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Abstract. This study evaluates a method for reengineering a procedural system to an object-oriented 
system. Relationships between functions in the procedural system were identified using various 
coupling metrics. While the coupling metrics used for analysis were helpful in identifying candidate 
objects, domain expert analysis of the candidate objects was required. The time taken at each step in the 
process was captured to help determine the effectiveness of the method. Overall the process was found 
to be effective for identifying objects. 

Introduction 

Many companies have large inventories of legacy code written in procedural languages.  When these 
companies migrate to new object-oriented architectures, they do not want to start from scratch if it can be 
avoided. Therefore, a need exists for a methodology that can analyze existing procedural code and identify 
related functions and data that can be encapsulated into reusable objects in the application domain. 

This case study extends the Pole method described in [1] with new metrics and uses it to identify 
potential reusable objects in the ccount metrics tool [3], which is written in C. 

The steps in the method are described briefly along with the required metrics. The process and time 
taken for each step was captured and reported, and the data collected was used to determine the overall 
effectiveness of the method. The goal of this process is to identify reusable objects in the application 
domain. Once the code has been reengineered using these objects, traditional refactoring methods can be 
applied to further refine these objects and strengthen the design of the object-oriented code. 

Reengineering methodology 

The method evaluated in this study proposes steps to be taken in reengineering a procedural system to an 
object-oriented system. The method delivers reusable objects from existing legacy code. It is based on the 
premise that program elements that exhibit certain kinds of coupling can be grouped together to form 
objects. The steps to be taken in the reengineering process are as follows: 

1. The domain expert creates a function stop list. A stop list contains functions identified by the 
domain expert as utility functions that do not perform tasks specific to the domain. 

2. A call graph is generated. A tool or manual scanning of the code base is used to generate a call 
graph that shows the flow of control in the legacy code. 

3. Dependency and context lists are created. A dependency list identifies all the functions invoked 
from a given function. A context list does the reverse—it identifies the functions that invoke or 
use a given function. 

4. Objects are identified. In this step the metrics are calculated and the potential objects are 
identified. This step turned out to be the most involved step in the process. For clarity, we break its 
description into three sub-steps. 

(a) Summary data is collected. The summary data contains information for each function 
that is not in the stop list, such as the types and names of parameters, variables, and 
functions used in the given function. 
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(b) Metrics are calculated. Different coupling metrics describe different relationships 
between functions, such as how many times one function invokes another or how many 
parameters are shared by the functions. In this study we used eight different coupling 
metrics and evaluated each one individually for its effectiveness in identifying objects. 

(c) Candidate objects are identified. The software engineer determines a threshold for each 
metric. If the metric for two functions is above the threshold, those functions are 
candidates to appear as methods in the same class.  

5. Domain expert chooses objects. The domain expert examines candidate objects and determines 
whether they are reasonable. Variables common to two or more functions are examined for their 
appropriateness as object attributes. Leftover functions including the functions in the stop list can 
be converted into individual objects or packaged as utility objects. 

Throughout the process of evaluating the proposed method, the following metrics were captured: 
• The time taken at each step of the process.  

• The number of domain specific objects and utility objects created.  

• The number of functions and lines of codes in the legacy system.  

Coupling Metrics 

This section describes the metrics that we used in our methodology. Each metric describes a distinct 
relationship between any two functions in the legacy system. We call them coupling metrics because they 
are based on the various forms of module coupling, such as those given in [3], and because they indicate 
the dependency and the amount of communication that takes place between functions. 

The metrics can be divided into three broad categories based on the kind of coupling that motivated 
them. 

1. Invocation metrics. These metrics are based on routine call coupling as described in [6, p. 306]. 
They rank functions based on how often one function invokes another. 

2. Shared parameter metrics. This category currently contains only one metric—the shared 
parameter metric. It is based on data element coupling as described in [3], which exists when data 
is passed from one function to another through a disciplined interface such as a parameter list. 

