,
nDMin and pDMaz determining the minimum resp. maximum decays of the
experiences are specified as module parameters. The constant expression Trust-
Values defines the three tuple used to model trust values as a record. Moreover,
we specify the numbers p of positive resp. n of negative experiences by two
variables of the type real which both carry the value 0 initially.

The state changes modeled by instances of this process type are specified by
means of two atomic actions describing discrete state changes and the special
action CONT defining continuous behavior. The action reportGoodEzperience
models the reception of a positive valuation. It increments the variable p by 1
while n remains unchanged. In similar, the action reportBadEzperience describes
the submission of a negative experience report resulting in an increment of n by
1. As discussed in the introduction, we consider the computation of the trust
values and the “forgetting” of older experience reports as a continuous process.
Therefore the corresponding behavior is specified by the action CONT modeling
very small time steps now’now (cf. Sec. 3). The action contains an output pa-
rameter o describing the current trust value which may be used as an input for

2 Following the cTLA style, p’ and n’ refer to the next state.
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other ¢cTLA processes. The calculation of o from the variables p and n accord-
ing to the metric introduced in formula 1 is described by the first conjunct of
the action. The other conjuncts model the decay of p and n by the inequations
listed in formula 2. Since neither p nor n must get values below 0, we added the
function maz to the inequations.

The selection of a low trust resp. a high trust policy based on the current trust
value is specified by the cTLA process type PolicyDecider listed in Fig. 1. The
policy selection is guided by two thresholds beliefThreshold and disbeliefThres-
hold which are introduced by means of module parameters. The variable policy
describes the currently active policy. Initially it is set to “lowTrust” stating that
in the first state the low trust policy is active. The action retrievePolicy enables
external ¢cTLA processes to read the current policy. It contains a parameter p
describing the current value of the variable policy which is not changed by the
action. The adjustment of the currently active policy based on the trust value
is a continuous process and therefore modeled by the action CONT. We assume
that the high trust policy is only available if the belief element b of the current
trust value, which is modeled by the import parameter ¢, is not lower than
beliefThreshold while the disbelief element d must not exceed disbeliefThreshold.

The example system is modeled by the process type OneUserReputation Sys-
tem depicted in Fig. 2. It consists of instances E of the process type TrustVal-
ueEngine and PD of PolicyDecider. The module parameters of F are instantiated
in a way that the decay limits of positive experiences are 0.01 and 0.04 while
those of the negative experiences are 0.001 resp. 0.004. Thus, a positive expe-
rience is “forgotten” in between 25 and 100 time units while a negative one is
lost after between 250 and 1000 time units?. The parameter instantiations of PD
state that the high trust policy is only used if the belief b in the current trust
value is at least 0.99 while the disbelief has to be 0. Thus, one needs at least 99
positive but no negative valuations to run the high trust policy.

The couplings of the process actions to system actions are straightforward.
The system actions reportGoodFExperience and reportBadEzxperience are conjunc-
tions of the corresponding process actions of F and stuttering steps of PD while
retrievePolicy is coupled the other way round. The interaction between the two
process instances is basically an exchange of the current trust value which is
modeled by the coupling of the two process actions CONT where the output
parameter of action F.CONT and the input parameter of PD.CONT are identi-
cal. In consequence, in the system action CONT, the parameters of both process
actions are set to the system action parameter o.

5 Refined Trust Management Model

The simple trust management model introduced above includes only one single
trust value engine and, thus, does not distinguish whether the experience reports
are submitted by one or more users. In contrast, the model introduced below uses

3 These settings do not reflect well-founded experience about trust gaining processes
but are only used to exemplify the application of cTLA.



