Skip to main content

Preserving Variability in Sexual Multi-agent Systems with Diploidy and Dominance

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3963))

Abstract

Diploidy and allele dominance are two mechanisms whereby natural organisms preserve genetic variability, in the form of unexpressed genes, from the conservative sway of natural selection. These may profoundly affect evolution, for it is variability upon which natural selection operates. Many multi-agent systems rely on evolutionary processes and sexual reproduction. However, sex in artificial agents often ignores diploidy and dominance. An agent-oriented modelling platform was used to compare the evolution of populations of sexual agents under four models: haploid genetic transmission versus diploid; and with either complete allele dominance versus none. Diploidy fulfils its promise of preserving variability, whereas haploidy quickly commits its possessors to the current niche. Allele dominance too preserves variability, and without sacrificing adaptivity. These results echo consistent findings in classical population genetics. Since both these factors strongly affect evolution, their inclusion in a model may improve both accuracy, and efficacy, according to the modeller’s motives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lin, S.-C., Punch, W.F., Goodman, E.D.: Coarse-grain parallel genetic algorithms: Categorization and new approach. In: 6th IEEE Symposium on Parallel and Distributed Processing. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  2. Mauldin, M.L.: Maintaining diversity in genetic search. In: Proceedings of the National Conference on Artificial Intelligence (AAAI 1984), pp. 247–250 (1984)

    Google Scholar 

  3. Potts, J.C., Giddens, T.D., Yadav, S.: The development and evaluation of an improved genetic algorithm based on migration and artificial selection. IEEE Transactions On Systems, Man, And Cybernetics 24(I) (1994)

    Google Scholar 

  4. Herrera, F., Lozano, M.: Adaptation of genetic algorithm parameters based on fuzzy logic controllers. In: Herrera, F., Verdegay, J.L. (eds.) Genetic Algorithms and Soft Computing, pp. 95–125. Physica-Verlag, Heidelberg (1996)

    Google Scholar 

  5. Leung, K.-S., Duan, Q.-H., Xu, Z.-B., Wong, C.K.: A new model of simulated evolutionary computation-convergence analysis and specifications. IEEE Transactions on Evolutionary Computation 5(1) (2001)

    Google Scholar 

  6. Rudolph, G.: Convergence of non-elitist strategies. In: Proc. 1st IEEE Conf. Evolutionary Computation, Piscataway, NJ, pp. 63–66. IEEE, Los Alamitos (1994)

    Google Scholar 

  7. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 2nd edn. IEEE Press, New York (2000)

    Google Scholar 

  8. Shimodaira, H.: A diversity-control-oriented genetic algorithm (DCGA): Performance in function optimization. In: Whitley, L.D., Goldberg, D.E., Cant, E., Spector, L., Parmee, I.C., Beyer, H.-G. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2000), Las Vegas, USA, July 8–12, p. 366. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  9. Smith, J.M.: Games, Sex and Evolution. Harvester Wheatsheaf, Hertfordshire (1988)

    Google Scholar 

  10. Ridley, M.: The Red Queen: Sex and the Evolution of Human Nature. Maxwell Macmillan, Toronto (1995)

    Google Scholar 

  11. Gao, Y.: An Upper Bound on the Convergence Rates of Canonical Genetic Algorithms. Complexity International 5 (1998)

    Google Scholar 

  12. Branke, J.: Memory-enhanced evolutionary algorithms for changing optimization problems. In: Congress on Evolutionary Computation (CEC 1999), pp. 1875–1882. IEEE, Los Alamitos (1999)

    Google Scholar 

  13. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algorithms with diploidy and dominance. In: Grefenstette, J.J. (ed.) Proceedings of the Second International Conference on Genetic Algorithms, pp. 59–68. Lawrence Erlbaum Associates, Mahwah (1987)

    Google Scholar 

  14. Ryan, C.: The degree of oneness. In: Proceedings of the ECAI workshop on Genetic Algorithms. Springer, Heidelberg (1996)

    Google Scholar 

  15. Campbell, N.A., Reece, J.B., Mitchell, L.G.: Biology, 5th edn. Addison Wesley, Amsterdam (1999)

    Google Scholar 

  16. JAWAS: Java Artificial Worlds & Agent Societies. Vrije Universiteit, http://www.cs.vu.nl/ci/eci/jawas/ (last seen, 2005-04-14)

  17. A-Scape. Brookings Institution, http://www.brook.edu/es/dynamics/models/ascape/ (last seen, 2005-04-14)

  18. Jaffe, K.: The dynamics of the evolution of sex: Why the sexes are, in fact, always two? Interciencia 21(6), 259–267 (1996), http://www.interciencia.org.ve

