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Abstract. In many organizations, it is common to control access to con-
fidential information based on the need-to-know principle; The requests
for access are authorized only if the content of the requested information
is relevant to the requester’s current information analysis project. We
formulate such content-based authorization, i.e. whether to accept or re-
ject access requests as a binary classification problem. In contrast to the
conventional error-minimizing classification, we handle this problem in a
cost-sensitive learning framework in which the cost caused by incorrect
decision is different according to the relative importance of the requested
information. In particular, the cost (i.e., damaging effect) for a false pos-
itive (i.e., accepting an illegitimate request) is more expensive than that
of false negative (i.e., rejecting a valid request). The former is a serious
security problem because confidential information, which should not be
revealed, can be accessed. From the comparison of the cost-sensitive clas-
sifiers with error-minimizing classifiers, we found that the costing with
a logistic regression showed the best performance, in terms of the small-
est cost paid, the lowest false positive rate, and the relatively low false
negative rate.

1 Introduction

Illegitimate access to confidential information by insiders poses a great risk to
an organization. Since malicious insiders are well aware of where the valuable
information resides and which cause damaging effects, the results of illegitimate
confidential access are far more costly. Illegitimate access is difficult to effec-
tively prohibit or detect because malevolent actions are done by already trusted
persons.

One of the most common approaches to handle this problem is access control
based on the need-to-know principle; The requests for access are authorized only
if the content of the requested information is relevant to the requester’s project.
For example, if an information analyst’s current project concerns the develop-
ment of nuclear weapon by Iran, it would be illegitimate for the analyst to have
access to documents on other aspects, e.g., feminist activities in Iran. However,
since documents on these different aspects of Iranian politics and welfare are not
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necessarily a priori separated in different secured data bases, the issue of allowing
access on a need-to-know basis on particular documents is very challenging.

Requests to access the confidential information may occur, for example, when
an employee is assigned to a new project and needs to access background knowl-
edge. The project manager will either hand select only those confidential infor-
mation that he will let the employee see, or completely bar access to the entire
collection rather than exposing information that should not be exposed. However
this approach is quite inflexible. It does not allow easy adjustment to frequent
changes of a user’s task assignment. Project assignments for an employee may be
changed quite often and hence the employee needs to access confidential informa-
tion related to the newly assigned project. Alternatively, since the organization
wants to make sure that the employee accesses only pertinent information, a
set of access control lists (ACL) may be compiled manually to control those re-
quests. Each item of confidential information is associated with an ACL, which
ensures a corresponding level of security and can be accessed by anyone who has
been authorized. However this approach has a crucial security weakness. Since,
for the purpose of indexing and security, confidential information is grouped into
containers by project-basis, a user who is authorized to a segment of confidential
information in a container is actually able to access the entire container.

As a solution for these problems, we developed a multi-agent system that han-
dles the authorization of requests for confidential information as a binary clas-
sification problem [9]. Instead of relying on hand-picked information or coarse-
grained ACLs, our system classifies on-the-fly the content of each requested
information access as positive or negative with respect to the content of the
requester’s project and authorizes the request if the requested information is
classified as positive to the requester’s project. Otherwise the request is rejected
because the requester’s project description is not similar to the information. Our
approach is quite flexible and adaptive to changes of project assignment because
only an updated description of newly assigned projects is necessary to re-train
the classifiers, instead of re-compiling the ACL on all changing relevant infor-
mation. Therefore, it is much less expensive, both computationally, and also in
terms of human time and effort, than an ACL-based approach.

Although our approach showed a relatively good performance [9], we believe
there is room for improvement. Previously we made use of five different error-
minimizing classifiers for authorizing the requests to access confidential informa-
tion. However, in domains where there is differential cost for misclassification of
examples, an error-minimizing approach may not give results that reflect the real-
ity of the domain. For example, suppose that there are 100 medical cases that are
comprised of 5 cancer cases and 95 flu cases. Without considering the cost for mis-
classification (e.g., compensation for misdiagnosis), an error-minimizing classifier
would simply achieve the lower error rate by ignoring the minority class, even
though the actual result of misdiagnosis on cancer is far worse than that of flu.
Thus, it is undesirable to use an error-minimizing classification method, which
treats all mis-classification costs equally for such a cost-sensitive scenario because
primarily it classifies every example as belonging to the most probable class.



