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Abstract. Let Δ ≥ 1 and δ ≥ 0 be real numbers. A tree T = (V, E′) is
a distance (Δ, δ)–approximating tree of a graph G = (V, E) if dH(u, v) ≤
Δ dG(u, v) + δ and dG(u, v) ≤ Δ dH(u, v) + δ hold for every u, v ∈ V .
The distance (Δ, δ)-approximating tree problem asks for a given graph
G to decide whether G has a distance (Δ, δ)-approximating tree. In this
paper, we consider unweighted graphs and show that the distance (Δ, 0)-
approximating tree problem is NP-complete for any Δ ≥ 5 and the dis-
tance (1, 1)-approximating tree problem is polynomial time solvable.

1 Introduction

Many combinatorial and algorithmic problems are concerned with distances in
a finite metric space induced by an undirected graph (possible weighted). An
arbitrary metric space (in particular a finite metric defined by a general graph)
might not have enough structure to exploit algorithmically. A powerful technique
that has been successfully used recently in this context is to embed the given
metric space in a simpler metric space such that the distances are approximately
preserved in the embedding. New and improved algorithms have resulted from
this idea for several important problems [1, 2, 7, 11, 12, 20]. Tree metrics are a very
natural class of simple metric spaces since many algorithmic problems become
tractable on them. If we approximate the graph by a tree such that the distance
between a pair of vertices in the tree is at most some small factor of their distance
in the graph, we can solve the problem on the tree and the solution interpret on
the original graph.

Approximating general graph–distance dG by a simpler distance (in particu-
lar, by tree–distance dT ) is useful also in such areas as communication networks,
data analysis, motion planning, image processing, network design, and phyloge-
netic analysis. The goal is, for a given graph G = (V, E), to find a sparse graph
H = (V, E′) with the same vertex set, such that the distance dH(u, v) in H
between two vertices u, v ∈ V is reasonably close to the corresponding distance
dG(u, v) in the original graph G. There are several ways to measure the quality
of this approximation, two of them leading to the notion of a spanner. For t ≥ 1
a spanning subgraph H of G is called a multiplicative t–spanner of G [9, 23, 24]
if dH(u, v) ≤ t dG(u, v) for all u, v ∈ V. If r ≥ 0 and dH(u, v) ≤ dG(u, v) + r for
all u, v ∈ V, then H is called an additive r–spanner [19].

When H is a tree, one gets the notions of multiplicative tree t–spanner and
additive tree r–spanner, respectively. Tree spanners of graphs were considered
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in [6, 10, 25]. It was shown in [6] that for a given graph G and integer t, the
problem to decide whether G has a multiplicative tree t–spanner is NP–complete
for t ≥ 4 and is linearly solvable for t = 1, 2. The status of the case t = 3 is
open.

For many applications (e.g. in numerical taxonomy or in phylogeny recon-
struction) the condition that H must be a spanning subgraph of G can be
dropped (see [3, 26, 27]). In this case there is a striking way to measure how
sharp dH approximates dG, based on the notion of a pseudoisometry between
two metric spaces [20, 4]. Let Δ ≥ 1 and δ ≥ 0 be real numbers. Two graphs
G = (V, E) and H = (V, E′) are said to be (Δ, δ)–pseudoisometric [4] if for all
u, v ∈ V , dH(u, v) ≤ Δ dG(u, v) + δ and dG(u, v) ≤ Δ dH(u, v) + δ hold. H is
then said to be a distance (Δ, δ)–approximating graph for G (and vice-versa, G
is a distance (Δ, δ)–approximating graph for H).

In this paper, continuing the line of research started in [4, 8], we will be
interested in two special cases, when H is a tree and either Δ = 1 or δ = 0.
A tree T = (V, E′) is a distance (Δ, 0)–approximating tree of G = (V, E) if
1
ΔdG(u, v) ≤ dT (u, v) ≤ Δ dG(u, v) for all u, v ∈ V . A tree T = (V, E′) is
a distance (1, δ)–approximating tree of G = (V, E) (or, simply, a distance δ-
approximating tree of G) if |dG(u, v)−dT (u, v)| ≤ δ for all u, v ∈ V. The distance
(Δ, δ)-approximating tree problem asks for a given graph G to decide whether G
has a distance (Δ, δ)-approximating tree.

In this paper, we consider unweighted graphs and show that the distance
(Δ, 0)-approximating tree problem is NP-complete for any Δ ≥ 5 and the dis-
tance (1, 1)-approximating tree problem is polynomial time solvable. The lat-
ter solves (algorithmically) the problem posed in [8] which asked to character-
ize/recognize the graphs admitting distance (1, 1)-approximating trees.