11

PROCESS ConsensusOperator
CONSTANTS A
TrustValues = [[ b : real; d : real; u : real 1];
BODY
INIT = True;
ACTIONS
CONT (INPUT i1, i2 : TrustValues; OUTPUT o : TrustValues) =
LET £ 2 il.u + i2.u - il.u - i2.u;
INo = [[ b+— (il.b - i2.u + i2.b - il.u) / K;
d— (i1.d - i2.u + i2.d - it1.u) / &K;

u+— (d1.u - i2.u) / k 11;
END

Fig. 5. Process Type Consensus Operator

two trust value engines in order to distinguish between two separate sources for
valuations. Thus, two trust values w; and ws are created and have to be combined
to a third trust value w in order to determine the active trust policy. An adequate
means to compute w fairly from w; and ws is the consensus operator & introduced
in Jgsang’s Subjective Logic [9]. If wq = (b1,d1,u1) and wg = (be, d2, us) are two
trust values stating trust in a party based on two separate sources, one can
describe by this operator a consensus of these two opinions. The operator is
specified by the formula

Ww=w; Dwy = ((bl’U;Q + bgul)//ﬁ, (dl’u,g + dgul)/li, (ul’LLQ)/Ii) (3)

in which « is defined as u; + us — ujus. Since the consensus-operator is com-
mutative and associative, it can be used to combine trust values from various
sources.

The operator is specified by the cTLA process type ConsensusOperator listed
in Fig. 5. Since the process type models only stateless behavior, it does not
contain variables. The action CONT specifies formula 3 in which the operands
are specified by the input parameters i/ and 42 while the result corresponds to
the output parameter o. The LET-IN-construct enables the definition of constant
expressions (e.g., k) in the LET-section which can be used in the formula listed
behind the keyword IN.

The refined system is modeled by the ¢TLA process type TwoUserRepu-
tationSystem depicted in Fig. 6. The system contains two trust value engines
specified by the processes E1 and E2. In contrast to the simple system in Sec. 4,
the engines uses maximum decay rates of only 0.02 resp. 0.002. Thus, a positive
experience is lost not before 50 and a negative one not not before 500 time units
passed. The system also contains a process CO modeling the consensus operator.
Finally, we use a policy decider which is modeled by the process PD and uses
the same parameter instantiations as in the simple system.

Due to the use of two trust value engines, the system specification defines
each two actions to model the reception of positive resp. negative experiences.
Moreover, it declares an action to retrieve trust policies and the action CONT
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PROCESS TwoUserReputationSystem
CONSTANTS A

TrustValues = [[ b : real; d : real; u : real 1];
PROCESSES

El : TrustValueEngine(0.01,0.02,0.001,0.002);

E2 : TrustValueEngine(0.01,0.02,0.001,0.002);
CO : ConsensusOperator;
PD : PolicyDecider(0.99,0);
ACTIONS A
reportGoodExperiencel =
El.reportGoodExperience A E2.stutter A CO.stutter A PD.stutter;

reportGoodExperience2 2

E2.reportGoodExperience A El.stutter A CO.stutter A PD.stutter;
reportBadExperiencel 2

El.reportBadExperience A E2.stutter A CO.stutter A PD.stutter;
reportBadExperience2 =

E2.reportBadExperience A El.stutter A CO.stutter A PD.stutter;
retrievePolicy (p : {"lowTrust", "highTrust"}) =

PD.retrievePolicy(p) A El.stutter A E2.stutter A CO.stutter;
CONT (QUTPUT ol, 02, o : TrustValues) =

E1.CONT(; ol) A E2.CONT(; o02) A CO.CONT(ol, o02; o) A PD.CONT(o; );

END

Fig. 6. System Two User Reputation System

defining the continuous trust value computation. Here, the outputs 0! and 02 of
the trust value engines are the operands of the consensus operator. The result o
of this operator forms the input of the policy decider. Thus, we model that the
active trust policy is determined based on the experience reports of both trust
value engines, the generated trust values of which are combined by means of the
consensus operator.