Cost-Sensitive Access Control for Illegitimate Confidential Access by Insiders 119

In this paper we present our works for testing the effectiveness of cost-sensitive
learning for the problem of confidential access control. Section 2 compares cost-
sensitive classification with error-minimizing classification in terms of the op-
timal decision boundary. In addition, it describes two cost-sensitive learning
methods for the process of confidential access control. Section 3 describes ex-
perimental settings and empirical evaluation of cost-sensitive learners. Section 4
presents related work and section 5 presents conclusion and future work.

2 Cost-Sensitive Classification

A classification method is a decision rule that assigns one of (or more than
one) predefined classes to given examples. The optimal decision boundary is a
decision criterion that allows a classifier to produce the best performance. Let
us consider a hypothetical example in figure 1 which shows two classes with
overlapping boundaries due to their intrinsic randomness – their actual values
are random variables. In this example, the class-conditional density for each class
is a normal distribution, that is, f0(x|class = 0) ∼ N(μ0, σ

2
0) and f1(x|class =

1) ∼ N(μ1, σ
2
1) (i.e., μ0 = 0.3500, σ0 = 0.1448, μ1 = 0.7000, σ1 = 0.1736).

Under the equal cost for misclassification, the optimal decision boundary (the
solid line in the figure 1) lies in the center of two class distributions. An example
randomly generated will be assigned to class 1 if its value is greater than 0.52 (the
actual value of the optimal decision boundary in figure 1 is xe∗ = 0.52). Otherwise
it is assigned to class 0. According to the optimal boundary, a classifier can gen-
erate four possible classification outcomes for a given example; a: true positive,
b: false positive, c: false negative, and d: true negative [4]. Table 1 captures this
information as well as the cost (λij) involved in those four outcomes.

If the cost for misclassification is unequal, where then would be the opti-
mal decision boundary? Let us consider the case that there are text documents
belonging to “class 0” and “class 1,” and all of them are confidential informa-
tion of which careless release may have a damaging effect. An employee is newly
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Fig. 1. The optimal decision boundary for a binary classification may vary according
to the cost for misclassification
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Table 1. A cost matrix represents four possible classification outcomes and their as-
sociated costs. In particular, for a given example, x, “a” means true positive, i.e., the
example belongs to class 1 and is classified as class 1. “ c” is false negative if x is
classified as class 0. “d” is true negative if x belongs to class 0 and is classified as class
0. Finally, “b” is false positive if x is classified as positive. λij is the cost for classifying
an example belonging to j as i.

true class = 1 true class = 0

output class = 1 a (λ11) b (λ10)
output class = 0 c (λ01) d (λ00)

assigned to a project for which records are labeled as “class 1.” He is authorized
to access only documents in “class 1” because he needs to know background
knowledge of the project. Assuming that a zero cost is assigned to the correct
classification 1 (i.e., λ11 = λ00 = 0), the costs for two types of error should be
considered carefully for providing a reliable confidential access control; false neg-
ative (λ01) – reject the valid request (e.g., reject the request that the employee
asks to access a “class 1” document); false positive (λ10) – accept the invalid
request (e.g., accept the request that the employee asks to access a “class 0”
document). In particular, a false negative causes the employee to be inconve-
nienced because he is not able to access need-to-know information. However,
not approving valid requests does not cause a serious problem from the security
perspective. On the contrary, a false positive is a serious problem because con-
fidential information, which should not be revealed, can be accessed. Therefore,
for a need-to-know basis confidential authorization, the cost for false positive
(i.e., the damaging effect) is much higher than that of false negative.

Thus the decision boundary for uniform-cost must be re-located, in order to
minimize the cost for misclassifications. For example, if the cost of false pos-
itive is higher than that of false negative, the decision line should be moved
toward the right (e.g., xe∗ → xR∗). Two dashed lines in figure 1 represent the
optimal decision boundaries for non-uniform misclassification cost assigned to
each example. However a tradeoff must be considered because choosing one of
the extremes (e.g., xL∗ or xR∗ ) will not consider the error. In particular, the
classifier could reduce the false negative close to zero if we would choose xL∗ as
a decision line, but with higher false positive. If either of extremes is not the so-
lution, the optimal decision line should be chosen somewhere between extremes
by considering the tradeoff.