1.1 Previous Results and Their Implications

Let G = (V, E) be a connected, undirected, loopless, and without multiple edges
graph. The length of a path from a vertex u to a vertex v is the number of edges
in this path. The distance dG(u, v) between the vertices u and v in G is the
length of a shortest (u, v)-path.

A graph G is called chordal if no induced cycle of G has four or more edges. It
is known that the class of chordal graphs does not admit any good tree spanners.
Independently McKee [21] and Kratsch et al. [16] showed that, for every fixed
integer t, there is a chordal graph without tree t–spanners (additive as well as
multiplicative). Furthermore, recently Brandstädt et al. [5] have shown that, for
any t ≥ 4, the problem to decide whether a given chordal graph G admits a
multiplicative tree t-spanner is NP-complete.

In contrast, in [4], Brandstädt et al. proved that every chordal graph G ad-
mits a tree T (G) (constructable in linear time) which is both a (3, 0)− and a
(1, 2)−approximating tree of G. So, from the metric point of view chordal graphs
do look like trees, but the notion of tree spanners failed to capture this. Note
that the result is optimal in the sense that there are chordal graphs which do
not admit any distance (1, 1)–approximating trees [8].
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The result was used in [4, 8, 13] to provide efficient approximate solutions for
several problems on chordal graphs. It is known that the (exact) distance matrix
D(G) of a chordal graph G = (V, E) cannot be computed in less than “matrix-
multiplication” time. Using a distance (1, 2)-approximating tree T (G) of G, after
a linear time preprocessing of G (and then of T (G)), in only O(1) time, one can
compute dG(x, y) with an error of at most 2 for any x, y ∈ V (see [4] for further
details). As another application, consider the p-center problem: given a graph
G (or, more generally, a metric space) and an integer p > 0, we are searching
for smallest radius r∗ and a subset of vertices X of G with |X | ≤ p such that
dG(v, X) ≤ r∗ for every vertex v of G. The problem is NP-hard even for chordal
graphs. Solving the p-center problem on a distance (1, 2)-approximating tree
T (G) of G (on trees this problem is polynomial time solvable [15]), we will find
an optimal covering radius r of T (G) and a set of centers Y with |Y | ≤ p. Then,
Y can be taken as an approximate solution for G since dG(v, Y ) ≤ r+2 ≤ r∗ +4
for all v ∈ V (see [8] for further details). Clearly, similar results can be obtained
for any graph admitting a good distance approximating tree.

The result was also used by Gupta in [13] for bandwidth approximation in
chordal graphs. If a graph G has a distance (Δ, δ)–approximating tree T (G) for
some constants Δ and δ, then the bandwidth of a linear arrangements of G will
be within some constant of the bandwidth of the same arrangement for T (G).
Gupta developed in [13] a simple randomized O(log2.5n)-approximation algo-
rithm for bandwidth minimization on trees and used it to get an approximation
algorithm with a similar performance guarantee for chordal graphs (see [13] for
further details). In [18], Krauthgamer et al. used the existence of good distance
approximating trees for chordal graphs to obtain an embedding of any chordal
graph into l2 with a small r-dimensional volume distortion.

Later, in [8], Chepoi and Dragan extended the method of [4] from chordal
graphs to all k-chordal graphs. A graph G is said to be k-chordal if no induced
cycle of G has more than k edges. It was proven that, for every k-chordal graph
G = (V, E), there exists a tree T = (V, F ) (constructable in linear time) such
that |dG(u, v) − dT (u, v)| ≤ �k

2 � + α for all vertices u, v ∈ V, where α = 1 if
k �= 4, 5 and α = 2 otherwise. Clearly, this result can be used to provide efficient
approximate solutions for several problems on k-chordal graphs. Here, we will
mention only one implication provided in [17]. Krauthgamer and Lee, in [17],
proved first that the Levin’s conjecture on intrinsic dimensionality of graphs
holds for trees. Then, relying on low-distortion embeddings of k-chordal graphs
into trees, due to [8], they extended that result to all k-chordal graphs: the
Levin’s conjecture on intrinsic dimensionality of graphs holds for all k-chordal
graphs with bounded k (see [17] for further details).

Motivated by those applications of distance approximating trees, in this paper,
we investigate the question how hard for a given graph G to find a good distance
(Δ, δ)-approximating tree (for small Δ and δ). We prove that the distance (Δ, 0)-
approximating tree problem is NP-complete for any Δ ≥ 5 and the distance
(1, 1)-approximating tree problem is polynomial time solvable. Due to space
limitation, in this conference version, we present only the second result. The



Distance Approximating Trees: Complexity and Algorithms 263

NP-completeness proof will be given in the journal version. We reduce 3SAT to
our problem. The reduction is too technical, involves complicated gadgets for
the Boolean variables and hence omitted in this version.

1.2 Basic Notions, Notation and Facts

Let G = (V, E) be a graph endowed with the shortest path metric dG(u, v). The
eccentricity eccG(v) of a vertex v is the maximum distance from v to any vertex
in G. The radius rad(G) of a graph G is the minimum eccentricity of a vertex
in G and the diameter diam(G) of G is the maximum eccentricity of a vertex.

For a subset S ⊆ V of vertices of a graph G, by G(S) we denote the subgraph
of G induced by S. Let, for simplicity, G − v := G(V \ {v}) and G − v − u :=
G(V \ {v, u}), where v and u are vertices of G. Let also G−uv denote the graph
obtained from G by removing edge uv of G, i.e., G−uv := (V, E\{uv}). A graph
G is said to be 3-connected if G − u − v is connected for any pair of vertices
u, v ∈ V . A graph G is said to be 2-connected if G − u is connected for any
vertex u ∈ V . In a 2-connected graph G, if for some pair of vertices x, y ∈ V the
graph G − x − y is disconnected, then we say that {x, y} is a 2-cut of G. In a
connected graph G, if for some vertex x ∈ V the graph G − x is disconnected,
then we say that x is a 1-cut vertex (or, simply, 1-cut) of G.

It is easy to see from the definitions of distance approximating trees that the
following holds.

– A tree T = (V, F ) is a distance (Δ, 0)-approximating tree of a graph G =
(V, E) if and only if dT (x, y) ≤ Δ holds for each edge xy ∈ E and dG(u, v) ≤
Δ holds for each edge uv ∈ F .

– If T is a distance (1, δ)-approximating tree for G, then T is a distance (δ +
1, 0)-approximating tree for G.

2 Distance (1, 1)-Approximating Trees

In this section, we show that the distance (1, 1)-approximating tree problem is
polynomial time solvable. For simplicity, in what follows, we will use the notion
“distance 1-approximating tree” as a synonym to “distance (1, 1)-approximating
tree”.

2.1 3-Connected Graphs

A star is a tree with a vertex adjacent to all other vertices. We call that vertex
the center of the star. Equivalently, a star is a tree of diameter at most 2.

Lemma 1. For a 3-connected graph G, the following statements are equivalent.

1. G has a distance 1-approximating tree.
2. G has a distance 1-approximating tree which is a star.
3. diam(G) ≤ 3 and rad(G) ≤ 2.
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Proof. (1⇐⇒2) Let T be a distance 1-approximating tree of G. If T is not a star,
then there exists a path in T with length 3. Let (x′, x, y, y′) be such a path. Con-
sider subtrees Tx and Ty obtained from T by removing edge xy, and assume that
x belongs to Tx and y belongs to Ty. Since for any u ∈ V (Tx) \ {x} and v ∈
V (Ty) \ {y}, dT (u, v) ≥ 3, we have uv /∈ E(G). This implies that {x, y} is a 2-cut
of G, contradicting with the 3-connectedness of G. Hence, T must be a star.

(2⇒3) Let T be a distance 1-approximating tree of G which is a star. Then,
for any x, y ∈ V , we have dT (x, y) ≤ 2 and, therefore, dG(x, y) ≤ 3. Hence,
diam(G) ≤ 3. Let now u be the center of T . Then, for each x ∈ V , dT (x, u) ≤ 1,
and therefore dG(x, u) ≤ 2. The latter implies rad(G) ≤ 2.

(3⇒2) If rad(G) ≤ 2, then, by definition, there exists a vertex u ∈ V such
that dG(x, u) ≤ 2, for any x ∈ V . Pick such a vertex u and construct a tree
T = (V, E′) where each vertex v ∈ V \ {u} is adjacent to u, i.e., construct a
star on vertices V with the center u. Obviously, 0 ≤ dG(x, y) − dT (x, y) ≤ 1,
for any x ∈ V \ {u}. Moreover, since diam(G) ≤ 3, we have dG(x, y) ≤ 3 for
any x, y ∈ V \ {u}. As, for those vertices x and y, dT (x, y) = 2, we conclude
dG(x, y) − dT (x, y) ≤ 3 − 2 = 1 and dG(x, y) − dT (x, y) ≥ 1 − 2 = −1. Hence, T
is a distance 1-approximating tree of G. ��
Corollary 1. Let G be an arbitrary (not necessarily 3-connected) graph. Then,
G has a distance 1-approximating tree which is a star if and only if diam(G) ≤ 3
and rad(G) ≤ 2.