3. Shared variable metrics. These metrics are based on data definition coupling as defined in [3]. 
Data definition coupling occurs when functions manipulate data of the same type. 

Our goal is to use these metrics to determine if any two functions in the legacy system belong together in 
the same class when we move to an object-oriented system. We looked at many metrics because we did not 
know which ones would be the most effective in identifying objects. We discuss the effectiveness of the 
metrics we used and the prospect of finding additional metrics in Section 6 of this paper. 

Function Definition 

invocs(f1, f2) Number of times that function f2 is invoked in the body of f1 

params(f0) 
{ vt,n | vt,n is a variable of type t with name n that appears in the 

          parameter list of f0 } 

vars(f0) { vt,n | variable vt,n of type t with name n appears in the body of f0 } 
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source(v, f0) { vdec | variable v appears in f0 and 
        vdec is a declaration of variable v, or 
        v is a formal parameter in f0, and vdec ∈ source(v1, f1) where 
                f1 invokes f0, and vdec is the actual parameter in that 
                invocation that corresponds to v } 

count(v, f0) Number of times that variable v appears in the body of f0 

Table 1. Functions used in the definitions of the eight coupling metrics. 
The following subsections present eight different metrics—three invocation metrics, one shared 

parameter metric, and four shared variable metrics. Table 1 gives the definitions of several functions that 
are used in the definitions of these metrics. With the exception of the source function, these helper 
functions are self-explanatory. The source function gives the set of variable declarations associated with a 
particular variable, tracing back through calls if the variable is a formal parameter. We discuss the source 
function in further detail when we look at the shared variable metric. 

Invocation metrics 

When a function f1 calls another function f2, it indicates that they perform related tasks and suggests that 
those functions should be considered for inclusion in the same object. When a method from one class 
invokes a method from another class, those classes are related by routine call coupling [6]. As the name 
implies, this form of coupling is routine in object-oriented programs. Nevertheless, when a function f1 calls 
another function f2 in a procedural program, it may indicate that f2 can translate to a private method in same 
class that contains f1. Therefore, these metrics may be considered helpful in identifying objects. 

Direct invocation metric. This metric identifies the number of times that a function f1 calls another 
function f2. The metric is defined simply as 

N(f1, f2) = invocs(f1, f2). 
Indirect invocation metric. This metric identifies the number of times that a function f1 indirectly calls 

a function f2 by way of a third function fmid. It is simply the sum of the direct invocation metrics for f1 and 
fmid, and fmid and f2. However, if either of the direct invocation metrics is zero, then no indirect invocation 
takes place, so the value of the indirect invocation metric is zero. The metric is defined in terms of the 
direct invocation metric as 

Nind(f1, f2) = N(f1, fmid) + N(fmid, f2) where N(f1, fmid) > 0 and N(f2, fmid) > 0 
Recursive invocation metric. This metric identifies the number of times a function f1 calls function f2 

and f2 calls back to f1. The value of the metric is the sum of the direct invocations from f1 to f2 and f2 to f1. 
Like the indirect invocation metric, the value of this metric is zero if no recursion exists. The metric is 
defined as 

Nrec(f1, f2) = N(f1, f2) + N(f2, f1) where N(f1, f2) > 0 and N(f2, f1) > 0 

Shared parameter metrics 

Data element coupling occurs when modules access shared data that is passed in through a parameter 
list. If a client passes the same stack to functions in modules M1 and M2, then those modules exhibit data 
element coupling.  

Shared parameter metric. This metric identifies the formal parameters that are common between two 
functions. It does this by counting the number of formal parameters that have the same type and same 
name. The metric is defined as 

P(f1, f2) = | params(f1) ∩ params(f2) | 

Shared variable metrics 

Shared variable metrics look at all variables—including parameters, global variables, and local 
variables—that are shared by functions. These metrics are based on data definition coupling [3]. Data 
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definition coupling occurs when modules manipulate data of the same type. For example, if two modules 
modify a data structure of type stack, they exhibit data definition coupling. 

