
The Power of Semidefinite Programming

Relaxations for MAX-SAT

Carla P. Gomes, Willem-Jan van Hoeve, and Lucian Leahu

Dpt. of Computer Science, Cornell University, Ithaca, NY 14853, USA
{gomes, vanhoeve, lleahu}@cs.cornell.edu

Abstract. Recently, Linear Programming (LP)-based relaxations have
been shown promising in boosting the performance of exact MAX-SAT
solvers. We compare Semidefinite Programming (SDP) based relaxations
with LP relaxations for MAX-2-SAT. We will show how SDP relaxations
are surprisingly powerful, providing much tighter bounds than LP re-
laxations, across different constrainedness regions. SDP relaxations can
also be computed very efficiently, thus quickly providing tight lower and
upper bounds on the optimal solution. We also show the effectiveness
of SDP relaxations in providing heuristic guidance for iterative variable
setting, significantly more accurate than the guidance based on LP relax-
ations. SDP allows us to set up to around 80% of the variables without
degrading the optimal solution, while setting a single variable based on
the LP relaxation generally degrades the global optimal solution in the
overconstrained area. Our results therefore show that SDP relaxations
may further boost exact MAX-SAT solvers.

1 Introduction

In recent years, we have witnessed a tremendous progress in the state-of-the-art
of encodings and algorithms for Boolean Satisfiability (SAT). For example, in
areas such as planning and finite model-checking, we are now able to solve large
SAT problems with up to a million variables and five million constraints. More
generally, SAT encodings have been shown to be very powerful in several prac-
tical domains, such as electronic design automation, AI planning, and hardware
and software verification. The key algorithmic improvements that have been in-
corporated into state-of-the-art SAT solvers have been largely based on artificial
intelligence (AI) and constraint programming (CP) techniques. For example, for
complete solvers, the underlying backtrack search strategy has been enhanced
by a series of increasingly sophisticated techniques, such as non-chronological
backtracking, fast pruning and propagation methods, nogood (or clause) learn-
ing, and more recently randomization and restarts. While we have recently seen
an increasing dialogue between the artificial intelligence (AI) and constraint pro-
gramming (CP) community and the Operations Research community concerning
the study and design of algorithms for SAT and variants, it has been surpris-
ingly difficult to integrate OR based relaxations into practical approaches for
SAT. For example, despite a significant amount of beautiful Linear Program-
ming (LP) results for SAT (see e.g., [1, 2]), practical state-of-the-art solvers do

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, pp. 104–118, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Power of Semidefinite Programming Relaxations for MAX-SAT 105

not incorporate LP relaxation techniques. The main reason seems to be the fact
that, in the case of SAT, the inference performed by LP is basically equivalent
to the inference performed by unit propagation, which is considerably less ex-
pensive than LP.1 Nevertheless, when it comes to MAX-SAT, the optimization
counterpart of SAT in which the objective is to assign values to boolean variables
maximizing the number of satisfied clauses, there seems to be a more clear role
for hybrid approaches that combine AI and OR based techniques. In fact, re-
cently Xing and Zhang [3] made an interesting contribution in the area of hybrid
approaches for MAX-SAT, showing how one can use the information provided
by linear programming to effectively compute lookahead lower bounds on the
number of clauses unsatisfiable. Joy et al ([4]) have also shown how LP-based
relaxations can be effective for MAX-2-SAT.

Another area that has received considerable attention in combinatorial op-
timization is Semidefinite Programming (SDP). In a semidefinite programming
formulation a linear function of a symmetric matrix is optimized, subject to lin-
ear equality constraints and the constraint that the matrix be positive semidefi-
nite. Semidefinite programming is a special case of convex programming and to
some extent is similar to linear programming. In particular, the simplex, ellip-
soid, and interior point methods developed for LP can be generalized to solve
SDP programs. Furthermore, the rich set of LP results in dual theory, a powerful
tool for sensitivity analysis and for computing bounds on the objective function
have also been generalized to SDP [5, 6]. Moreover, SDP has gained considerable
importance in the context of combinatorial optimization since it has been shown
that it leads to tighter relaxations than those based on LP for several com-
binatorial problems. For example, SDP has been shown to provide very good
approximations for several combinatorial problems, in particular for the stable
set problem [7], for the maximum cut problem and for MAX-SAT [8]. Approxi-
mation algorithms are procedures that provide a feasible solution in polynomial
time (see e.g. [9]). A key aspect that characterizes approximation algorithms is
the fact that they provide some guarantee on the quality of the solution. The
quality of an approximation algorithm is the maximum “distance” between its
solutions and the optimal solutions, evaluated over all the possible instances of
the problem. In a seminal paper, Goemans and Williamson [8] used SDP to ob-
tain improved approximations for the Max-Cut and the MAX-2-SAT problem.
In this work they present a randomized approximation algorithm for MAX-2-
SAT that produces solutions of expected value at least .87856 times the optimal
value. Subsequently, Feige and Goemans [10] extended this work, developing an
.931-approximation algorithm for MAX-2-SAT. In our experiments we apply the
“classical” SDP relaxation of Goemans and Williamson [8].