6 Example Proof

The verification, that the more complex trust management system introduced
in Sec. 5 is a correct implementation of the simpler model discussed in Sec. 4, is
performed by means of a temporal logic implication proof. In particular, we verify
that an instance T of process type TwoUserReputationSystem (cf. Fig. 6) implies
an instance O of OneUserReputationSystem (cf. Fig. 2). Due to the superposition
property of cTLA, this verification can be reduced to three separate proof steps:

1. A subsystem T of T implies the process E of O.
2. The process PD of T implies the process PD of O.
3. The actions of the processes in T are coupled in consistence with those in O.

The subsystem T used in the first proof step consists of the processes and
action couplings of TwoUserReputationSystem with the exception of the process
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PD. In consequence, we omitted the system action retrievePolicy and the other
system actions include the same conjuncts as their counterparts in TwoUser-
ReputationSystem except for those referring to PD.

A problem of the proof T'= O.F is that T and O.E contain different state
types. Therefore we define a so-called refinement mapping (i.e., a function map-
ping the state space of T to that of O.E which has to contain some side prop-
erties to be proven below; cf. [26]). Here, we define the refinement mapping by
the following formulas:

O.Ep=T.Elp+T.E2.p O.Em = T.Eln+T.E2.n (4)

Thus, the numbers of positive and negative valuations in the simple model cor-
responds to the sum of the numbers of experience reports stored by the two
trust value engines in the refined model. Now we can start to carry out the first
proof step, for which we have to verify that the initial states of 7" are mapped to
initial states of O.F and that each action of T implies either an action of O.F
or a stuttering step. R

The first proof T.INIT = O.E.INIT is merely trivial since T.I NIT implies
T Elp=0AT.Eln=0AT.E2.p = 0 ANT.E2.n = 0 which according to the
refinement mapping in formula 4 implies O.E.p = 0AO.E.n = 0. This, however,
is exactly the definition of O.E.INIT.

At next, we verify that the action T'.reportGood Experiencel implies O.E.re-
portGoodExperience. From T.reportGood Experiencel we can infer T.E1.p" =
T.El.p + 1 while all other variables do not change their values. Due to the
refinement mapping, however, O.E.p" = O.E.p+1AO.E.n" = O.E.n holds which
implies O.FE.reportGood Experience. Similarly, we can prove that T'.reportGood-
Ezperience2 implements O.E.reportGoodExperience and that the two actions,
modeling reception of negative experience reports in T', imply O.FE.reportBad-
FEzxperience.

In the next step, which is the most complex of the overall proof, we verify
that the action CONT of T implies O.E.CONT (i.e., Yol,02,0 € TrustValues :
f.CONT(; 0l,02,0) = O.E.CONTY(;0)). In particular, we prove for each con-
junct of O.E.CONT that it is fulfilled by j“.C’ONT. To verify the first con-
junct of O.E.CONT, we prove firstly that T.CONT implies the setting of the
record element 0.b (i.e., 0.b = O.E.p/(1 + O.E.p + O.E.n)). For clarity, we
use in this proof the two auxiliary constants A\; = 1 + f.El.p + T.Fln and
A =1+T.E2.p+T.E2.n. From T.CONT, we can infer the following formulas:

_ T.Elp _ T.E2p _ ol.b-o2.uto2.b-ol.
ol.b= =3 02.b = =3 0b= Pt )
By inserting the first two of these formulas into the third one, we get the following

result:

T.Elp 1 , T.E2p 1 ~ ~
b T n o TELp+ T.E2p

1 1 1 =

YR T VP o Aty -1
By application of the refinement mapping in formula 4 we can, however, infer
that the right term of formula 6 implies 0.b = O.E.p/(1+ O.E.p+ O.E.n) which

(6)
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was the goal of this partial proof. In a very similar way, we can also prove that
T implies the settings of o.d and o.u which guarantees that the first conjunct of
O.E.CONT is correctly implemented by T