There are two different kinds of shared variable metrics. The first, more sophisticated, metric considers 
variables to be shared only if they can be traced to a common declaration. For example, suppose variable x 
is declared in function f0, which passes it to f1 and f2. Furthermore, suppose f2 obtains x through a formal 
parameter y, which it then passes to f3. Then functions f0, f1, f2, and f3 are all related, because they all use or 
manipulate a value that originated with a variable declared in f0 (see Figure 1).  

 
Figure 1. The functions all use a variable that can be traced to the same source. 

Shared variable metric. This metric identifies variables in two functions that share a common source. 
The metric is defined as 

V(f1, f2) = | { v | source(v, f1) ∩ source(v, f2) | ≠ ∅ } | 
The function source(v, f1) gives the set of sources (variable declarations) for variable v in f1. If v is not a 

formal parameter in f1, then v will have a unique source. However, if v is a formal parameter, then v’s 
source set includes the elements in the source sets of all corresponding actual parameters. Therefore, the 
size of v’s source set may be greater than one. 

The simpler version of the shared variable metric considers functions to be related if they share variables 
with the same type and the same name. 

Shared type-name variable metric. This metric identifies all variables in two functions that have a 
common type and name. The metric is defined as 

V′(f1, f2) = | vars(f1) ∩ vars(f2) | 
We also include a variation for each of these metrics in our analysis. The metrics above count 

declarations of variables rather than uses. For example, if the only variable shared by two functions was the 
global stack s, the shared variable metric for those functions would be one. Even if s appears three times in 
the body of the first function and four times in the body of the second function, the value of the metric is 
still one. The metrics below count the static occurrences (the tokens rather than types) of common 
variables. 

Shared variable tokens metric. This metric counts the static occurrences of all variables in two 
functions that share a common source. The metric is defined in terms of the shared variable metric as 

Vtokens(f1, f2) = ∑ count(v, f1) + count(v, f2) where v ∈ V(f1, f2) 
Shared type-name variable tokens metric. This metric counts the static occurrences of all formal 

parameters, global variables, and local variables that are common between two functions. The metric is 
defined as 

V′tokens(f1, f2) = ∑ count(v, f1) + count(v, f2) where v ∈ V′(f1, f2) 
Table 2 summarizes the metrics and their definitions. 
Name Notation Definition 

Direct Invocation Metric N(f1, f2) invocs(f1, f2) 

Recursive Invocation Metric Nrec(f1, f2) 
N(f1, f2) + N(f2, f1) where 

| N(f1, fmid) | > 0 and | N(f2, fmid) | > 0 

Indirect Invocation Metric Nind(f1, f2) 
N(f1, fmid) + N(fmid, f2) where 

| N(f1, fmid) | > 0 and | N(f2, fmid) | > 0 

Shared Parameter Metric P(f1, f2) | params(f1) ∩ params(f2) | 

Shared Variable Metric V(f1, f2) | { v | history(v, f1) ∩ history(v, f2) | ≠ ∅ } | 
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∑ count(v, f1) + count(v, f2) 
Shared Variable Tokens 

Metric Vtokens(f1, f2) 

v ∈ V(f1, f2) 

Shared Type-Name Variable 
Metric V′(f1, f2) | vars(f1) ∩ vars(f2) | 

     

∑ count(v, f1) + count(v, f2) 
Shared Type-Name Variable 

Tokens Metric V′tokens(f1, f2) 

v ∈ V′(f1, f2)  

Table 2. Notations and definitions for the eight coupling metrics used in the study. 

Example: Reengineering ccount 

The procedural system analyzed in the study was ccount, a metrics tools implemented in C that reports 
counts of commentary and non-commentary source lines and comment-to-code ratios [3]. The ccount tool 
was initially written in K & R C and later converted to ANSI C. For the purpose of this study the ANSI C 
version was used. 