2.2 2-Connected Graphs

A vertex of a tree is inner if it is not a leaf. An edge of a tree is an inner edge if
it is not incident to a leaf.

Lemma 2. If T is a distance 1-approximating tree of a connected graph G, then
any inner edge of T is a 2-cut of G.

Proof. For any inner edge xy of T , let Tx and Ty be the two subtrees of T
obtained from T by removing edge xy. Let also x belong to Tx and y belong to Ty.
Then, since T is a distance 1-approximating tree of G, for all u ∈ V (Tx)\{x} and
v ∈ V (Ty) \ {y}, uv /∈ E(G). This implies that {x, y} is a 2-cut of G separating
V (Tx) \ {x} from V (Ty) \ {y}. ��
A bistar is a tree with only one inner edge. Equivalently, a bistar is a tree of
diameter 3. The proof of the following lemma is omitted.

Lemma 3. If T is a distance 1-approximating tree of a 2-connected graph G,
then diam(T ) ≤ 3, i.e., T is a star or a bistar.

To characterize 2-connected graphs admitting distance 1-approximating trees,
we will need also the following easy observations (proofs are omitted).

Lemma 4. Assume a graph G has a distance 1-approximating bistar T with the
inner edge c1c2. Then, the following properties hold:

1. diam(G) ≤ 4 and rad(G) ≤ 3;
2. for any j = 1, 2 and x, y ∈ V (Tcj)∪{c1, c2}, dG(x, y) ≤ 3 and dG(x, cj) ≤ 2;
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3. if A1, . . . , Ak are the connected components of the graph G− c1 − c2 and Tc1,
Tc2 are the connected components of T − c1c2, then, for any i = 1, . . . , k,
V (Ai) is entirely contained either in V (Tc1) or in V (Tc2).

Let now G be a graph with a 2-cut {a, b} and A1, . . . , Ak be the connected
components of the graph G− a − b. For given 2-cut {a, b} of G we can construct
a new graph Ha,b as follows. The vertex set of Ha,b is {a, b, a1, . . . , ak}. Edge
aai (i = 1, . . . , k) exists in Ha,b if and only if for each x, y ∈ V (Ai) ∪ {b},
dG(x, y) ≤ 3 and dG(x, a) ≤ 2 hold. Edge bai (i = 1, . . . , k) exists in Ha,b if and
only if for each x, y ∈ V (Ai) ∪ {a}, dG(x, y) ≤ 3 and dG(x, b) ≤ 2 hold. Edge
aiaj (i, j = 1, . . . , k, i �= j) exists in Ha,b if and only if for each vertex x ∈ V (Ai)
and each vertex y ∈ V (Aj), dG(x, y) ≤ 3 holds. No other edges exist in Ha,b.

The following lemma gives a characterization of those 2-connected graphs that
admit distance 1-approximating trees. Denote the complement of a graph H by H .

Lemma 5. For a 2-connected graph G, the following statements are equivalent.

1. G has a distance 1-approximating tree.
2. G has a distance 1-approximating tree which is a star or a bistar.
3. diam(G) ≤ 3 and rad(G) ≤ 2 or diam(G) ≤ 4 and there exists a 2-cut {a, b}

in G such that the graph Ha,b is bipartite.

Proof. (1⇐⇒2) is given by Lemma 3.
(2⇒3) If G has a distance 1-approximating tree which is a star, then, by

Corollary 1, diam(G) ≤ 3 and rad(G) ≤ 2. Assume now that a distance 1-
approximating tree T of G is a bistar. Then, by Lemma 4, diam(G) ≤ 4. Lemma 4
(together with Lemma 2) implies also that G has a 2-cut {a, b} (which is the inner
edge of T ) such that for any connected component Ai (i ∈ {1, . . . , k}) of G−a−b,
either V (Ai) ⊂ V (Ta) or V (Ai) ⊂ V (Tb) holds. Since vertices V (Ta) ∪ {b} form
a star in T with the center a, we have dG(x, y) ≤ 3 and dG(x, a) ≤ 2 for any
x, y ∈ V (Ta)∪{b}. By construction of Ha,b, vertices {a} ∪ {ai : V (Ai) ⊂ V (Ta)}
of Ha,b will form a clique. Analogously, vertices {b}∪{ai : V (Ai) ⊂ V (Tb)} form
a clique in Ha,b. Since these two cliques cover all vertices of Ha,b, the complement
Ha,b of Ha,b is bipartite.