2.1 Methods for Cost-Sensitive Classification

In the problem of unequal misclassificaiton cost, the goal of cost-sensitive learn-
ing is to find the boundary between the regions that divide optimally the
example space. Obviously the misclassification cost, particularly a cost table

1 We assume that the employee is authorized to access if the requested documents is
classified by the system as “class 1”.
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(e.g., table 1), is the dominant factor for the optimal boundaries. That is, the
region where class j must be predicted will expand at the expense of the re-
gions of other classes if misclassifying examples of class j is more expensive
relative to misclassifying others, even though the class probabilities remain un-
changed.

In this paper, we utilize two methods that convert arbitrary error-minimizing
classifiers into cost-sensitive ones without modifying classification rules: costing
[13] and metacost [2]. These methods make use of sampling techniques that
change the original example distribution D to D̂ by incorporating the relative
misclassification cost of each instance, according to a given cost matrix. This
changes the proportion of a certain class (e.g., documents that are “need-to-
know” to perform a given project) by re-sampling of the original examples. Then
the methods make any cost-insensitive error-minimizing classifiers to perform
cost minimization on the newly generated distribution, D̂.

Costing. Costing (cost proportionate rejection sampling with aggregation) is
a wrapper for cost-sensitive learning that trains a set of error-minimizing clas-
sifiers by a distribution, which is the original distribution with the relative cost
of each example, and outputs a final classifier by taking the average over all
learned classifiers [13]. Costing is comprised of two processes: rejection sam-
pling and bagging. Rejection sampling has been used to generate independently
and identically distributed (i.i.d.) samples that are used as a proxy distribution
to achieve simulation from the target distribution. Rejection sampling for the
costing assigns each example in the original distribution with a relative cost
2 and draws a random number r from a uniform distribution U(0, 1). It will
keep the example if r > c

Z . Otherwise it discards the example and continues
sampling until certain criteria are satisfied. The accepted examples are regarded
as a realization of the altered distribution, D̂ = {S′

1, S
′
2, ..., S

′
k}. With the al-

tered distribution, D̂, costing trains k different hypotheses, hi ≡ Learn(S
′
i),

and predicts the label of a test example, x, by combining those hypotheses,
h(x) = sign

(∑k
i=1 hi(x)

)
.

MetaCost. MetaCost is another method for converting an error-minimizing
classifier into cost-sensitive classifier by re-sampling [2]. The underlying assump-
tion is that an error-minimizing classifier could learn the optimal decision bound-
ary based on the cost matrix if each training example is relabeled with the cost.
MetaCost’s learning process is also comprised of two processes: bagging for re-
labeling and retraining the classifiers with cost. In particular, it generates a set
of samples with replacement from the training set and estimates the class of
each instance by taking the average of votes over all the trained classifiers. Then
MetaCost re-labels each training example with the estimated optimal class and
re-trains the classifier to the relabeled training set.

2 x̂i = c
Z

× xi, where c is a cost assigned to xi and Z is a normalization factor,
satisfying maxc∈S c.
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3 Experiments

The scenario which we are particularly interested in is a process of confiden-
tial access control based on the need-to-know principle. We model the decision
whether to reject or accept the access request as a binary classification. In par-
ticular, our system classifies the content of the requested information as positive
or negative with respect to the content of the requester’s project and authorizes
the request if the requested information is classified as positive to the requester’s
project. Otherwise the request is rejected. To this end, we choose three differ-
ent classification methods, linear discriminant analysis (LDA), logistic regression
(LR), and support vector machines (SVM), because of their relative good per-
formance, particularly in text classification [7], [8], [11].

The purpose of the experiments is two-fold; (1) to find a good classification
method that minimizes the cost and the false positive rate while holding the
false negative rate reasonably low, (2) to verify that the cost-sensitive learning
methods reduce the total cost for misclassification in comparison with error-
minimizing classifiers. From these objectives, three performance metrics are pri-
marily used to measure the usefulness of classifiers; false negative, defined as
fn = c

a+c by using the values in the table 1, false positive, fp = b
b+d , and cost

for misclassification. These metrics are better matched to our purpose because
we are interested in primarily reducing the error and the cost.