In this paper we study the quality of SDP based relaxations for MAX-SAT. In
particular, we are interested in comparing the power of SDP relaxations against
LP based relaxations, since LP relaxations have been shown to be useful in
speeding up practical solvers [3]. In the work reported in this paper we address

1 Unit propagation recursively sets the literals corresponding to unit clauses to true,
eliminating all the clauses in which the literal appear, until a fix-point is reached.

106 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 1 2 3 4 5 6 7 8 9 10

ra
tio

 w
ith

 r
es

pe
ct

 to
 o

pt
im

um

clause/variable ratio

optimum
upper bound (SDP objective function)

lower bound (SDP)
upper bound (LP objective function)

lower bound (LP)

Fig. 1. Lower and upper bounds based on LP and SDP relaxations

the following research questions: (1) How do the LP and SDP solutions compare
as upper bounds on the optimal solution? This is a critical question since we
can use the relaxations as admissible heuristics to prune the search space. As
we will see, in the overconstrained area, the upper bound based on the SDP
relaxation is considerably tighter than the one provided by the LP relaxation:
the upper bound provided by LP for MAX-SAT instances is always equal to the
total number of clauses, therefore not informative in the overconstrained area;
the upper bound given by the SDP relaxation is surprisingly close to the optimal
solution (within less than 3% of the real optimal value, when varying the ratio of
clauses to variables up to 10) (2) How do the assignments based on the LP and
SDP relaxations compare as lower bounds on the optimal solution? Once again
we see that the SDP relaxation outperforms the LP relaxation considerably,
especially in the overconstrained area. In fact while the SDP lower bound is
always within 1% of the optimal solution, the lower bound provided by the LP
relaxation can be as far as 18% from optimal (see figure 1). We note that the
LP solver runs faster than the SDP solver. Nevertheless, the runtimes for the
SDP solver are very good, a little over 1 second per instance, on average, for an
80 variable problem, independently of the number of clauses. We also compared
the quality of the solutions obtained from the SDP relaxation as a lower bound
on the optimal solution against Walksat, one of the best performing local search
methods for MAX-SAT. We gave Walksat about 5 minutes per instance (note
that the SDP solver takes less than 2 seconds per instance). Interestingly, as the
instances become more and more overconstrained, the SDP solutions become
better than those provided by Walksat. Furthermore, because Walksat is a local
search solver, it does not provide an upper bound on the optimal solution, a
key aspect of the SDP relaxation. (3) To what extent the relaxations provide a
global perspective of the search space and therefore to what extent they can be

The Power of Semidefinite Programming Relaxations for MAX-SAT 107

used as heuristics to guide a complete solver? In order to address this issue we
performed the following experiment: set the X highest values suggested by the
LP/SDP relaxation; check if the optimal value of the resulting instance is still
the same as the original optimal value. Once again the SDP relaxation clearly
outperforms the LP relaxation. In fact, in the overconstrained area, the setting
of a single value dictated by the LP relaxation generally results in a value for the
optimal solution lower than the original value. The SDP relaxation on the other
hand is much more robust: We can set up to an average of 84% of variables based
on the SDP suggestions, without changing the value of the optimal solution.
This result suggests that the SDP relaxation can be a very valuable heuristic for
setting variable values in a backtrack search strategy.

2 Preliminaries

The Boolean satisfiability problem (SAT) is a decision problem at the core of
complexity theory, artificial intelligence, logic and hardware design and verifica-
tion. We consider the problem in conjunctive normal form (CNF). A formula F
in CNF is a conjunction of clauses, where each clause is a disjunction of literals.
Each literal is a logical variable (x) or its negation (x̄). The SAT problem is to
determine whether there exists a variable assignment that makes the formula
true (i.e., each clause is true). k-SAT represents the satisfiable problem where
the clauses are constrained to have the length equal to k.