    Google Scholar 

  19. Kurup, M.M.: A study of dominance and diploidy as long term memory in genetic algorithms, http://www.kurups.org/papers/GA.ps (last seen, 2006-01-11)

  20. dos Santos, J.P.P.R.: Universal service: Issues on modelling and computation. DSc. Thesis, Universite Catholique de Louvain (1996)

    Google Scholar 

  21. Vekaria, K., Clack, C.: Haploid genetic programming with dominance. Departmental Research Note (RN/97/121) (1997)

    Google Scholar 

  22. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  23. Russell, S., Norvig, P.: Artificial Intelligence: A modern approach, 2nd edn. Prentice-Hall, New Jersey (2003)

    Google Scholar 

  24. Yilmaz, A.S., Wu, A.S.: A comparison of haploidy and diploidy without dominance on integer representations. In: The Proceedings of the 17th International Symposium on Computer and Information Sciences, Orlando, FL, October 28–30, pp. 242–248 (2002)

    Google Scholar 

  25. Branke, J.: Evolutionary approaches to dynamic optimization problems: Updated survey. In: GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pp. 27–30 (2001)

    Google Scholar 

  26. Schafer, R.: Using a genetic algorithm with diploidy to create and maintain a complex system in dynamic equilibrium. In: Koza, J.R. (ed.) Genetic Algorithms and Genetic Programming at Stanford 2003, pp. 179–186 (2003)

    Google Scholar 

  27. Singh, A.: Giving genes their voice: A survey of information expression mechanisms in genetic algorithms (2002), http://computing.breinestorm.net/natural+paradigms+gas+competent+genetic/ (last seen, 2006-01-11)

  28. Simões, A., Costa, E.: Using genetic algorithms to deal with dynamic environments: A comparative study of several approaches based on promoting diversity. In: Langdon, W.B., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), July 9–13. Morgan Kaufmann Publishers, New York (2002)

    Google Scholar 

  29. Osmera, P.: Evolvable controllers using parallel evolutionary algorithms. In: Proceedings of MENDEL 2003, Bmo, Czech Republic, pp. 126–132 (2003)

    Google Scholar 

  30. Ng, K.P., Wong, K.C.: A new diploid scheme and dominance change mechanism for non-stationary function optimization. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 159–166. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  31. Lewis, J., Hart, E., Ritchie, G.: A comparison of dominance mechanisms and simple mutation on non-stationary problems. In: Parallel Problem Solving from Nature (PPSN V), pp. 139–148 (1998)

    Google Scholar 

  32. Dasgupta, D., McGregor, D.R.: sGA: Structured Genetic Algorithm. University of Strathclyde, Technical Report no. IKBS-8-92 (1992)

    Google Scholar 

  33. Ghosh, A., Dehuri, S.: Evolutionary algorithms for multi-criterion optimization: A survey. International Journal of Computing and Information Sciences 2(1) (2004)

    Google Scholar 

  34. Schnier, T., Gero, J.: Dominant and recessive genes in evolutionary systems applied to spatial reasoning. In: Australian Joint Conference on Artificial Intelligence, 127–136 (1997)

    Google Scholar 

  35. Buzing, P.C.: Vuscape: Communication and cooperation in evolving artificial societies. Masters’ thesis, Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands (2003)

    Google Scholar 

  36. Epstein, J.M., Axtell, R.L.: Growing Artificial Societies: Social Science From the Bottom Up. MIT Press, Cambridge (1996)

    Google Scholar 

  37. Buzing, P.C., Eiben, A.E., Schut, M.C.: Emerging communication and cooperation in evolving agent societies. Journal of Artificial Societies and Social Simulation 8(1) (2005)

    Google Scholar 

  38. Eiben, A.E., Nitschke, G., Schut, M.C.: Comparison of reproduction schemes in an artificial society for cooperative gathering. In: AISB Socially Inspired Computing: Engineering with Social Metaphors Symposium (AISB-SIC 2005) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bowers, R.I., Sevinç, E. (2006). Preserving Variability in Sexual Multi-agent Systems with Diploidy and Dominance. In: Dikenelli, O., Gleizes, MP., Ricci, A. (eds) Engineering Societies in the Agents World VI. ESAW 2005. Lecture Notes in Computer Science(), vol 3963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759683_12

Download citation

  • DOI: https://doi.org/10.1007/11759683_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34451-3

  • Online ISBN: 978-3-540-34452-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics