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Abstract. The global testing problem studied in this paper is to seekfmite answer to whether a
system of concurrent black-boxes has an observable befaggiven finite (but could be huge) sBtd.

We introduce a novel approach to solve the problem that doerequire integration testing. Instead, in
our approach, the global testing problem is reduced taigstdividual black-boxes in the system one by
one in some given order. Using an automata-theoretic appro@st sequences for each individual black-
box are generated from the system’s description as well@sett results of black-boxes prior to this
black-box in the given order. In contrast to the conventi@mnpositional/modular verification/testing
approaches, our approach is essentially decompositiatsal, our technique is complete, sound, and can
be carried out automatically. Our experiment results sh@t the total number of tests needed to solve
the global testing problem is substantially small even foegtremely largeBad.

1 Introduction

Testing a concurrent and component-based system is nastyidifficult[Z8[T4]. One difficulty comes from
the system’s nondeterminism and the synchronizations graoncurrently running components. Another
difficulty lies in the fact that, in a component-based systi@ésconstituent components could be some ex-
ternally obtained software components (such as COTS ptsjdwbose source codes and design details are
usually not available. In that case, traditional white-i@chniques (like static analysis) are not applicable to
analyzing the system. These components can be readilgdresblack-boxesvhose models (both at code
level and design level) are unknown. In this paper, we stuegting problem for such a system of concurrent
black-boxes.

In our setup, a system of concurrent black-boxes consist$ho6t system (called the gluer) and a number
of black-boxes. Each of the gluer and the black-boxes igdallinit (or a component), which is a (possibly
nondeterministic and infinite-state) labeled transitigstem, each of whose labels represents either an ob-
servable action or an internal action. All the units in thsteyn run concurrently and synchronize on a number
of observable actions. The gluer is a fully specified finiggesunit. For each black-box, however, except for
its interface (i.e., the set of its observable actions)nghing else is unknown, while its implementation is
always available and can be black-box testedl@bal bad behaviois an observable behavior of the system
in a given finite seBad. Finally, theglobal testing problenstudied in this paper is to verify (with a definite
answer) that, for the given s8lad, the system does not have a global bad behavior.

A straightforward approach to solve the global testing pewbis to perform integration testing over the
system as a whole and see if the system exhibits a bad behdeiwever, there are fundamental difficulties
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with this approach. For instance, in some applicatibns, [B@d¢gration testing may not be applicable at all.
Even when integration testing is possible in some situatitite system itself is often nondeterministic. The
combinatorial blow-up on the number of the executions caubyenondeterministic interleavings among the
concurrent units in the system generally makes it infeadibldo thorough integration testing, while we are
looking for a definite answer to the global testing problemelo the same reason, even when one has a way
to handle the nondeterminisin]31], the size of the giventiet (which could be very large, e.g., more than
10%* in some of our experiments shown later) may also make exfvaustegration testing infeasible.

A less straightforward approach is to combine testing withne formal method. For instance, one can
extensively test each black-box alone and try to bulild [2@jastial model of the black-box from the test
results. Then, one can run a formal method like model-cimgcn the partial system model built from the
partial models of the black-boxes to solve the global tggtroblem. However, this approach is also difficult
to implement. For instance, itis hard to choose effectisegequences to build a partial model of a black-box,
and it is also hard to know when the tests over a black-box degate. Moreover, the partial (and hence
approximated) system model might not help us obtain a defariswer to the global testing problem. To
avoid the above difficulties, one may also try, using somm&dmethod, to derive an expectation condition
over a black-box’s behaviors such that: when every blackH®haves as expected, the system guarantees
to not have a global bad behavior. Then the expectation tiondican be used to generate test sequence for
the black-boxes. However, the interactions among the aoeictblack-boxes make it difficult to derive such
conditions automatically (see Sectldn 2 for related workh@nassume-guarantee style reasoning).

In this paper, we introduce a novel approach (called thetfpnstechnique) to solve the problem, which
does not entail any integration testing. Instead, in our@ggh, the global testing problem is reduced to
testing individual black-boxes in the system one by one mesgiven order. Using an automata-theoretic
approach, test sequences for each individual black-bogemerated from the system’s description as well
as the test results of black-boxes prior to the black-bokéngiven order. Suppose that, . . ., B, represent
the concurrent black-boxes in a system. The first step of ppraach is to compute an auxiliary sét of
sequences of observable actions for black-ba®es . ., B, and a seif; of test sequences for black-box
B;. Then we test the black-ba®; with test sequences i; and collect all successful test sequences into a
surviving setSU V. In the second step, from the surviving $8f'V; and the auxiliary se#,, we compute
the auxiliary setd, (for black-boxes3,, . . ., By) and the test sequence &étfor black-boxBs. Again, after
testing black-boxB- with test sequences i, we collect all successful testing sequences into a sunyivi
setSUV,. Subsequent steps follow similarly, and eventually, inl&st step (i.e., step), the global testing
problem will be decided from the surviving sets. That is,$kistem has no global bad behavior iff, for some
1 < i < k, the surviving selSUV; is empty. We also provide a procedure to recover a global lkeadvior
when the answer to the original problem is “no”.