MAX-SAT is the optimization version of SAT. Given a formula we want to
maximize the number of simultaneously satisfied clauses. Given an algorithm for
MAX-SAT we can solve SAT, but not viceversa, therefore MAX-SAT is more
complex than SAT. The distinction becomes obvious when considering the case
when the clauses are restricted to two literals per clause (2-SAT): 2-SAT is
solvable in linear time, while MAX-2-SAT is NP-hard [11].

Given the importance of the problem, the complexity of SAT has received
much attention. Previous results show easy-hard-easy patterns in terms of the
problem hardness, as a function of the clause/variable ratio (C/V). Furthermore,
phase-transition phenomena have been reported with respect to satisfiability
(i.e., a sudden change from many satisfiable instances to none). For instance, for
2-SAT this phase transition has been proven to occur when C/V is 1 [12].

Recently there have been promising results when using LP for MAX-SAT, af-
ter several unsuccessful efforts to apply integer LP to MAX-SAT (e.g.,[1, 4]).
Xing and Zhang developed MaxSolver ([3]), an efficient exact algorithm for
(weighted) MAX-SAT. Their solver uses a DPLL-based branch and bound algo-
rithm and it successfully uses a lookahead LP lower bound. This lower bound is
only applied to the nodes that have unit clauses, to avoid fractional values equal
to 1/2 (in the case of MAX-2-SAT). MaxSolver also incorporates existing and
novel unit propagation rules, a binary-clause first rule and a dynamic-weighting
variable ordering rule.

SDP relaxations have also been deployed for the MAX-2-SAT problem. Fol-
lowing the randomized polynomial time algorithm of Goemans and Williamson
[8] which had an approximation ratio of 0.87856, there has been a series of

108 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

theoretical results improving this approximation ratio. The most recent improve-
ment is a 0.940-approximation algorithm [13]. A thorough survey of SDP-based
approximation algorithms for the MAX-SAT problem is presented in [14]. See
[15] for interesting results on the SDP for the so-called 2+p-SAT problem.

3 LP and SDP Formulations for MAX-SAT

3.1 LP Formulation

We consider the following ILP formulation for the MAX-SAT problem from [16].
With each clause Cj we associate a variable zj ∈ {0, 1}. 1 corresponds to the
clause being satisfied and 0 to the clause not being satisfied. For each variable
xi we associate a corresponding variable yi in the ILP. yi can take the values 0
and 1, corresponding to xi being false or true, respectively. Let C+

j be the set of
indices of positive literals that appear in clause Cj , and C−

j be the set of indices
of negative literals (i.e., complemented variables) that appear in clause Cj . The
problem can be formally stated as follows:

max
m∑

j=1

zj

subject to ∑

i∈C+
j

yi +
∑

i∈C−
j

(1 − yi) ≥ zj, ∀j

where
yi, zj ∈ {0, 1}, ∀i, j.

The formulation ensures that a clause is true only if at least one of the vari-
ables that appear in the clause has the value 1. Since, we want to maximize∑m

j=1 zj and zj can be set to 1 only when clause Cj is satisfied, it follows that
the objective function counts the number of satisfied clauses. By relaxing the
integrality constraint, we obtain an LP relaxation for the MAX-SAT problem.
This ILP formulation is equivalent to the ILP used in [3] to compute the lower
bound and to the ILP solved at each node by the MAX-SAT branch and cut
algorithm in [4].

It is interesting to note that there exists a trivial way to satisfy all the clauses:
setting each variable yi to 0.5. Using this assignment, the sum of literals for each
clause is exactly 1, hence the clause can be satisfied and the objective function is
equal to the number of clauses. The value 0.5 is not at all informative, lying half
way between 0 and 1, it gives no information whether the corresponding Boolean
variable should be set to true or false. As the problem becomes more constrained
(i.e., the number of clauses increases) the corresponding 2-SAT problem is very
likely to be unsatisfiable, hence any variable assignment different than 0.5 would
lead to a less than optimal objective value. Naturally, the LP solver finds the
highest possible objective value (i.e., the number of clauses) when setting all
variables to 0.5.

The Power of Semidefinite Programming Relaxations for MAX-SAT 109

3.2 Semidefinite Programming

In this section we briefly introduce semidefinite programming. A large number of
references to papers concerning semidefinite programming are on the web pages
of Helmberg2 and Alizadeh3. A general introduction to semidefinite program-
ming applied to combinatorial optimization is given in e.g. [6].