The statistics collected for the ccount tool including the main function are: 
• Number of non-commentary lines of code: 749  

• Number of files: 7 

• Number of functions: 17 

The ccount metric tool was used because it is tractable for a small case study, but non-trivial, so that the 
case study is still relevant. 

This section shows how the method was applied to ccount. We captured the process and time taken at 
each step. The authors acted as the domain experts.  

Domain expert creates function stop list. 

For ccount the functions identified to be in the stop list were string manipulation and file manipulation 
functions that are provided by the standard C libraries. Since the system was relatively small, rather than 
providing the list as a starting point, we analyzed the output from the next step to help us come up with the 
functions to be placed in the stop list. The time taken for this step was 1 hour. 

A call graph is generated 

The cflow tool was used to identify the flow of control (call structure) of ccount. The output from cflow 
is in a text format, which we then converted to the graphical representation given in Figure 2. The cflow 
tool provides options to generate output in both a top-down and bottom-up manner. The graphical 
representation of the bottom-up output would simply be the call graph in Figure 2 with the arrows reversed. 
The time taken for this step was 2 hours. 



 6

 
Figure 2. Call graph for ccount tool. 

Dependency and context lists are created. 

Using the call graph created in the previous step, the dependency list and the context list were created. 
The dependency list indicates the function that are invoked by a given function. For example, the function 
Classify_Lines uses functions Start_Tokenizer, Get_Token, and Find_Function_Name. The context list 
indicates the functions that invoke a given function. For example, Create_Node is used by 
Append_Element. In this example, the only function invoked by multiple functions is Error, which is used 
by seven other functions. The time taken for this step was 2 hours. 

Objects are identified 

This step was by far the most involved and the most time-consuming. Therefore, to make the 
presentation clearer we have divided it into three sub-steps: collection of summary data, calculation of 
metrics, and identification of candidate objects. The time taken for this step was 48 hours. 

Summary data is collected 
To determine the various metrics, we first identified the variables and functions accessed by each 

individual function. The collection of the required data for each function was done manually. Lack of a tool 
for collecting the data made the process time consuming. 

For each function the following data was collected. 
• The parameters passed to it 

• The local variables defined and accessed 

• The global variables accessed 

• The functions invoked along with the parameters passed to those functions 

• The data type returned by the function 

For each variable (parameters, local variables, and global variables) the following was captured. 
• Its name 

• Its data type 
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• Its scope 

• The number of static accesses made to it 

Shared variables were identified by looking at each file to determine global variables or local variables 
manipulated by a function. Ccount did not have any global variables, but it did have variables with file 
scope that were manipulated by functions in that file. 

Summary Data Collection Table 

Check_Options (params.c) 

Parameters char *options 2 

 char *optionargs 1 

Global variables  0 

Local variables char *ch_ptr 8 

Functions invoked Error 2 

  Clean_Command_Line (params.c) 

Parameters char *options 2 

 char *optionargs 2 

 char **argv[] 9 

 int *argc 6 

Global variables  0 

Local variables char **new_argv 24 

 char **files 9 

 char *ch_ptr 11 

 int new_argc 18 

 int num_files 6 

 int arg_index 16 

 int file_index 4 

Functions invoked Check_Options(options, optionargs) 1 

 Error(…) 8 

Table 3. Summary data for functions Check_Options and Clean_Command_Line. 
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An example of the information collected in this step is given in Table 3. The function Check_Options 
has two parameters, options and optionargs. The parameter options is accessed twice in the body of the 
function, and optionargs is accessed once. The function also accesses the locally defined variable ch_ptr 
eight times, and it invokes the function Error twice. 

Metrics are calculated 
Once the summary data for each function was collected, the coupling metrics were calculated for each 

pair of functions, provided that neither function is in the stop list. For example, Table 4 gives the data 
invocation metric calculated for the ccount functions. Function pairs that had a metric value of zero were 
not included in the table. 