Since the sets (i.e4; and.A;) are provably finite and, in many cases, huge, we use (finiteaata that
accept the sets as their symbolic representations, andssthautomata operations are used to manipulate
these sets. Also, the global testing problem is decompagediiseries of testing problems over each indi-
vidual black-box in the system. Hence, our approach is amraaitta-theoretic and decompositional approach.
Moreover, the “push-in” technique is both complete and sipand can be carried out automatically. In par-
ticular, we show that the technique is “optimal” in the setis® each test we run over a black-box has the
potential to discover a global bad behavior (i.e., we neweiuseless tests). In general, exhaustive integration
testing over a concurrent system is infeasible. Howeveresperiments show that, using the push-in tech-
nique, we can completely solve the global testing probleth @isubstantially smaller number of tests over
the individual black-boxes, even for an extremely largeo$dtad (some of our experiments performed only
about10® unit tests for aBad of size more thari024).



The rest of this paper is organized as follows. In Sedflomé&;ipus work related to this paper is discussed.
In SectiorB, the formal definitions for a system of concurtéack-boxes and its global testing problem are
presented. In Sectidd 4, the detail of the push-in technigjgbown. In Sectiohl5, a set of experiments are
run and the results are analyzed. Finally, Sedflon 6 poimtseme future work.

2 Related Work

The global testing problem is essentially a verificationbbem since we are looking for a definite answer.
In the area of formal verification, there has been a long histd research on exploiting compositionality
in system verification, and a common technique is to follo& thssume-guarantee” reasoning paradigm
[PT28 19,7 1218]813]. However, a successful applicabibtihe paradigm depends on the correct assumptions
for the components in a system, which are, in general, faatedimanually. Several authors suggest solutions
to the problem of automated assumption generaliol [IIZ285). But the solutions require that the source
code and/or the finite-state design is available for a urhick; unfortunately, is not the case in our setup.
Although our push-in technique relies on black-box testirgjead of an “assume-guarantee” mechanism, it
can be extended to a system where a black-box is associdtednwironmental assumptions.

In the area of software testing, researchers have long néoed)the importance of combining formal
methods (like model-checking) and testing techniques ystesn verification. Most work (e.g[1[6]0]13])
stems from the spirit of specification-based testing, ailtzes model-checkers’ capabilities of generating
counter-examples from a system’s specification to prodesedases against an implementation. This ap-
proach typically works at the unit level and lacks a “coritmler the generated test-cases, since, unlike our
technique, it does not have an overall and analytical cleriaation over all the useful (i.e., has the potential
to recover a global bad behavior) test sequences. In contrasr ideas, theoretical work il [26]35] focuses
on complete testing oversingle and finite-statblack-box with respect to a temporal property. The decom-
positional approaches proposed[inl[11,22] for model-cimecteature-oriented software designs rely totally
on model-checking techniques (no testing) and could calse hegatives. Integration testing of concurrent
programs in[[3I,20] relies on a specification (unavailableur model) of a concurrent program.

The quality assurance problem for component-based sddtheas attracted lots of attention in software
engineering. However, most work considers the problem fcomponent developers’ point of view; i.e.,
how to ensure the quality of components before they areseteée.g.,[[26.34,K3.29]). This view, however,
is fundamentally insufficient: an extensively tested cormgat (by the vendor) may still not perform as ex-
pected in a specific deployment environment, since the giemat environments of a component could be
quite different and diverse such that they may not be thdiyugied by the vendor. Our push-in technique
approaches this problem from system developers’ point @ivvhow to ensure that multiple components
function correctly in a host system where the componentdepéyed. In our technique, test sequences run
on a component are customized to its specific deployment@anwvient. Unlike our approach, frameworks
like [4] require a complete specification about the compotebe incorporated into a system, which is not
always possible.

3 Preliminaries

In this paper, we consider a system of (concurrent) blactebowhich consists of a host system (called
thegluer) and a collection of black-box components (simply calidaick-boxels Each of the gluer and the
black-boxes is anit. In the rest of the section, we will present the model of a,uh& model of the system
of black-boxes, and the global testing problem for the syste



3.1 The Unit Model

A unit is a nondeterministic and labelénsition systeni’ that moves from one state to another while
performing an action. Formallyi, = (S, sinit, V, R), whereS is an (infinite and countable) set of states
with sinie € S being theinitial state,V is a finite set of actions, ani C S x V x S defines the transition
relation. In particular, the action st is partitioned into three disjoint subsefs:} (an internal action)/7
(input actions), and” (output actions). Especially, the sBt= ITU ', i.e., the set obbservable actioni 7,

is called theinterfaceof 7'. When the seb of states is a finite sef; is called &finite-state transition system

A behaviorof T' is a sequence of actions Wi: a;...a;, (for someh) such that there is a sequence of
statess. . .sp With so = sinis @and(s;, a;, s;4+1) € R foreach0 < j < h — 1. An observablébehavior of
T is the result of dropping all the internal actions (i€s) from a behavior. Trivially, the empty string is an
observable behavior for any uriit

A (unit) test sequence for T is a sequence of observable actionslinA unit 7" is considered to be a
black-boxf its interface (i.e.,Il andI") is the only known part in its definition. In this case, we assihat
T is testable. That is, there is a black-box testing proceBBgest (7', -) 1 such that, for any test sequence
«a, BBtest(T', «) returns “yes” (i.e.« is successfilif « is an observable behavior of the ufiit and,
BBtest(T, o) returns “no” (i.e.« is unsuccessfliif otherwise.

For example, consider the black-boxmm in Figurell, which has seven observable actions (in the figure
we use suffixe§ and! to distinguish input and output actions respectively).ukse that the black-box is
implemented as shown in Figuk® 5. Cleardynd msg ack is a successful test sequenceCtomm while
send msg fail is not.

Obviously, if one further assumes that the black-box is oudieterministic (i.e., an input action sequence
uniquely decides the corresponding output action seqietien a test sequence for the black-box can be
simply reduced to a sequence of input actions. Howeve thier testable units that are not necessarily output
deterministic (e.g.[T24.32.27]). Therefore, to make dgogthms (presented later) more general, we do not
apply this assumption (under which, obviously, our aldnitstill applies). That's why in our definition, a
test sequence is always a sequence of both input actionsugimat actions.

3.2 The System Model

A system of concurrent black-boxes consists of a glii@nd a number of black-boxé$, . . ., By, written
Sys = G(Bi,...,By). The gluer and the black-boxes are all units which run comeuly and synchro-
nize on certain actions. More precisefy,is a fully specified and (nondeterministic) finite-statetu#i =
(S0, 5% 445 Vo, Ro), whose interface issy = IIo U Ip. EachB; is a black-box unitB = (S;, st .., Vi, R;),
which is testable and whose interface (the only given pattt@black-box) is¥; = II; U I';. As mentioned
earlier, a black-box is not necessarily a finite-state urtie state setsy, ..., S; are all disjoint. But the
interfacesYy, .. ., Xy may not be disjoint: some units may share some common actions

We useX = Y, U...U X} to denote all the observable actions in the systeya (this implies that
each unit's observable actions are also observable in $tersy, and usé€'ig(a), called thesignatureof a,
to denote the set of all < ¢ < k such thats € X;. Therefore, the signature indicates the units that share
actiona.

The systenbys, which also works as a labeled transition system, is a Gartggoduct of its units. That
is, Sys = (S, sinit, V, R), whereS = Sy x ... x S} is the system’s (global) state s&teach unit starts from
its own initial state; i.e., the initial global statg,;; of the system igs? .., ...sk..); andV = {¢} U X with
X=Xy U...U Xy is the system’s action set.

! The black-box testing procedure can be implemented inipeaftir a variety of transition systenid [5].



The system’s (global) transition relatid C S x V x .S is more complex. A global transition that moves
the system from a global stafey, . . ., s;) to another global states,, .. ., s;c) while performing an action
a € Visin R iff one of the following conditions is satisfied:

— ais an internal action (i.e¢), and exactly one unit in the system performs the intern@aavhile the
remaining units do not move; i.el) <i < k. (si,¢,5;) € RiAVO < j#i<k. s; =5,

— a is an observable action (i.ei,€ X), and all the units whose interfaces contain the obsenaatilen
a synchronize over the action while the remaining units domove; i.e.V0 < i < k. (i € Sig(a) A
(siya,s;) € R)V (i & Sig(a) A s; = s,).

In other words, at any moment in the systéms, exactly one unit performs an internal action, exactly one
unit performs an observable action that is not shared wighodimer unit, or multiple units synchronize over
a common observable action. It shall be noticed from the ald@¥inition that the synchronizations allowed
in our model are quite flexible. Not only can the units in a sgssynchronize over an output/input pair as
most other system models allow, they can also synchronieejast an output action or an input action, if
only they can perform this (no matter output or input) actéra certain global state. Also, in our model,
a synchronization can either occur between a pair of unignoong more than two units; thus multi-cast
or broadcast is allowed. Certainly in some systems, mabi;doroadcast, or synchronizations over only an
output action or input action may be undesirable. In that¢ céey can be easily eliminated just by renaming
the actions. It shall also be pointed out that, in the systam, if a global transition is a synchronization
over a pair of output and input actions among some unitsettves actions are considered to be one single
action, and we do not discriminate whether it is output ouirjut just treat it as an observable action to the
environment.

As defined earlier, a sequenees X* is an observable behavior of the syst8iys of black-boxes if the
system, treated as a transition system, has an executiortti@initial global state to some global state and,
on the executiony is the observable behavior.
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Fig. 1. A Data Acquisition System

For example, consider a data acquisition system shown iar&fifl, which consists of oneluer and
three black-box componentsimer, Sensor andComm. The system works as follows. Once started, the
Timer keeps signaling éire event when the time interval set runs out; thieme r can also be paused (resp.
resumed) by an incomingause(resp.resumé event. TheSensor is supposed to respond tdfiee event
by signaling adataevent when the sensor’s reading is ready; it also signatsreevent when something is
wrong inside thesensor. TheComm component responds tosendevent to send some data by signaling a
msgevent to some underlying network; it responds t@ak(resp.nack event by signaling aok (resp fail)
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Fig. 3. Internal implementation of Timer

event to indicate that the data associated with a pre\sendevent has been transmitted successfully (resp.
unsuccessfully) by the underlying network; it signalscanr event when something is wrong insidemmn.
The Gluer (whose transition graph is depicted in Figlite 2) simplyyeldata fromSensor to Comm; it
pauses theimer when something is wrong with tteensor or Comm, and after that, it resumes thémer
when either arok or fail is received fronComm. Together, they constitute a data acquidition system, fwhic
periodically transmits a reading of tis@nsor throughcomm via some underlying communication network.
In this system, th&sLuer and the three components run concurrently and synchroritheaach other by
sending and receiving those events (here, all synchraoimsére over output/input pairs between two units).
The internal implementations of the three components avesiin Figurd®, FigurEl4, and Figutk 5, respec-
tively 2. It can be seen (though not obviously) that the followingussge is an observable behavior of the
systemfire fire serr pause data send msg ack ok resumevingle sequencére fire serr data pause serisl
not.

When all the black-boxes are fully specified, our system rhisdeughly equivalent to the IOTS studied
in [24]. Our model is also closely related to 1/0 automaid [B8t ours is not input-enabled) and to interface-
automatall9] (but ours, similar to the IOTS, makes synclrations between units observable at the system
level). These observable synchronizations are the ketmtethe behavior of a system of concurrent black-
boxes, where an abstract model (such as design or sourceafaseh black-box is unavailable.

Let Bad C X* be a given set of test sequences that are not supposed to bbshevable behaviors
of the systemSys. The global testing problenis to verify (with a definite answer) that none of the test
sequences iiad is an observable behavior of the system. Clearly, in geni@problem can not be solved
completely since the sdad can be infinite and, for testing, only finitely many test sewss can be run.
Therefore, we assume thBud is a finite set, which can be given as an explicit list of tesjusmces (e.qg.,

2 Obviously, the push-in technique does not require thesesitian graphs, which are provided only for readers to
understand the system
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Bad = {fire fire, fire fire data, fire data send fire}) or as a symbolic representation (e Bad is all
sequences in regular expressjome data (fire)* send whose lengths are between 10 and 30).

4 The Push-in Technique

In this section, we present the “push-in” technique to catgly solve the global testing problem, by per-
forming unit testing over each individual black-box in thestem. A test sequence is a string or a word. A
finite set of test sequences is therefore a regular languadyerathis paper, we use a (finite) automaton that
accepts the finite set as the symbolic representation ofethésir push-in technique is automata-theoretic.
For eachl < i < k, the technique generates two automafaand A;. AutomatonU;, called aunit test
sequence automatpaccepts words in alphabgt; i.e., it represents a set of test sequences for blackEyox
AutomatonA;, called anauxiliary automatonaccepts words in alphab&t U . .. U X, (observable actions
for the black-boxe®;, . . ., Bi). Our push-in technique works in the followirigsteps, wheré is from 1 to

k:

Stepi. The step consists of two tasks:

(Automaton Generation) This task generates the unit tesiesece automatali; and the auxiliary automaton
A;. We first generate the auxiliary automatdn Initially wheni = 1, the generation is based on thgs’s
description (i.e., the gluet’ and the interfaces foBy, ..., B;) and the given seBad. Wheni > 1, the
generation is based on the auxiliary automatgn; and the surviving sesUV;_; (see below) obtained
from the previousStepi — 1. If the empty string is accepted by the auxiliary automatgnthen the global
testing problem (none of observable behaviors of the systgsms in Bad) returns “no” (i.e., a bad behavior
of the system exists) — no further steps need to run. We theargte the unit test sequence automdipn
directly from the auxiliary automatod; constructed earlier. This task is purely automata-théoaeid does
not involve any testing.

(Surviving Set Generation) In this second task, uggest, we perform unit testing over the black-b@

for all test sequences accepted by the test sequence aatoatl; always accepts a finite set). We use
SUYV;, called the surviving set, to denote all the successfulsiegtiences. If the surviving set is empty, then
the global testing problem returns “yes” (i.e., none of obable behaviors of the systefys is in Bad).
Otherwise, ifi < k (i.e., it is not the last step), we goto the followiSgepi + 1. If ¢ = & (i.e., it is the last
step and the surviving set is not empty), then the globahiggtroblem returns “no” (i.e., some observable
behaviors of the systetsiys is indeed inBad).



In the rest of this section, we will clarify how Automata Geatgon and Surviving Set Generation in the
k steps can be done. Since our technique heavily depends@matattheory, we would like to first build the
theory foundation of our technique before we proceed furthe

4.1 Theory Foundation of the Push-in Technique

Let us first make a pessimistic (the name is borrowed fromigmudsions in[9]) modification of the original
systemSys by assuming that each black-b#, 1 < i < k, can demonstrai@nyobservable behavior i&*
(recalling thatY; is the interface of the black-box). The resulting systemeisated bySys. Clearly, every
observable behavior afys is also an observable behavior$fs (but the reverse is not necessarily true).