Semidefinite programming makes use of positive semidefinite matrices of vari-
ables. A matrix X ∈ R

n×n is said to be positive semidefinite (denoted by X � 0)
when yTXy ≥ 0 for all vectors y ∈ R

n. Semidefinite programs have the form

max tr(WX)
s.t. tr(AjX) ≤ bj (j = 1, . . . , m)

X � 0.
(1)

Here tr(X) denotes the trace of X , which is the sum of its diagonal elements, i.e.
tr(X) =

∑n
i=1 Xii. The matrix X , the cost matrix W ∈ R

n×n and the constraint
matrices Aj ∈ R

n×n are supposed to be symmetric. The m reals bj and the m
matrices Aj define m constraints.

We can view semidefinite programming as an extension of linear program-
ming. In particular, when the matrices W and Aj (j = 1, . . . , m) are all diagonal
matrices4, the resulting semidefinite program is equal to a linear program, where
the matrix X is replaced by a non-negative vector of variables x ∈ R

n. In par-
ticular, then a semidefinite programming constraint tr(AjX) ≤ bj corresponds
to a linear programming constraint aT

j x ≤ bj, where aj represents the diagonal
of Aj .

Theoretically, semidefinite programs have been proved to be polynomially
solvable to any fixed precision using the so-called ellipsoid method (see for in-
stance [7]). In practice, nowadays fast ‘interior point’ methods are being used
for this purpose (see [5] for an overview).

3.3 Semidefinite Relaxation for MAX-2-SAT

We applied the semidefinite relaxation of MAX-2-SAT proposed by Goemans
and Williamson [8]. The relaxation follows from a quadratic programming for-
mulation of MAX-2-SAT. We first introduce this integer quadratic program.

Let the MAX-2-SAT problem consist of boolean variables x1, x2, . . . , xn and
a set of clauses C on these variables. To each variable xi (i = 1, . . . , n), we
associate a variable yi ∈ {−1, 1}. Moreover, we introduce a variable y0 ∈ {−1, 1}.
We define xi to be true if and only if yi = y0, and false otherwise.

Next, we express the truth value of a boolean formula in terms of its variables.
Given a formula c, we define its value, denoted by v(c), to be 1 if the formula is
true, and 0 otherwise. Hence,

v(xi) =
1 + y0yi

2
2 http://www-user.tu-chemnitz.de/˜helmberg/semidef.html
3 http://new-rutcor.rutgers.edu/˜alizadeh/sdp.html
4 A diagonal matrix is a matrix whose non-diagonal entries are zero.

110 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

gives the value of a boolean variable xi as defined above. Similarly,

v(xi) = 1 − v(xi) =
1 − y0yi

2
.

Hence, the value of the formula xi ∨ xj can be expressed as

v(xi ∨ xj) = 1 − v(xi ∧ xj) = 1 − v(xi)v(xj) = 1 − 1 − y0yi

2
1 − y0yj

2

=
1 + y0yi

4
+

1 + y0yj

4
+

1 − yiyj

4
.

The value of other clauses can be expressed similarly. If a variable xi is negated
in a clause, then we replace yi by −yi in the above expression.

Now we are ready to state the integer quadratic program for MAX-2-SAT:

max
∑

c∈C

v(c)

s.t. yi ∈ {−1, 1} ∀i ∈ {0, 1, . . . , n}.
(2)

It is convenient to rewrite this program as follows. We introduce an (n+1)×(n+1)
matrix Y , such that entry Yij represents yiyj (we index the rows and columns
of Y from 0 to n). Then program (2) can be rewritten as

max tr(WY)
s.t. Yij ∈ {−1, 1} ∀i, j ∈ {0, 1, . . . , n}, i 	= j,

(3)

where W is an (n + 1) × (n + 1) matrix representing the coefficients in the
objective function of (2). For example, if the coefficient of yiyj is wij , then
Wij = Wji = 1

2wij .
The final step consist in relaxing the conditions Yij ∈ {−1, 1} by demanding

that Y should be positive semidefinite and Yii = 1 ∀i ∈ {0, 1, . . . , n}. Hence, the
semidefinite relaxation of MAX-2-SAT is given by the following program

max tr(WY)
s.t. Yii = 1 ∀i ∈ {0, 1, . . . , n},

Y � 0.
(4)

Program (4) provides an upper bound on the solution to MAX-2-SAT problems.
Furthermore, the values Y0i, representing y0yi, correspond to the original boolean
variables xi (i = 1, . . . , n). Namely, if Y0i is close to 1, variable xi is “close to
true”. Similarly, if Y0i is close to −1, variable xi is “close to false”.

Example 1. Consider the MAX-2-SAT problem on the variables x1 and x2, with
one clause x1 ∨ x2. The semidefinite relaxation is

max 3
4 + 1

4Y01 − 1
4Y02 + 1

4Y12

s.t. Yii = 1 (i = 0, 1, 2)
Y � 0.