(3⇒2) Clearly, if diam(G) ≤ 3 and rad(G) ≤ 2 then, by Corollary 1, G has a
distance 1-approximating star. Assume now that diam(G) ≤ 4 and there exists
a 2-cut {a, b} in G such that the graph Ha,b is bipartite. Let A1, . . . , Ak be the
connected components of the graph G−a−b. Vertices of Ha,b can be partitioned
into two cliques C1 and C2. Since a and b are not adjacent in Ha,b, they must be
in different cliques. Assume, a ∈ C1 and b ∈ C2. By construction of Ha,b, for all
x, y ∈ ∪{V (Ai) : ai ∈ C1} ∪ {b}, dG(x, y) ≤ 3 and dG(x, a) ≤ 2 holds. Similarly,
for all x, y ∈ ∪{V (Ai) : ai ∈ C2} ∪ {a}, dG(x, y) ≤ 3 and dG(x, b) ≤ 2 holds.
Hence, we can construct a bistar T of G as follows. Vertices a and b will form the
inner edge of T . Vertices of Ai with ai ∈ C1 will be attached (i.e., made adjacent
in T ) to a. Vertices of Ai with ai ∈ C2 will be attached to b. It is easy to see that
T is a distance 1-approximating tree of G. The only interesting case to mention
here is when x ∈ V (Ai), where ai ∈ C1, and y ∈ V (Aj), where aj ∈ C2. For



266 F.F. Dragan and C. Yan

those x and y, we have dT (x, y) = 3 and 2 ≤ dG(x, y) ≤ 4 (since diam(G) ≤ 4
and x and y are separated by {a, b} in G). Thus, −1 ≤ cT (x, y) ≤ 1 holds. ��
Corollary 2. Let G be an arbitrary (not necessarily 2-connected) graph. Then,
G has a distance 1-approximating tree which is a star or a bistar if and only if
diam(G) ≤ 3 and rad(G) ≤ 2 or diam(G) ≤ 4 and there exists a 2-cut {a, b} in
G such that the graph Ha,b is bipartite.

Lemma 5 implies also that the problem of checking whether a given 2-connected
graph G has a distance 1-approximating tree is polynomial time solvable. More
specifically, we have

Corollary 3. It is possible, for a given 2-connected graph G = (V, E), to check
in O(|V |4) time whether G has a distance 1-approximating tree and, if such a
tree exists, construct one within the same time bound.

Proof. We can find in O(|V ||E|) time the distance matrix of G and all 2-cuts
[14, 22] of G. Then, to check whether diam(G) ≤ 3 and rad(G) ≤ 2 and, if so,
to construct a distance 1-approximating star of G as described in the proof of
Lemma 1, one needs at most O(|V |2) time in total. To check if diam(G) ≤ 4 and
whether there exists a 2-cut {a, b} of G with Ha,b bipartite, one needs O(|V |4)
total time. We just need, for each 2-cut {a, b}, to construct the graph Ha,b and
check if it is bipartite. Construction of Ha,b for a given 2-cut {a, b} and checking
whether it is bipartite will take no more than O(|V |2) time (given the distance
matrix of G). Since any graph G has at most O(|V |2) 2-cuts, to check if G has
a distance 1-approximating bistar, one needs at most O(|V |4) time. If G admits
such a bistar, then we can find one in linear time as described in the proof of
Lemma 5. ��

2.3 Connected Graphs

In this subsection, we assume that G is a connected graph but not 2-connected.
Therefore, there exists a vertex v ∈ V (G), such that G − v contains at least two
connected components.

From Lemma 3 and its proof, the following lemma is obvious.

Lemma 6. Let T be a distance 1-approximating tree of a connected graph G and
(a, b, c) be a path in T . If both a and c are inner vertices of T , then at least one
of these vertices is a 1-cut of G. Moreover, assuming c is a 1-cut, c separates
vertices V (Tc) \ {c} from other vertices of G, where Tc is the subtree of T − bc
containing c.

A 2-connected component of a graph G is a maximal by inclusion 2-connected
subgraph of G or an edge uv of G such that both u and v are 1-cuts of G (such
an edge is called a bridge of G). Two 2-connected components of G are neighbors
if they share a common vertex (a 1-cut) of G.

Lemma 7. Let G be a connected graph admitting a distance 1-approximating
tree T and A be a 2-connected component of G. Then, for any two vertices
x, y ∈ V (A), dT (x, y) ≤ 3. Moreover, if there exist vertices x, y ∈ V (A), such
that dT (x, y) = 3, then T (V (A)) is a bistar.
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Proof. Assume that, for some vertices x, y ∈ V (A), dT (x, y) ≥ 4 holds. Then,
one can connect x and y in T with a path PT (x, y) of length at least 4. Pick
three consecutive inner vertices a, b, c of path PT (x, y), they necessarily exist.
According to Lemma 6, a or c is a 1-cut of G separating x from y in G. The
latter is in contradiction with the assumption that x, y ∈ V (A) and A is a 2-
connected component of G. Hence, dT (x, y) ≤ 3, for any x, y ∈ V (A), is proven.