Notice thatSys does not have any black-boxes since the original blackBgxafter the pessimistic
modification, can be considered as a finite state Bnitvith only one state, where each actiondih U {¢}
is a label on a transition from the state back to the stateodling to the semantics definition presented in
Sectior[ 3R, it is not hard to see théys itself, after the composition of the gluét with all the one-state
units B, . . ., By, is a finite state transition system wiid| (the number of states in the gluer) states and with
actions inX' U {e}. (Recall thaty = X U ... U X} is the union of all observable actions in the gluer and
the black-boxes.) The pessimistic system can also be tresta@ pessimistic (finite) automaton by making
each state be an accepting state and eddmsition be am-move. In this way, the language (a subseti)
accepted by the automaton is exactly all the observable/mmisaf the pessimistic system.

As we have mentioned earlier, the d8td C X* is a finite and hence regular set. Suppose that the
symbolic representation of the set is given as an automafgp, (whose state number is writte/ ,4);

i.e., the language accepted by, is exactly the seBad.

Using a standard Cartesian product construction, one cidohdiuautomaton\/y;..;, called the global
test sequence automaton, to accept the intersection afiiga&ge accepted by the pessimistic automsiien
and the language accepted by the automaton,,. That is,M ... accepts exactly the bad and observable
behaviors of the pessimistic system. Clearly, the statebmuin M ;opq; iS at MostG| - | Mpqal.

For a worda € X*, we usex |y, 1 < i < k, to denote the result of dropping all symbols notdin
from . Thatis, ifa is an observable behavior of the syst8is, thena | 5, is the corresponding observable
behavior of black-box3;. The theory foundation of our push-in technique can be sumzedhin the following
theorem, which can be shown using the semantics defined tio8EC2.

Theorem 1. For any global test sequencein X*, the following two items are equivalent:

(1) «is a bad (i.e., inBad) observable behavior of the systéms of black-boxes3, .. ., By,
(2) « is accepted by the global test sequence automaign,.;, and each of the following conditions
holds:
(2.1) a | 5, is an observable behavior @f;,

(2.k) a lx, is an observable behavior @;.

We use “class C” to denote all thes that satisfy Theorefd 1 (2). Obviously, the global testimgblem
(i.e., there is no bad behavior #ys) is equivalent to the emptiness of class C.

In the push-in technique, the jobs 8fep 1, .. ., Step k are to establish the emptiness of class C using
both automata theory and black-box testing. One naive aghprtor the emptiness is to use Theoldm 1 (2)
directly: repeatedly pick a global test sequencaccepted byM iopq (NOte thatM g.pq; accepts a finite
language) and, using black-box testing, make sure that btiee @onditions (2), 1 < i < k, is false. This



naive approach works but inefficiently. This is because,mig;...; accepts a huge set (such as more than
10%* in our experiments shown later), trying every such elemenbt only infeasible but also unnecessary.
Our approach of doing the job aims at eliminating the inedficy. First, we do not pick a global test sequence
a. Instead, weomputehe test sequences run on black-gpfrom the testingesultson black-boxB;_; in

the previousStepi — 1. As we have mentioned at the beginning of this section, &ehi has two tasks to
perform: Automata Generation and Surviving Set Generatidiich are presented in detail as follows.

4.2 Automata Generation in Step:

This task inStep is to generate two automata: the unit test sequence autorfiatand the auxiliary au-
tomaton4;.

Initially wheni = 1, A; is constructed asly = Mgopar 4x,0...ux,, I-€., the result of dropping every
transition inM ;.14 that is labeled with an observable action noginu ... U Xy. U; is constructed as the
automatort; = 4; |y, (i.e., the result of dropping every transition4n that is labeled with an observable
action not inX;). Observe thatl, accepts the languagé; = {« | x,u..ux,: « accepted bW/ 14} @nd
U, accepts the languagé = {a |x,: aisin A; }. The state number in either of the two automata, in worst
cases, i$Mgioball-

Wheni > 1, the two automatal; andU; are constructed from the auxiliary automatdn ; and the
surviving setSUV;_; obtained in the previous step. To constrdgt we first build an automatoswuv; ; to
accept the finite s&#UV;_;. Then, we build an intermediate automatbfy ; that works as follows: on an
input word in(X;_1 U...X%)*, M;_; starts simulatingd;_; andsuv;_; on the word, in parallel. During
the simulation, whenevenv;_; reads an input symbol that is not i, _; (note thatsuv,_; only accepts
words inX*_,), it skips the input symbol)/;_; accepts the input word when bath_, andsuv;_; accept.
Finally, the auxiliary automatod; is constructed ad; = M, |x,u...x,. The unit test sequence automaton
U, is constructed af; = 4, |x,.

One can show that each of the two automdteandU; has, in worst cases, a state numbefAf_ 4| -
|suv;_1]. Also, A; accepts the languagk = {a |s,u. us,: @ € (X;—1U...UXL)*isin A;_; anda |5, _,
isin SUV;_1} andU, accepts the languagé = {a |x,: a € (X; U...X)*isin A;}.

As we have mentioned earlier, when the empty string is aeddpy the auxiliary automatos; (a stan-
dard membership algorithm can be used to validate the aaoeg), our push-in technique will return a “no”
answer on the global testing problem (i.e., the system daes & bad observable behavior) and no further
steps need to run.