 

Table 4. Non-zero direct invocation metrics for ccount. 
Most of the metrics can be calculated simply by inspecting the summary data for the two functions 

involved in the metric. The exceptions are the indirect invocation metric, the shared variables metric, and 
the shared variable tokens metric. Table 5 shows each of the eight metrics in which the first function (f1) is 
Clean_Command_Line and the second function (f2) is Check_Options. The following paragraphs indicate 
how to calculate each of these metrics. 

N(f1, f2) 1 

Nrec(f1, f2) 0 

First function (f1) Second function (f2) N(f1, 
f2) 

Main Get_Parameters 1 

Main Count_Lines 1 

Main Report_Metrics 1 

Get_Parameters Clean_Command_Line 1 

Get_Parameters Error 1 

Count_Lines Create_List 1 

Count_Lines Error 1 

Count_Lines Classify_Line 1 

Count_Lines Append_Element 3 

Report_Metrics Error 2 

Report_Metrics Is_Empty_List 1 

Report_Metrics Delete_Element 1 

Clean_Command_Line Check_Options 1 

Clean_Command_Line Error 8 

Classify_Line Start_Tokenizer 1 

Classify_Line Get_Token 1 

Classify_Line Find_Function_Name 1 

Append_Element Create_Node 2 

Delete_Element Destroy_Node 1 

Check_Options Error 2 

Get_Token Error 1 

Create_Node Error 2 
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Nind(f1, f2) 0 

P(f1, f2) 2 

V(f1, f2) 2 

Vtokens(f1, f2) 7 

V′(f1, f2) 3 

V′tokens(f1, f2) 26 

Table 5. Metrics for f1 = Clean_Command_Line and f2 = Check_Options. 
Invocation metrics. From Table 3 we see that Clean_Command_Line calls Check_Options once, 

yielding a direct invocation metric of one. Since Check_Options never calls Clean_Command_Line back, 
the recursive invocation metric is zero. In fact, in this particular study all of the recursive invocation 
metrics turned out to be zero. The indirect invocation metric requires slightly more work. Looking at Table 
3, we see that the only other function besides Check_Options that is called by Cleam_Command_Line is 
the Error function, which is called eight times. If the Error function (whose record is not shown in Table 3) 
had called Check_Options n times, then the indirect invocation metric would have been 8 + n. Since the 
Error function never actually invokes Check_Options, the indirect invocation metric is zero. Note that the 
direct and indirect invocation metrics are not necessarily symmetric. For example, we do not—in general—
have Nind(f1, f2) = Nind(f2, f1). However, the recursive invocation metric is symmetric. 

Shared parameter metrics. We can also tell directly from Table 3 that functions Check_Options and 
Clean_Command_Line both have a parameter named options of type char and a parameter named 
optionargs of type char. For this reason, the value of the shared parameter metric is two. Note that, in this 
study, we ignored pointers when determining types—so variables declared with char, char**, and char[] 
were all considered to have the same type.  

Shared variable metrics. To calculate the shared variables metric we must determine which variables 
in Clean_Command_Line and Check_Options can potentially originate from the same source. From Table 
3 we see that there are only three variables in Check_Options, so there are three candidates. The variable 
ch_ptr is declared in the body of Check_Options, so the only way that Clean_Command_Line can share 
this variable is if it is passed to Clean_Command_Line through some sequence of function calls. However, 
a quick look at the flow graph (Figure 2) tells us that although Clean_Command_Line calls 
Check_Options, there is no call path from Check_Options to Clean_Command_Line. Therefore, even 
though Clean_Command_Line also has a variable named ch_ptr of type char, they are not considered 
shared for the purposes of this metric. On the other hand, both options and optionargs are formal 
parameters in Check_Options, and since Clean_Command_Line calls Check_Options, we know that 
Check_Options must share its formal parameters with the actual parameters passed to it by 
Clean_Command_Line. The fact that the actual parameters passed by Clean_Command_Line also happen 
to be named options and optionargs is unrelated to the calculation of this metric; the relevant fact is that the 
variables come from the same source. Thus, the value for the shared variable metric is two, and the value 
for the shared variable tokens metric is the sum of static occurrences for these variables in each function: 3 
in Check_Options + 4 in Clean_Command_Line = 7.  