The Power of Semidefinite Programming Relaxations for MAX-SAT 111

An optimal solution is

Y =

⎡

⎣
1.0 0.5 −0.5
0.5 1.0 0.5
−0.5 0.5 1.0

⎤

⎦

with objective value 1.125, which is larger than 1, the number of clauses.
The suggestion made by this relaxation is Y01 = 0.5 and Y01 = −0.5. This

corresponds to “x1 close to true” and “x2 close to false”. Indeed, this leads to
an optimal solution for the MAX-2-SAT problem.

Example 1 shows that the solution to the semidefinite relaxation may overestimate
the actual solution value. In this particular case it is even higher than the number
of clauses. Moreover, the fractional solution values are quite far from integrality
in this example. In practice however, we will see that the semidefinite relaxation
provides surprisingly tight bounds and near-integral values for the variables.

An interesting aspect of program (4) is that the problem instance is entirely
encapsulated in the objective function. Hence, the solution process is likely to
be independent of the number of clauses, because the model size remains con-
stant for a given number of variables. This is an important property when such
relaxations need to be applied in practice.

4 Experimental Setup and Results

We have used random MAX-2-SAT instances generated by Selman’s MWFF
package [17]. For our experiments, we have solved the LP relaxation using ILOG
CPLEX libraries. For the semidefinite relaxation we have used the solver CSDP,
version 5.0 [18]. To compute the optimum value for the MAX-2-SAT instances,
we used MaxSolver, the complete solver from [3].

4.1 Quality and Fractionality of Relaxations

We begin by examining the objective value of the LP and SDP relaxations across
different constraindness regions of the problem. We examine MAX-2-SAT in-
stances for 80 variables, varying the C/V ratio from 0.5 to 10. We also solve
the instances with a complete solver [3]. (The LP and SDP relaxation can be
computed for much higher numbers of variables. However the need for an exact
solution limits us to around 80 variables.) The left plot in Figure 2 depicts the
median objective value returned by the LP and SDP relaxation versus the median
value returned by the MAX-2-SAT solver (bottom curve), as a function of the
C/V ratio. Unless otherwise noted, each data point in all the plots corresponds
to the median of 100 instances. Since both the LP and the SDP solve a relaxed
version of the problem, the objective value is overestimated, and therefore the
relaxations provide upper bounds on the optimal solution. We have shown in
section 3.1 that we can always find an assignment which makes the objective
value of the LP relaxation equal to the number of clauses, hence in the plot the
fraction of satisfiable clauses is always 1. While the LP relaxation provides no

112 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

information about the true solution to the problem, the SDP relaxation follows
closely the behavior of the curve corresponding to the maximum fraction of sat-
isfiable instances.5 Hence, the SDP relaxation is able to adapt to the difficulty of
the instances and provides a meaningful upper bound on the maximum number
of satisfiable clauses (especially as C/V increases).

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

Objective Value for n=80

SDP
complete solver

LP

 0.01

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9 10

se
co

nd
s

-
lo

gs
ca

le

clause/variable ratio

Running Time LP vs SDP vs MAXSAT for n=80

SDP
complete solver

LP

(a) (b)

Fig. 2. (a) Objective value of the LP and SDP relaxations vs. optimum solution for
different C/V values. (b) Runtime of the LP and SDP relaxations vs. the MAX-2-SAT
solver in [3].

The plot on the right depicts the runtime in seconds of the two relaxations
versus the MAX-2-SAT solver. The point of this plot is to observe whether the
relaxations are affected by the C/V ratio. We first note that the runtime of the
two relaxations is hardly affected by the constraindness of the problem, while
the runtime of the MAX-2-SAT solver grows exponentially in the C/V ratio (the
plot’s y axis is a logarithmic scale). Naturally, the complete solver requires much
more time in the over-constrained region, as it has to prove optimality of the
found solution. The LP relaxation is computationally the least expensive across
the board, except for the under-constrained region, where the problem is easy
and the complete solver is able to quickly examine the search space.

In order to understand what enables the SDP relaxation to be more informed
than the LP relaxation, we continue by studying the fractionality of the values
returned by the two relaxations. Figure 3 plots the distribution of these values, in
intervals of length 0.1 from 0 to 1 for the LP relaxation and from −1 to 1 for the
SDP relaxation averaged over all instances (C/V ratio varying from 0.5 to 10).
The ends of the two intervals correspond to the Boolean values false and true,
respectively. The closeness of a value to one of the ends can be interpreted as the
“confidence” of the relaxation that the corresponding Boolean variable should be
set to true/false. We observe that the LP relaxation only sets variables to three
values: 0, 1 and 0.5. 0 and 1 correspond to false and true, respectively, however
5 Note that SDP can provide an objective value greater than the number of clauses;

in those cases, for obvious reasons, we consider the number of clauses in the formula
as the upper bound on the optimal value.