Since there are no datasets available that are comprised of confidential in-
formation, we choose the Reuters-21578 document collections for experiments.
This data set, which consists of world news stories from 1987, has become a
benchmark in text categorization evaluations. It has been partially labelled by
human experts with respect to a list of categories. Since our task is a binary
classification task where each document must be assigned to either positive or
negative, we discarded documents that are assigned no topic or multiple topics.
Moreover, classes with fewer than 10 documents are discarded. The resulting
data set is comprised of 9,854 documents as a training set and 4,274 documents
as a test set with 67 categories.

The experimental setting is as follows. All the documents are regarded as
confidential. Documents belonging to the selected category are regarded as con-
fidential information that the requester needs to know. Conversely the rest of
test documents are confidential information that should not be revealed. A false
positive occurs when a method classifies a document as positive that should have
not been revealed whereas a false negative occurs when the method classifies a
request as negative that should have been accepted. For both errors, the system
pays the cost for misclassification. In the next section, we describe a method for
cost assignment.

3.1 Cost Assignment

According to the class assignment – not the original Reuters-21578 category la-
bel, but the artificially assigned class label, such as need-to-know confidential
or otherwise (simply, positive or negative) – each of the documents in both the
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training and testing sets is assigned a cost, ensuring that the mis-classification
cost of a need-to-know confidential information is higher than that of the re-
maining confidential documents (i.e., λ10 > λ01, λ10 > λ00, λ01 > λ11) [3].

Since the Reuters-21578 document collection does not have cost information,
we devised a heuristic for cost assignment. There is a cost involved in incorrect
classification. Moreover, a higher cost is assigned to a false positive than a false
negative. Particularly, the cost for misclassifying a confidential document, di, is
computed by:

cost(di) =

{
[s, s + |cj |] if di ∈ cj and cj = positive[
0,

∑
s∈positive cost(ds)

|number of negative documents|
]

Otherwise

where s = ln
(

N
|cj|

)
× 100, N is the total number of documents and |cj | is the

number of documents belonging to the jth category. The total cost for misclas-
sification is added to the cost of confidential documents misclassed if a classifier
is not able to predict any of the positive cases, in order to prevent the case that
a low cost is simply achieved by ignoring the class with a low frequency. For ex-
ample, there are 15 out of 10,000 documents belonging to the positive class. The
cost assignment ensures that the total cost for misclassifying those 15 examples
should be either equal to or higher than that of the remaining documents 3.

3.2 Experimental Results

From the 67 selected categories of the Reuters-21578 dataset, we choose the
five different categories as representative ones according to their category fre-
quencies: small (“livestock” and “corn”), medium (“interest”), and large (“acq”
and “earn”). There are 70% of documents in a category (e.g., the “livestock”
category) used as “training” and the remaining 30% documents are used for
“testing”, respectively. There are nine different classifiers tested: LDA, LR, and
SVMs, and the combination of those three classifiers with two methods for cost-
sensitive learning: metacost and costing. A binary classifier was trained for each
of the selected categories by considering the category as positive (i.e., docu-
ments that an employee needs to know) with the rest of the data as negative
examples. We made use of the LIBSVM4 and tested three different kernels,
such as linear, polynomial, and Gaussian. The Gaussian kernel (i.e., width =

1
max feature dimension) was chosen due to its best performance and the different
cost factors are assigned 5, C = 10 ∼ 100. Those values are chosen optimally by
10-fold cross validation.
3 For this case, the cost for misclassifying a positive document is 650.0789 (=

ln
(

9985
15

)×100) and the sum of the cost is 9751.1835 (=650.0789 × 15). Accordingly
the cost of misclassification of a negative document is 0.9765 (= 9751.1835