Assume now that there exist vertices x, y ∈ V (A), such that dT (x, y) = 3.
Then, one can find two vertices {c1, c2} in G such that T (V (A) ∪ {c1, c2}) is a
bistar with the inner edge c1c2. Let xc1, yc2 ∈ E(T ). We will show that both c1
and c2 are in A.

Suppose, neither c1 nor c2 is in A. Assume c1 ∈ V (B), c2 ∈ V (C), where B and
C are 2-connected components of G. Let V (B)∩V (A) = {v} and V (C)∩V (A) =
{u}. We claim that B = C or at least v = u. Suppose B �= C and v �= u. Then,
since V (B) ∩ V (C) = ∅ (otherwise, A, B and C will be parts of one 2-connected
component of G), dG(c1, c2) ≥ 3. As dT (c1, c2) = 1, a contradiction with T
being a distance 1-approximating tree of G arises. So, c1, c2 must be either in
one 2-connected component of G or in two 2-connected components B and C
such that V (B) ∩ V (A) = V (C) ∩ V (A).

Without loss of generality, assume v is attached (i.e., adjacent in T ) to c1.
Since dT (y, c2) = 1, we have dG(y, c2) ≤ 2 and, hence, yv ∈ E(G). On the
other hand, dT (y, v) = 3, contradicting the assumption that T is a distance
1-approximating tree of G.

Assume now that c1 ∈ V (A) and c2 ∈ V (B) \ {v}. For any vertex x′ ∈ V (A)
which is attached to c1 and any vertex y′ ∈ V (A) \ {c1} which is attached to c2,
x′y′ /∈ E(G) must hold. Moreover, since V (A)∩V (B) = {v}, one concludes that
for all x′ ∈ V (A) \ {v}, x′c2 /∈ E(G). Hence, any path of A connecting a vertex
attached to c1 with a vertex attached to c2 must use vertex c1. Since there exist
vertices x, y ∈ V (A) such that xc1, yc2 ∈ E(T ), this is in contradiction with the
assumption that A is 2-connected.

Thus, we conclude that T (V (A)) is a bistar. ��

Corollary 4. Let G be a connected graph admitting a distance 1-approximating
tree T and A be a 2-connected component of G. Then, either T (V (A)) is a bistar
or T (V (A) ∪ {c}) is a star centered at some vertex c of G.

In what follows, we will show that among all possible distance 1-approximating
trees of G there is a tree T such that, for any 2-connected component A of G,
T (V (A)) is connected, i.e., if T (V (A) ∪ {c}) is a star for some vertex c of G,
then c must be in A. To show that, we will need two lemmata (proofs can be
found in the journal version).

A sequence (B0 := B, B1, . . . , Bk−1, Bk := A) is called the chain of 2-connected
components of G between A and B if each Bi is a 2-connected component of G,
Bi and Bj are different for j �= i, Bi−1, Bi are neighbors sharing a 1-cut vi :=
V (Bi−1) ∩ V (Bi) of G for any i ∈ {1, . . . , k}, and vi �= vj for any i �= j. Clearly,
this chain is unique for any A and B.
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Lemma 8. Let G be a connected graph admitting a distance 1-approximating
tree T , A and B be 2-connected components of G and (B0 := B, B1, . . . , Bk−1, Bk

:= A, Z) be the chain of 2-connected components of G between Z and B. If
T (V (A)∪{c}) is a star with the center c belonging to V (Z)\V (A), then for any
i ∈ {0, . . . , k−1}, T (V (Bi)) is a star centered at a 1-cut vi+1 := V (Bi+1)∩V (Bi)
of G. Moreover, for any i ∈ {0, . . . , k − 1} and any x ∈ V (Bi), xvi+1 ∈ E(G)
must hold.

Lemma 9. Let G be a connected graph admitting a distance 1-approximating
tree T and let A, Z be 2-connected components of G such that V (A)∩V (Z) = {v}.
Let also A′ be that connected component of the graph G−v which contains A−v.
If T (V (A) ∪ {c}) is a star centered at c ∈ V (Z) \ {v}, then for any vertices
x ∈ V (A′), y ∈ (V (G) \ V (A′)) \ {c, v}, xy /∈ E(T ) holds. In particular, for any
two vertices y, z ∈ V (G) \ V (A′), the path PT (x, y) between x and y in T does
not contain any vertices of A′.

In what follows, let G be a connected graph admitting a distance 1-approxima-
ting tree and let T denote a distance 1-approximating tree of G with minimum
|E(T ) \ E(G)|, i.e., with minimum number of non-graph edges. We will show
that this tree T has a number of nice properties.