The Power of Semidefinite Programming Relaxations for MAX-SAT 113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
ac

tio
n

of
 v

ar
ia

bl
es

LP value

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
ac

tio
n

of
 v

ar
ia

bl
es

SDP value

(a) (b)

Fig. 3. Distribution of the values returned by the (a) LP and (b) SDP relaxation
(averaged over instances with C/V ranging from 0.5 to 10)

0.5 gives us no information as to what should be assigned to the corresponding
Boolean value. In contrast, the majority of values returned by the SDP relaxation
are concentrated towards the ends of the interval [−1, 1], thus suggesting more
informed guidance about the way the variables should to be set.

To further describe the fractionality of the relaxations we examine them across
different constraindness regions. Figure 4 a) plots the fraction of variables that
are equal to 0.5 after solving the LP relaxation. In the under-constrained region
(i.e., low clause/variable ratio) the fraction is 0, then as we pass the C/V = 1
point, the percentage goes up, and it approaches 1 (i.e., all variables) as the
problem becomes over-constrained.

Similarly, figure 4a) plots the fraction of SDP variables whose values lie in
the neighborhood of 0. We represent the fraction of variables equal to 0 and also
those variables whose absolute value lies in the interval (0, 0.1]. In the under-
constrained region the fraction of variables set to 0 is very high (close to 0.8).
As we add more clauses this fraction sharply decreases and stabilizes at 0. These
variables correspond to boolean variables that do not appear in the formula,
hence the high fraction of such variables in the under-constrained region.

Figure 4b) plots the fraction of high confidence variables. For LP (variables
having the value 0 or 1) we see a significant change around C/V = 1 and then
the fraction decreases all the way to 0. (in fact this curve is the complement
of the curve representing the variables set to 0.5 by LP). For SDP we plot the
fraction of variables that are greater than 0.7 in absolute value. This fraction
is low in the under-constrained region (as most of the variables are set to 0 as
explained above) and it goes up to roughly half the variables as the problem
becomes more constrained.

The plots demonstrate that the two relaxations examined behave very differ-
ently across the constraindness regions. As the problem gets harder (i.e., more
constrained) the LP relaxation “defaults” to an uninformative assignment (all
variables are assigned 0.5). In contrast, the SDP relaxation provides a good up-
per bound on the optimal solution (see Figure 2 and 1), with runtimes below 2

114 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 v

ar
ia

bl
es

clause/variable ratio

LP value = 0.5
SDP value = 0

SDP value in [-0.1, 0) or (0, 0.1]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 v

ar
ia

bl
es

clause/variable ratio

LP value = 0 or 1
absolute SDP value > 0.7

(a) (b)

Fig. 4. a) Fraction of variables having the value a) 0.5 computed by LP and 0 or
smaller than 0.1 in absolute value computed by SDP and b) 0 or 1 computed by the
LP relaxation and above 0.7 in absolute value by the SDP relaxation

seconds per run. Furthermore, the SDP values assigned to the Boolean variables
are less fractional than those delivered by LP (Figure 3) and therefore can be
used more effectively as heuristics, as we will see in the next section.

4.2 SDP and LP as a Backtrack Search Heuristic

Related to the fractionality of the SDP relaxation is the question of whether
the SDP relaxation provides a good global perspective of the search space and
therefore could be used as a heuristic by MAX-SAT solvers. To test the heuristic
power of SDP we used the following method:

Algorithm 1. SDP-based Heuristic
Input: a MAX-2-SAT instance and x (the number of variables to be set using the
SDP relaxation).

Step 1: solve the SDP relaxation.
Step 2: set x variables to the value suggested by the SDP relaxation6.
Step 3: given the (partial) assignment of variables from step 2, compute the

MAX-2-SAT for the original instance s.t. the maximizing assignment extends this
partial assignment.
Output: the maximum number of sat clauses.

To put into perspective the heuristic power of the SDP relaxation, we compare
it to that of the LP relaxation. The following method was used:

Algorithm 2. LP-based Heuristic
Input: a MAX-2-SAT instance and x (the number of variables to be set using the
LP relaxation).

Step 1: solve the LP relaxation.