4.3 Surviving Set Generation in Step

The surviving seSUYV; is the set of all successful unit test sequeneeslf;; i.e.,SUV; = {a € Xf : a €
U; anda is an observable behavior of black-bBx} .

A straightforward way to obtain the set is to run the black-testing procedur8Btest over the black-
box B; with every test sequence iy. This is, however, not efficient, in particular when theigets huge.
Observable behaviors of a unit are prefix-closed: i not an observable behavior Bf, then, for anys, a3
can not be (i.e., test sequenegé need not be run). With prefix-closeness @ Btest, we use the following
automata-theoretic procedure to generate the survivingse;.

Recall thatl4; is a finite set of unit test sequences and, as a regular largaagepted by the unit test
sequence automatadn. Let m be the maximal length of all test sequence&/jr{the length can be obtained
using a standard longest path algorithm over the transifiaph of automatof/;). Our procedure consists



of the followingm jobs. EachJob;, wherej is from 1 tom, is to identify (using black-box testing) all the
successful test sequences (with lengthvhich are prefixes (which are not necessarily proper) ofestest
sequences ity;. In order to do this efficiently, the job makes use of the presitesting results i@;_,. More
precisely, eaclyob; has two parts (by assumption, 8§ contain only the empty word.):

— Define P; to be the set of all the prefixes with lengifof all the unit test sequencesif. Calculate the
setPj C P; such that each elementiﬁ- has a prefix (with lengthi — 1) in ©;_;. To implement this
part, one can first construct an automaton (from automéjpto accept the languagg. Then, construct
another automaton to accept the &gt ;. Finally, an automatoi/ can be constructed from these two
automata to accept the Iangua@e All the constructions are not difficult and do not involvstiag.

- Usmg BBtest, generate the seé; that consists of all the successful test sequences ovet-btacB;
in P Hence, one only runs test sequence@;nnstead of the entiré’;, thanks to the previous testing
results in@;_i.

Itis left to the reader to verify that, after the jobs are cdetgxd, the surviving se¥UV; can be obtained as
U; N (Uo<,;<m©j;). Again, this set can be accepted by an automaton, treatedyastaolic representation of
the set, constructed from automatdnand the automata built in the above jobs to acégptl < j < m.
One can choose the procedure to output the explici#88t; or its symbolic representaticnw;.

4.4 Correctness and Bad Behavior Generation

Since the global testing problem is equivalent to the enagrof class C, we only need to show that the
emptiness is answered correctly with the push-in techniGlearly, the technique always terminates with a
yes/no answer. It returns “yes” only at so®@&epi, 1 < ¢ < k, whose surviving sefUV; = {). It returns
“no” only

CASEL. at somé&tepi, 1 < i < k, when the auxiliary automata#; accepts the empty word, or

CASE2. at the lasBtepk whenSUV}, # 0.

In these two cases, in order to demonstrate a global bad lmelwdthe system, we first define an operation
calledselect;(-), 1 < j < k. Given a sequence;, the operation returns a sequeneg; (whenj =

1, it simply returnsa;) satisfying the following conditionsa; 1 € A; -1, a1 |x;, € SUV;_; and

aj-1 Ix;u..z,= ;. The returned sequencg _; may not be unique. In this case, any sequence (such as a
shortest one) satisfying the conditions will be fine. Now, dredine another operation call@hdGen;(-),

1 < j < k, as follows. Given a sequencg, we first calculatex;_; = select;(«;). Then, we calculate
aj_p = select;j_i(a;_1), and so on. Finally, we obtain;. At this time, the operatioBadGen;(c;)
returns any sequeneesatisfying the following conditionsy is accepted by jiop: anda | s 0. 5, = .

All these operations can be easily implemented throughnaata constructions.

Coming back to bad behavior generation, in CASE1, we reBawdGen;(\) (where ) is the empty
sequence) as a global bad behavior. In CASE2, we simply pigksaquencey;, from SUV} and return
BadGeny () as a global bad behavior.

One can show that our technique is indeed correct:

Theorem 2. If the class C is empty then the push-in technique returns™yetherwise it returns “no”.
When the technique returns yes, it shows that the systenm’tibase any of the global bad behaviors in
BAD, otherwise it indicates that the system does exhibit bad¥iels inBAD.

In each step of our algorithm, one can use standard algasithrautomata theory to make the obtained
automata likd/;'s and A;’s smaller. The algorithms include eliminating unreackatates and/or minimiza-
tion. Additionally, the algorithms as well as all the autdeneonstructions mentioned in the push-in technique
can be implemented using existing automata manipulatiols tike Grail [1].