9985
) and the

cost sums to 9751.1835 (= 0.9765 × 9985).
4 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
5 The cost of constrain violation is set to 100 if there are relatively small amount of

positive examples available. Otherwise it is set to about 10.
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Fig. 2. Pairs of false positive (filled bar) and false negative (empty bar) for three
selected categories by nine different classifiers, which are numbered from the left to
right: (1) SVM, (2) SVM with costing, (3) SVM with metacost, (4) LR, (5) LR with
costing, (6) LR with metacost, (7) LDA, (8) LDA with costing, and (9) LDA with
metacost, respectively. From the top left, the results for “livestock,” “corn,” “interest,”
“acq,” and “earn” are presented

As mentioned earlier, the experimental results are primarily analyzed by “false
positive,” “false negative,” and “cost.” The procedure of experiments is as fol-
lows: firstly, pick one of five selected categories; secondly, assign the cost to each
of documents according to its importance using the heuristic described in sec-
tion 3.1; then, train each of nine classifiers by training examples with cost; finally
compute three performance measure (i.e., false positive, false negative, and cost
for incorrect classification). Figure 2 shows pairs of false positive and false neg-
ative for the three selected categories by nine different classifiers. Except the
“interest” category, LR with the costing showed the best results that minimize
false positive while holding false negative low. In particular, for the “livestock”
category, LR trained by only 18% training data (i.e., 1,781 out of 9,854 docu-
ments) resulted 0% false positive and 2.8% false negative rate. For the costing,
we carried out five different sampling trials for each category (i.e., 1, 3, 5, 10,
and 15) and represented the trial for the best performance. For this category, a
newly generated distribution by 10 rejection sampling trials is used to achieve
this result. Each resampled set has only about 178 documents. LDA with the
costing showed the smallest error for the “interest” category that is comprised
of 5.6% false positive and 4.5% false negative.

Table 2 replicates this trend in terms of the total cost for misclassification.
The number in parenthesis next to topic name in table 2 is the total number of
text documents belonging to that category. The results reported for the costing
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Table 2. The cost for misclassification by nine different classifiers are presented. The
values in bold face are the best for corresponding category.

Methods livestock (114) corn (253) interest (513) acq (2448) earn (3987)

SVM 13967 66453 54065 83141 108108
SVM (w/costing) 4035 ± 30 8851 ± 52 9058 ± 159 40009 ± 252 96007 ± 331

SVM (w/mc) 7147 ± 50 23596 ± 64 32011 ± 321 194165 ± 451 228612 ± 453
LR 35809 32759 60031 349080 710631

LR (w/costing) 484 ± 11 1333 ± 44 29614 ± 110 606 ± 145 2521 ± 191
LR (w/mc) 34980 ± 35 32759 ± 79 60374 ± 154 386859 ± 1185788819 ± 263

LDA 2638 66453 124733 591300 908690
LDA (w/costing) 1461 ± 28 6092 ± 89 7301 ± 152 39354 ± 205 41478 ± 159

LDA (w/mc) 40079 ± 57 45778 ± 71 8955 ± 157 51789 ± 285 54084 ± 244

Cost for base line 42625 79084 139113 591357 1090498

and the metacost are the average of 5 different runs. The bottom line entitled
“cost for base line” is the total cost for a category if a classifier classifies all
the testing examples incorrectly (e.g., the misclassification cost of a classifier for
“livestock” will be 42,625 if the classifier classifies all incorrectly). For the “earn”
category, LR with the costing caused only 0.002 out of the total cost (2,521 out
of 1,090,498). For the remaining categories, the best-performer paid only less
than 0.05 out of the total cost.

From the comparison with error-minimizing classifiers, the costing proved its
effectiveness in that it requires relatively small amount of training data for a
better performance. For the “corn” category, LR with the costing, which only
used 10% of the training data (i.e., 986 out of 9,854 documents) showed the best
result in terms of the smallest loss (1,333 out of 79,084), zero false positive, and
lower false negative rate (0.039). The LR classifier was trained by a sample set by
three rejection sampling trials that is comprised of 458 positive and 528 negative
examples. The smallest cost implies that it is expected to pay 1.1% of the total
cost caused by incorrect confidential access control (i.e., misclassification). From
the false positive perspective (zero false alarm), there is no leaking of confidential
information. 39% false negative rate means that there would be 39 out of 1,000
valid requests to the confidential information that are mistakenly rejected. This
inconveniences employees because they have to access particular information for
their projects, but the system does not authorize their access requests. This
trend holds good for the remaining four categories.