Theorem 1. If T is a distance 1-approximating tree of G with minimum |E(T )\
E(G)|, then for any 2-connected component A of G, T (V (A)) is a star or a bistar.

Proof. Since A is a 2-connected component of G, by Corollary 4, either T (V (A))
is a bistar or T (V (A) ∪ {c}) is a star centered at some vertex c of G. By way of
contradiction, assume that for A, T (V (A) ∪ {c}) is a star centered at a vertex
c of G not belonging to A. Let c belong to some 2-connected component Z
of G. Necessarily, A and Z are neighbor (2-connected) components. Let v :=
V (A)∩V (Z) and A′ be a connected component of G− v containing V (A) \ {v}.
By Lemma 8, for any 2-connected component B of G, which is different from A
and belongs to A′, T (V (B)) is a star centered at a 1-cut of G lying in B and
closest to A. Moreover, if v′ is that 1-cut, then for any x ∈ V (B), xv′ ∈ E(G)
holds (see Fig. 1). We have also that v is adjacent in G to c and to any vertex
a (a �= v) of A (see Lemma 8).

We can transform tree T into a new tree T ′ as follows. Set E(T ′) := E(T )
and V (T ′) := V (T ). For each vertex a ∈ V (A) \ {v}, let E(T ′) := (E(T ′) \
{ac}) ∪ {av} (i.e., replace edge ac with edge av). We claim that T ′ is a distance
1-approximating tree of G, too. We need to show that |dT ′(x, y) − dG(x, y)| ≤ 1
holds for any two vertices x, y ∈ V (G).

If x, y ∈ V (A′) then, by Lemma 8 and the way we transformed T into T ′,
dT ′(x, y) = dT (x, y). If x, y ∈ V (G) \ V (A′) then, by Lemma 9 and the way T
was transformed into T ′, dT ′(x, y) = dT (x, y). Hence, in these cases, |dT ′(x, y)−
dG(x, y)| = |dT (x, y) − dG(x, y)| ≤ 1.

Consider now the case when x ∈ V (A′) and y ∈ V (G) \ V (A′). By Lemma 8,
dT ′(x, v) = dG(x, v). Since v is a 1-cut of G, dG(x, y) = dG(x, v) + dG(v, y). By
Lemma 9 and the way we transformed T into T ′, one concludes that dT ′(x, y) =
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Fig. 1. Illustration to the proof of Theorem 1. A part of the tree T is shown using
thick edges. Thin edges show some graph edges.

dT ′(x, v) + dT ′(v, y). Combining these equalities, we get |dT ′(x, y) − dG(x, y)| =
|dT ′(x, v) + dT ′(v, y) − (dG(x, v) + dG(v, y))| = |dT ′(v, y) − dG(v, y)|. But, by
Lemma 9, dT ′(v, y) = dT (v, y). Hence, we get |dT ′(x, y)−dG(x, y)| = |dT (v, y)−
dG(v, y)| ≤ 1.

Thus, T ′ is a distance 1-approximating tree of G. Since T ′ has original graph
edges more than T has (|E(T ′) \ E(G)| < |E(T ) \ E(G)|), a contradiction with
the choice of T arises. Hence, the center c of star T (V (A)∪{c}) must be in A. ��

Lemma 10. Let T be a distance 1-approximating tree of G with minimum |E(T )\
E(G)| and A be a 2-connected component of G such that T (V (A)) is a bistar. Then,
for any other 2-connected component B of G, T (V (B)) is a star centered at a 1-cut
of G which is closest to A (among all 1-cuts of G located in B).

Corollary 5. If T is a distance 1-approximating tree of G with minimum |E(T )\
E(G)|, then there is at most one 2-connected component A in G such that T (V (A))
is a bistar.

The following lemma and its corollaries show that a distance 1-approximating
tree T of G with T (V (A)) being a star for any 2-connected component A of G
has also a very deterministic structure.

Lemma 11. Let T be a distance 1-approximating tree of G with minimum
|E(T ) \ E(G)| and A and B be two neighbor 2-connected components of G with
v := V (A) ∩ V (B). If T (V (A)) is a star centered not at v, then T (V (B)) is a
star centered at v.