From the correctness theorem, we know that the push-in igeérs sound and complete. However,
one question still remains unsolved: Are test sequencedldck-boxB;) in eachl{; more than necessary
(in solving the global testing problem)? We can show thahé#écderived from our push-in technique is
“optimal” in the following sense. Suppose that we have catga the firsti — 1 Steps (i.e., the black-
boxesB;, ..., B;_1 have been tested) and have obtaitdedo start the subsequent steps (i.e., the remaining
black-boxesB;, . . ., By are not tested yet). Each test sequanci U/; has to be run, since one can show the
following two statements: There are black-boX&s . . ., B;, such thaty; is a successful (resp. unsuccessful)
test sequence faB; and the systentz(B., ..., B;—1, Bj,...,B}) has (resp. does not have) a global bad
behavior.

maxlength=10 maxlength=20 maxlength=30
step,; #A; #U; #SUV, TC; H#A; #U;, #S5UV;, TC; H#A; #U;, #SUV; TC;
stepy |1.06X107 148 47  68[7.16X10™° 8.06X10" 3533 4572(2.16X107* 4.14X10” 2.23X10° 2.87X10°
case Istep,|3.05X10° 548 12 41(6.92X10** 4.62X10° 177 393|1.13X10%% 2.43X10% 1331 2940
step, |4.78X10% 4.78X10% 7 39|1.15X10'2 1.15X10'2 58 297(1.81X10%° 1.81X10"° 274 1577
step; |1.38X107 386 73 121[5.90X1075 2.61X10° 6697 9384|1.59X107% 1.42X10° 4.74X10° 6.30X10°
case Istep, |3.12X10° 142 13 25[4.94X10** 5.91X10* 93 203]6.99X10%% 2.53X107 645 1356
steps |7.25X10° 7.25X10° 0 47[1.11X10'? 1.11X10"® 0 277|1.48X10%° 1.48X10%° 0 1259
step; |1.38X107 386 73 121[5.90X10™ 2.61X10° 6697 9384[1.59X10%T 1.42X10°% 4.74X10° 6.30X10°
case 3step,|3.12X10° 142 13 25[4.94X10** 5.91X10* 93 203]6.99X10%% 2.53X107 645 1356
step, |7.25X10° 7.25X10° 0 47[1.11X10'* 1.11X10"® 13 359|1.48X102° 1.48X10%° 129 2577
step, [1.30X10° 178 32 76[3.51X10™° 2.20X10° 5507 8197[1.65X10%7 1.36X10° 4.44X10° 6.00X10°
case 4step, |1.02X10° 97 0 14|9.54X10'% 1.70X10° 0 128(2.39X10%? 1.22X10°% 0 906
step, 0 0 0 0 0 0 0 0 0 0 0 0

Table 1. Experiment Results: Counts of Test Sequences

5 Experiments

All the experiments were performed on a PC with a 800MHz Remtll CPU and 128MB memory. The Grail
[ tool was used to perform almost all the automata opematia'he entire experiment process was driven
by a Perl script and carried out automatically. Our expenite@ere run on the system of black-boxes shown
in Figureld. In the experiments, we designated black-baxes:r, Sensor andComm as By, Bz, andBs,
respectively. The internal implementations of the blaokés are shown in Figurgs[3, 4 ddd 5, on which the
unit testing in the experiments was performed. We havelyotah twelve experiments (each experiment is
a complete execution of the push-in technique), which areled into four cases. Each of the four cases
consists of three experiments, which are illustrated iaitles follows.

Case 1Firstly, we wish that whenever pause event takes place, there should be no mared un-
til a resume occurs. The corresponding bad behaviors are specified agutareexpressiony*p(X —
{r})*sX*, where X is the set of all the twelve events in the system;, ands stand for thepause,
send, andresume, respectively (such abbreviation will be used throughbisg section). For the first ex-
periment run in this case, we chose tBad to be all words in the regular expression that are not longer
than 10 (denoted by “maxlength=10"). The remaining two ekpents were run with “maxlength=20" and

% We implemented (in C) three additional operations to maatpuautomata witlhi-moves and to count the number of
words in a finite language accepted by an automaton, whichairgrovided in Grail.



“maxlength=30", respectively. To understand the resuitss in TabldZW, we go through the third exper-
iment (i.e., “maxlength=30"). The results of the experitare shown in the box at the right upper corner
in the table (i.e., under the four columns associated withxiength=30" and in the three rowss{ép,”,
“step,”, “steps”) associated with “case 1”). The three steps in the expeartnoerrespond to the three
Steps (since there are three black-boxes) in the push-in teaknithe auxiliary automatoA; calculated

in Step laccepts totally#A; = 2.16 x 10?4 test sequences. The unit test sequence autoniataccepts
#U; = 4.14 x 107 test sequences. Using the black-box testing proceduredticB&E3, we actually only
performedl’C; = 2.87 x 10° unit tests overB; (the Timer), among which#SUV; = 2.23 x 10° tests
survived. InStep 2andStep 3 we obtained# A,, #Us, # Az, #Us similarly as shown in the table. In par-
ticular, we actually performe@dCy = 2940 unit tests over theensor in Step 2and7'C3 = 1577 unit tests
over thecomm in Step 3 Since the last surviving s&U V3 is not empty ¢£SU V3 = 274), the experiment
detects a global bad behavior specified in this case.

Notice that the total number of unit tests run in this expentis7C; + T'Cy + T'Cs, which is not more
than2.92 x 10°. This number essentially indicates the actual “cost” ofakperiment in deciding whether
there is a global bad behavior specified in the case and whogélis bounded by 30. This number is quite
good considering the astronomical numbed; = 2.16 x 10** which would be the number of integration
test sequences if one run integration testing, sinGg.,.; = A1 in the system. The other two experiments
(“maxlength=10" and “maxlength=20") also detected a gldizal behavior and results are shown in the first
three rows under “maxlength=10" and “maxlength=20" in E{BI4 (the costs of these two experiments,
which are 148 and 5262 respectively, become much smaller).