6 We consider variables in decreasing order of their absolute value.

The Power of Semidefinite Programming Relaxations for MAX-SAT 115

Step 2: set x variables to the value suggested by the LP relaxation7.
Step 3: given the (partial) assignment of variables from step 2, compute the

MAX-2-SAT for the original instance s.t. the maximizing assignment extends this
partial assignment.
Output: the maximum number of sat clauses8.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5 6 7 8 9 10

ab
so

lu
te

 v
al

ue

clause/variable ratio

Maximum Value of the SDP relaxation
 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

set all variables to SDP assignment
MAX 2-SAT solver

set all variables to LP assignment
0.940

(a) (b)

Fig. 5. a) The maximum value returned by the SDP relaxation and b) the heuristic
power of SDP vs LP

Figure 5 a) plots the maximum absolute variable value returned by the SDP
relaxation as we increase the constraidness of the problem. Given the fact that
this value is very close to 1 and the high density of variables having high “con-
fidence” level, the following experiments are justified. In the first experiment
conducted, we set all the variables (x = n) to the value suggested by the re-
laxations and then we report the number of satisfied clauses. Figure 5 b) shows
the results for the two relaxations versus the MAX-SAT value. Each data point
corresponds to the median of 100 instances. The SDP performance is quite im-
pressive, as it stays very close to the optimum across the board. When using the
LP relaxation the performance degrades significantly as the problem becomes
more constrained. The SDP’s heuristic power does not seem to be affected by
the constraindness of the problem. We have also included in figure 5 b) the curve
corresponding to the best theoretical guarantee for an SDP based approximation
algorithm (i.e., 0.940-approximation [13]). The results in figure 5, show that on
random instances an algorithm using our SDP heuristic comes on average within
0.99 of the optimum. Thus, for most cases, when an estimate of the MAX-2-SAT
solution is needed, simply setting the values suggested by the SDP relaxation
should be a good heuristic.
7 First consider the variables that were set to 0 or 1 by the LP relaxation and set the

corresponding Boolean variables to false or true, respectively. If we exhaust all such
variables, we consider variables that are 0.5 and randomly set the corresponding
variable to true or false. Note that LP only assigns 0, 1, and 0.5 values to variables.
Since the procedure is randomized we perform it many times for one instance.

8 Because we perform the variable setting several times for every input instance, we
return the median.

116 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

We also varied the number of variables set (x) between 0 and n and studied
the effect on the maximum number of satisfiable clauses. We discovered that
the median maximum number of satisfiable clauses when using SDP remains the
same as the optimum, when we set up to 84% of the variables (i.e., 42 variables
for n=50). It is at this point that we observe a slight change in performance –
see figure 6 a).

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

SDP
LP

optimum

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

optimum value / setting 1, 5, 10 variables with SDP
setting 1 variable with LP

setting 5 variables with LP
setting 10 variables with LP

(a) (b)

Fig. 6. Change in the number of satisfied clauses as we set a) 84% of the variables and
b) 1, 5 and 10 variables using the LP and SDP

Once again, we compared SDP with LP and observed that when using LP the
performance starts degrading even after setting just 1 variable and it continues
to drop as we increase x (figure 6 b)). In contrast, SDP makes no mistakes
when setting 1 and 2 variables and we have found just one instance (in over
2000 random instances) for x = 3, where the maximum number of satisfied
clauses decreased by 1. For x = 10, the number of instances where the SDP
suggestion is sub-optimal is four. These results show that the SDP relaxation
is very informed and by following the SDP suggestion we remain very close to
optimal performance.

In section 4.1 we showed that the objective function of the SDP relaxation
provides a good upper bound for MAX-2-SAT. We test the potential of the SDP
relaxation to provide a lower bound, by using the SDP relaxation to set all
variables and we compare it to Walksat [19]. We ran Walksat with a cutoff of
108 flips. The average Walksat runtime was approximately five minutes, while
the SDP relaxation was computed in approximately 1 second. The results are
presented in figure 7. The plot on the left side depicts the upper bound, lower
bound, optimum value and Walksat value for the C/V ratio ranging from 0.5
to 10. We note that the curves are very close to each other, but Walksat still
provides a better lower bound. In the plot on the right side, as we increase the
C/V ratio up to 100, we see that SDP outperforms Walksat, namely it provides
a better bound, using considerably less time (recall from section 4.1 that the
runtime for the SDP relaxation does not depend on the C/V ratio).