Proof. Since T (V (A)) is a star centered at some vertex c ∈ V (A) \ {v}, there
must exist a vertex a in A such that av ∈ E(G)\E(T ). By Lemma 10, T (V (B))
cannot be a bistar. If T (V (B)) is a star centered at some vertex c′ ∈ V (B)\{v},
then there must exist a vertex b in B such that bv ∈ E(G) \ E(T ). For these
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vertices a and b, dG(a, b) = 2 and dT (a, b) = dT (a, v) + dT (v, b) = 2 + 2 = 4
hold, contradicting with T being a distance 1-approximating tree of G. Hence,
the center of T (V (B)) must be v. ��

Corollary 6. Let T be a distance 1-approximating tree of G with minimum
|E(T ) \ E(G)| and A be a 2-connected component of G such that T (V (A)) is a
star. If the center of this star T (V (A)) is not a 1-cut of G, then for any other
2-connected component B of G, T (V (B)) is a star centered at a 1-cut of G which
is closest to A (among all 1-cuts of G located in B).

Corollary 7. Let T be a distance 1-approximating tree of G with minimum
|E(T ) \ E(G)|. If for every 2-connected component A of G, T (V (A)) is a star
centered at a 1-cut of G, then there exists a 1-cut v in G such that

a) for any 2-connected component A of G containing v, T (V (A)) is a star
centered at v,

b) for any 2-connected component B of G not containing v, T (V (B)) is a star
centered at a 1-cut of G which is closest to v (among all 1-cuts of G located
in B).

Clearly, if T (V (A)) is a star for a 2-connected component A of G, then diam(A) ≤
3 and rad(A) ≤ 2. And, if T (V (B)) is a bistar for a 2-connected component B of
G, then diam(B) ≤ 4 and rad(B) ≤ 3.

Using all these auxiliary results, one can prove the following theorem (its
proof is omitted in this conference version).

Theorem 2. It is possible, for a given connected graph G = (V, E), to check in
O(|V |4) time whether G has a distance 1-approximating tree and, if such a tree
exists, construct one within the same time bound.

3 Conclusion

In this paper, we proved that the distance (Δ, 0)-approximating tree problem is
NP-complete for any Δ ≥ 5 and the distance (1, 1)-approximating tree problem
is polynomial time solvable.

It remains an interesting open question to characterize/recognize the graphs
admitting distance (Δ, δ)–approximating trees for Δ = 2, 3, 4 and δ = 2, 3, 4, or
to prove that the problem remains NP-hard even for some of these small Δs and δs.
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5. A. Brandstädt, F. Dragan, H.-O. Le, and V.B. Le, Tree Spanners on Chordal
Graphs: Complexity and Algorithms, Theor. Comput. Science 310 (2004), 329-354.

6. L. Cai and D.G. Corneil, Tree spanners, SIAM J. Disc. Math. 8 (1995), 359–387.
7. M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin, Approximating a Finite

Metric by a Small Number of Tree Metrics, FOCS 1998, pp. 379–388.
8. V. Chepoi and F.F. Dragan, A note on distance approximating trees in graphs,

European Journal of Combinatorics 21 (2000), 761–766.
9. L.P. Chew, There are planar graphs almost as good as the complete graph, J. of

Computer and System Sciences, 39 (1989), 205–219.
10. Y. Emek and D. Peleg, Approximating Minimum Max-Stretch Spanning Trees on

Unweighted Graphs, SODA 2004, pp. 261-270.
11. J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbi-

trary metrics by tree metrics, STOC 2003, pp. 448-455.
12. U. Feige, Approximating the Bandwidth via Volume Respecting Embeddings, J.

Comput. System Sci. 60 (2000), 510–539.
13. A. Gupta, Improved bandwidth approximation for trees and chordal graphs, Jour-

nal of Algorithms 40 (2001), 24–36.
14. J.E. Hopcroft and R.E. Tarjan, Dividing a graph into triconnected components,

SIAM J. Comput. 2 (1973), 135–158.
15. O. Kariv and S.L. Hakimi, An algorithmic approach to network location problems,

I: the p-centers, SIAM J. Appl. Math. 37 (1979), 513–538.
16. D. Kratsch, H.-O. Le, H. Müller, E. Prisner, and D. Wagner, Additive tree spanners,

SIAM J. Discrete Math. 17 (2003), 332-340.
17. R. Krauthgamer and J.R. Lee, The intrinsic dimensionality of graphs, STOC 2003,

pp. 438–447.
18. R. Krauthgamer, N. Linial, and A. Magen, Metric Embedding – Beyond one-

dimensional distortion, Discrete and Computational Geometry 31 (2004), 339–356.
19. A.L. Liestman and T. Shermer, Additive graph spanners, Networks, 23 (1993),

343-364.
20. N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some its

algorithmic applications, Combinatorica 15 (1995), 215–245.
21. T.A. McKee, personal communication to E. Prisner, 1995.
22. G.L. Miller and V. Ramachandran, A new graph triconnectivity algorithm and its

parallelization, Combinatorica 12 (1992), 53–76.
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