4 Related Work

Weippl and Ibrahim [12] proposed content-based management of text document
access control. They applied a self-organized map (SOM) to cluster a given col-
lection of text documents into groups which have similar contents. This approach
also allowed humans to impose dynamic access control to identified text docu-
ment groups. However they did not address a potential problem that occurs
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when the security policy for individual documents of a cluster does not match
with the security policy for that cluster. Giuri and Iglio [5] proposed an approach
that determines a user’s access to confidential information, which is based on the
content of the information and the role of the user. For example, they consider
subdividing medical records into several different categories (e.g., pediatrics),
and allow that only relevant physicians (e.g., pediatrician) can access them.
Since they do not mention automatic techniques in their paper, one is left with
the suspicion that they manually categorize content and roles. Aleman-Meza
and his colleagues proposed an ontological approach to deal with the legitimate
document access problem of insider threat [1]. An attempt to access document
is regarded as legitimate if the job assignment of a requester (e.g., an intelli-
gence analyst) has a semantic association with the documents that are accessed.
This approach is quite similar to ours in that they enforce the need-to-know
principle by using a predefined ontology. A well-defined ontology might be use-
ful to determine the semantic associations between the existing documents and
the analysts’ assignments, but regular updates are required to accommodate the
change of the document collections and the topics of assignments. Symonenko
and his colleagues propose a hybrid approach that combines role-based access
monitoring, social network analysis, and semantic analysis of insiders’ communi-
cations, in order to detect inappropriate information exchange [10]. Lee and his
colleagues [6] introduced a cost-sensitive framework for the intrusion detection
domain and analyzed cost factors in detail. Particularly, they identify the major
cost factors (e.g., costs for development, operation, damages and responding to
intrusion) and then applied a rule induction learning technique (i.e., RIPPER)
to this cost model, in order to maximize security while minimizing costs. How-
ever their cost model needs to be changed manually if a system’s cost factors
are changed.

5 Conclusion and Future Work

In the scenario of confidential access control based on the need-to-know principle,
a false positive occurs when the system accepts a request that should not have
been accepted whereas a false negative occurs when the system rejects a request
that should have been accepted. For both errors, the system pays the cost for
misclassification. From the security perspective, it is more tolerable to have an
authorization process with a high false negative rather than one with a high false
positive rate because the latter is a serious security problem since confidential
information, which should not be revealed, can be accessed.

In this paper we test the effectiveness of cost-sensitive learning for confiden-
tial access control and improve our previous results by taking into consideration
the cost caused by misclassification. To this end, we model the binary decision
whether to reject or accept the request in a cost-sensitive learning framework,
where the cost caused by incorrect decision for the request is different according
to the relative importance of the requested information. In addition, we in-
vented a cost assignment method that ensures that the mis-classification cost of
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a need-to-know confidential information is higher than that of the other confiden-
tial information. Finally we tested three different error-minimizing classification
methods.

From the comparison of the cost-sensitive learning methods with the error-
minimizing classification methods, we found that the costing with a logistic re-
gression showed the best performance. In particular, it requires far less training
data for much better results, in terms of the smallest cost paid, the lowest false
positive rate, and the relatively low false negative rate. The smallest cost implies
that it is expected to pay 1.1% of the total cost caused by incorrect confidential
access control. The nearly zero false positive rate means that there is no leak-
ing of confidential information. The benefit of smaller training data is two-fold;
First, obviously it takes less time to train the classifier; Second, it enables a
human administrator to conveniently identify arbitrary subsets of confidential
information, in order to train the initial classifier. In other words, through our
proposed methods, it becomes easier for a human administrator to define, as-
sign, and enforce an effective access control for a particular subset of confidential
information. Although our approach demonstrates a promising result, we believe
that such a content-based approach should be used as a complementary tool for
a human administrator.

Although to our knowledge, the cost-sensitive learning approach is a novel
one for confidential access control, it would be very interesting if we compare
the effectiveness of our framework with conventional document management
systems (e.g., ACL-based systems) and knowledge-intensive approaches (e.g.,
ontology-based systems) as future work.
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