Given these very promising results for the guiding power of the SDP relax-
ation, we believe that the performance of MAX-SAT solvers could be further

The Power of Semidefinite Programming Relaxations for MAX-SAT 117

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

upper bound (SDP objective function)
Walksat
optimum

lower bound (SDP)

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 20 30 40 50 60 70 80 90 100

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

upper bound (SDP objective function)
Walksat

lower bound (SDP)

(a) (b)

Fig. 7. SDP vs Walksat as a lower bound.

improved by incorporating the information provided by the SDP relaxation, for
instances in the over-constrained region, where the time required to compute
the SDP relaxation is considerably smaller than the time needed by the current
MAX-SAT solvers (see figure 2 b)).

5 Conclusions and Future Work

In this paper we show how SDP relaxations are surprisingly powerful, provid-
ing much tighter bounds than LP relaxations, across different constrainedness
regions. SDP relaxations can also be computed very efficiently, thus quickly pro-
viding tight lower and upper bounds on the optimal solution. We also show that
heuristic guidance based on the SDP relaxation for iterative variable setting is
significantly more accurate than the guidance based on the LP relaxation. SDP
allows us to set up to around 84% of the variables without degrading the optimal
solution, while setting a single variable based on the LP relaxation generally de-
grades the global optimal solution in the overconstrained area. We also compared
SDP against Walksat: Interestingly, as the instances become more and more con-
strained, the lower bound provided by the SDP relaxation outperforms Walksat.
The SDP relaxation runs much faster than Walksat. (We allocated 5 minutes
per run for Walksat while SDP took less than 2 seconds per run.) Furthermore,
Walksat has the limitation of not providing upperbounds. In our experiments, the
SDP upper bound is always less than 3% above the optimal solution. Our results
therefore show that SDP relaxations may further boost exact MAX-SAT solvers.

References

1. Hooker, J.N., Fedjiki, C.: Branch-and-cut solution of inference problems in propo-
sitional logic. Annals of Math. and Artificial Intelligence 1 (1990)

2. Warners, J.: Nonlinear approaches to satisfiability problems. PhD thesis, Technis-
che Universiteit Eindhoven (1999)

118 C.P. Gomes, W.-J. van Hoeve, and L. Leahu

3. Xing, Z., Zhang, W.: Maxsolver: An efficient exact algorithm for (weighted) max-
imum satisfiability. Artificial Intelligence 164(1-2) (2005) 47–80

4. Joy, S., Mitchell, J., Borchers, B.: A branch and cut algorithm for MAX-SAT and
weighted MAX-SAT. Satisfiability Problem: Theory and Applications 35 (1997)
519–536

5. Alizadeh, F.: Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM Journal on Optimization 5(1) (1995) 13–51

6. Goemans, M., Rendl, F.: Combinatorial Optimization. In Wolkowicz, H., Saigal,
R., Vandenberghe, L., eds.: Handbook of Semidefinite Programming. Kluwer (2000)
343–360

7. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. John Wiley & Sons (1988)

8. Goemans, M., Williamson, D.: Improved Approximation Algorithms for Maximum
Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the
ACM 42(6) (1995) 1115–1145

9. Hochbaum, D.S.: (Editor) Approximation algorithms for NP-Hard problems. PWS
Publishing Company (1997)

10. U. Feige and M. Goemans: Approximating the value of two prover proof systems,
with applications to max2sat and max dicut. In: Proceedings of the 3rd Israel
Symposium on Theory of Computing and Systems. (1995)

11. Garey, M., Johnson, D.: Computers and Intractibility. Freeman (1979)
12. Chvátal, V., Reed, B.: Mike gets some (the odds are on his side). In: 33th Annual

Symposium of Foundations of Computer Science. (1992) 620–627
13. Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the MAX

2-SAT and MAX DI-CUT problems. In: IPCO. (2002) 67–82
14. Anjos, M.: Semidefinite optimization approaches for satisfiability and maximum-

satisfiability problems. Journal on Satisfiability, Boolean Modeling and Computa-
tion 1 (2005) 1–47

15. de Klerk, E., van Maaren, H.: On semidefinite programming relaxation of 2+p-sat.
Annals of Math. and Artificial Intelligence 37 (2003)

16. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

17. Selman, B.: Mwff - a program for generating random MAX k-SAT instances. (1993)
18. Borchers, B.: A C Library for Semidefinite Programming. Optimization Methods

and Software 11(1) (1999) 613–623
http://www.nmt.edu/~borchers/csdp.html.

19. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing
(1996)

	Introduction
	Preliminaries
	LP and SDP Formulations for MAX-SAT
	LP Formulation
	Semidefinite Programming
	Semidefinite Relaxation for MAX-2-SAT

	Experimental Setup and Results
	Quality and Fractionality of Relaxations
	SDP and LP as a Backtrack Search Heuristic

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