Case 2The detected bad behaviors are due to the concurrency radtthrese black-boxes: fire was
issued before thpause is sent toTimer, which eventually leads to anothe¢nd. For instance, a global
bad behavior could be like the followingire data send msg fire data send cerr fire data pause send.
From this observation, we believed that the system miglut ladse other bad behaviors: aftecar takes
place, there could be anotherrr coming before aesume occurs. Such bad behaviors are encoded by
X*e(X — {r})*cX*. The three experiments in this case, however, did not dstestt bad behaviors (i.e.,
#SUV3 = 0 for all lengths, shown in the third row “stgpassociated with “case 2" in Table3.4).

Case 3Based upon the experiments in the previous case, we carefutlied the system and realized that
the implementation of omm might be wrong: after an error occurs (i.e gar outputs),Comm is supposed
to retain its state prior to the output of therr, while it does not. After correcting this bug (by making the
internal implementation af omm, shown in Figur&ls, move to stat@ instead ofs0 after acerr is output), in
this case, we run the three experiments again. The expetsrdetected bad behaviors only with length more
than10 (i.e., #SU V3 = 0 when maxlength is 10 ang SU V5 > 0 when maxlength i20 and30, shown in
Table[Z3).

Case 4Now we want to test that: after an error occurssinsor (i.e., aserr is issued), there will be
at most one mor¢ire issued before acsume occurs. The corresponding bad behaviors are encoded by
Xrserr(X —{r})*f(X = {r})*f(X = {r})*rX*, wheref stands forfire. Our experiments did not detect
any of such behaviors for all the three choices of maxlerfifdh20, 30. In fact, in the experiments, no testing
over Comm was needed. This is because, shown in the last three rowtE[da},#SUV; is 0 for all the
three choices.

We measured the total time that our script used for automatapulations in each of the twelve exper-
iments, shown in TablE 2. In the table, the “result” shows tivea global bad behavior was detected in an
experiment; i.e., X" (resp. “,/”) indicates “detected” (resp. “not detected”). As showrihie table, the total
time is within a minute for all the four experiments with “mamrgth=10". For “maxlength=20", the time is
still acceptable (within an hour). When the maxlength igéased to 30, the time is still within our patience



(which was set to be 24 hours). Yet, our script could not fimigthin the patience for any experiment when
we tried to push maxlength to 40. Even though determininadind minimization are optional in our push-in
technique, we made them mandatory in our experiments. $nathy, we can cross-compare the sizes of the
automata obtained in each step of the experiments. Theslasge of all the automata constructed in the
twelve experiments, after determinization and minimimatiis with 726 states and 2138 transitions. In an
experiment with maxlength=40, the script tried to make atormaton (with 1182 states) deterministic and
failed to do so within our patience.

Exhaustive integration testing over a concurrent system general infeasible. However, the experi-
ments show that, using the push-in technique, we can coetplstlve the global testing problem with a
substantially smaller number of tests over each individiliatk-box only, even for an extremely large set
of Bad. For instance, the total number of unit tesi&;'s) performed in each of the four experiments with
“maxlength=30"is in the order af0®, while eachBad is in the order ofi024 (notice that eaclBad is always
larger than eack: A, shown in Tabl§Z14).

O

maxlength=10maxlength=20maxlength=3
Casestime result time result time result
Case 1~25s X [~40m x [~19h X
Case 2~34s V/|~58m V/|~18h vV
Case 3~36s V/|~56m x |~18h X
Case 4~17s V|~22m V/| ~5h vV
Table 2. Experiment Results: Time Efficiency

6 Future Work

This paper presents an automata-theoretic and deconguaditechnique to testing a system of concurrent
black-boxes, which is automatic, sound, and complete. @mtique can be generalized to many other forms
of bad behavior specifications (i.e., the finite Betd). For instance, we may that specify tHatd consist of

all observable sequences not longer than 40, each of whicimale the gluer enter a given (undesired) state.
But the exact formalisms for bad behavior specificationglfegher investigation. Our model of the system
is based on synchronized communications. Therefore, itdhlmelinteresting to see whether the approach can
be generalized to some forms of asynchronous (e.g., sivaréible) systems. Black-boxes in our model are
event-driven; it is also worthwhile to study other deconifiasal testing approaches for data-driven black-
boxes. Sometimes, our push-in technique fails to compliete to an extremely large bad behavior Beid
(e.g., our experiments with “maxlength=40" shown earlienpse global test sequences deduced figun

are roughly as many a)33). In this case, we need study methods to (symbolically)itpamtthe set into
smaller subsets such that the push-in technique can be aureaeh smaller subset. In this way, a global bad
behavior could instead be found. In our definition of the pimstechnique, there is not a pre-defined ordering
in testing the black-boxes. For instance, in our experisie¢he orderingwasimer, Sensor, Comm, based

on the size of a black-box’s interface. Clearly, more stsidiee needed to clarify the relationship between the
efficiency of our technique and the choices of the ordering.
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