To verify the four other conjuncts of O.E.CONT describing the decay of the
variables O.E.p and O.FE.n, we use the following inequations which can easily
be proven by means of a case separation:

Ya,b, k € real : a,b,k > 0=
max(0,a + b —2k) < maz (0,a — k) + maz(0,b — k) < maz(0,a+b— k)
(7)
To prove, for instance, the third conjunct of O.E.CONT, we use the fact that
T.CONT implies both T.E1l.p' > max(0,T.El.p — (now — now) - 0.02 and
T.E2 P > max(0, T.E2. p— (now —now) - 0.02. By a simple invariant proof, we
can show that both T.E1. p and T.E2 .p are never smaller than 0. Therefore we
can apply the left inequation of formula 7 and verify that T.El.p + T.E2.p >
max(0,T.El.p+T.E2.p— (now' —now)-0.04 which, according to the refinement
mapping, corresponds to the conjunct to be proven. After verifying the remaining
conjuncts of O.E.CONT in a rather similar way, we finished the formal proof
that O.E.CONT is fulfilled by T.CONT'. Since, moreover, stuttering steps of
T trivially imply stuttering steps of O.F, we now achieved the first proof step
T = O.F entirely.

The second proof step stating T.PD = O.PD is very simple since both
T.PD and O.PD use the same module parameter instantiation. Therefore, the
two ¢TLA process instances are identical and T.PD implies O.PD trivially.

The third proof step states that the actions of the two systems are being
consistently coupled. A consistent coupling is guaranteed if the process actions
participating in a system action of 7" are mapped to process actions all being
coupled to the same system action of O. This proof, however, is also merely
trivial since we can apply the intermediate results of the first two proof steps.
For instance to verify T.reportGoodExperiencel = O.reportGood Experience
we use the already carried out implication proofs T.reportGood Experiencel =
O.E.reportGoodExperience and T.PD.stutter = O.PD.stutter which directly
implies the assertion. By finishing the third proof step, however, we achieved the
overall refinement proof stating that the complex system is a correct implemen-
tation of the simple one. A sketch of the complete proof is listed on the WWW
(URL: http://www.item.ntnu.no/~herrmann/specs/trust).

7 Concluding Remarks

Above, we introduced the use of the temporal logic ¢cTLA to specify trust mod-
els and to perform refinement proofs. We can also apply ¢cTLA to specify more
detailed specifications of computer implementations and to verify that the real-
izations fulfill the trust models. For instance, the more complex example trust
model can be refined to a model which does not specify continuous behavior.
Here, the actions CONT are replaced by discrete system actions which are repeat-
edly executed and computes the decay of the experience numbers and calculates
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the trust values based on the time-step since the last execution. The ¢TLA pro-
cesses of the implementation and the refinement proof could not be presented
here due to the page limit but can be retrieved from our web page.

Due to the compositionality of ¢TLA, specifications can be designed and
refinement proofs can be carried out in a relatively simple way. Nevertheless,
one can facilitate the use of cTLA even more by creating so-called specification
frameworks [17]. Here, cTLA process types describing aspects of a certain appli-
cation domain are collected in repositories. The framework user creates system
specifications by simply taking suitable process types from the framework, in-
stantiating their module parameters and composing them to a system model.
Moreover, a specification framework contains repositories of theorems. A theo-
rem is proven by the framework designer and states that an instance of a cTLA
framework process type is fulfilled by a certain subsystem consisting of other
framework process instances. The framework user can reduce a refinement proof
into proof steps which correspond directly to the framework theorems. Thus, the
verification effort is reduced to some simple checks guaranteeing that a certain
theorem can be applied in a particular proof. These checks can be automated
and tool support is available. ¢ TLA-based specification frameworks were real-
ized for telecommunication protocols [17], hazard analysis of hybrid technical
systems [20] and security proofs of component-structured software [27]. Another
framework to describe trust-based systems and trust models is under develop-
ment and will be presented elsewhere.
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