The shared type-name variables metric is significantly easier to calculate. Both functions have variables 
with type-name combinations char/options, char/optionargs, and char/ch_ptr. Therefore the value of this 
metric is three, and the value of the shared type-name variable tokens metric is: 11 occurrences of these 
variables in Check_Options + 15 occurrences in Clean_Command_Line = 26. 

Candidate objects are identified 
Once the individual metrics have been are calculated, a threshold is determined for each metric, and each 

metric is individually evaluated to come up with candidate objects. In this study, the following guidelines 
were taken into consideration. 

• In C++ the function main is not part of any object, therefore the coupling metrics in relation to that 
function were not used. 

• If the coupling metric for two functions was above or equal to the threshold value, both were 
placed in the same object. 
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• If a function f1 has the same coupling metric with multiple functions in different objects, then this 
is used as an indication that f1 should be placed in a separate object as it might be a utility 
function. 

The decision of which threshold to use was empirical to ensure that functions don’t cluster in one object. 
In the case of the direct invocation metric, the vast majority of function pairs had a metric value of zero, 
several functions had a value of one, and a few functions had a value greater than one (see Figure 3). A 
threshold value of one was chosen—a value of anything greater than one would have meant that too many 
functions would be in classes by themselves. 

 
Figure 3. Distribution of values for the direct invocation metric. 

Using the guidelines outlined above, the main function was placed in a class by itself, and the Error 
function was identified as a utility function, so it was also placed in a separate class. This led to the 
following partitioning of the functions into objects. 

Object 1 Get_Parameters, Clean_Command_Line, Check_Options 
Object 2 Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, 

 Find_Function_Name, Create_List, Append_Element, Create_Node 
Object 3 Report_Metrics, Is_Empty_List, Delete_Element, Delete_Node 
Object 4 Error 
Object 5 Main 
The process of determining a threshold and finding candidate objects was repeated for all of the metrics, 

yielding the partitioning of functions in Table 7. The recursive invocation metric is not included because 
recursive calls did not occur in the application. 

Metric Candidate Objects 
Get_Parameters, Clean_Command_Line, Check_Options 

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, Find_Function_Name, 
Create_List, Append_Element, Create_Node 

Report_Metrics, Is_Empty_List, Delete_Element, Delete_Node 

Direct 
invocation 

Error 

Get_Parameters, Clean_Command_Line, Check_Options 

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, Find_Function_Name, 
Append_Element, Create_Node 

Report_Metrics, Delete_Element, Delete_Node 

Indirect 
invocation 

Error, Create_List, Is_Empty_List 
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Get_Parameters, Clean_Command_Line, Check_Options 

Count_Lines, Classify_Line, Start_Tokenizer, Report_Metrics, Error 

Delete_Element, Append_Element, Create_Node, Is_Empty_List, Create_List 

Shared 
parameters 

Destroy_Node, Find_Function_Name, Get_Token 

Get_Parameters, Clean_Command_Line, Check_Options 

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, Find_Function_Name, 
Append_Element, Create_Node 

Report_Metrics, Delete_Element 

Shared 
variables 

Error, Create_List, Is_Empty_List, Destroy_Node 

Get_Parameters, Clean_Command_Line, Check_Options 

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, Find_Function_Name, 
Append_Element, Create_Node 

Report_Metrics, Delete_Element, Destroy_Node 

Shared 
variable 
tokens 

Error, Create_List, Is_Empty_List 

Get_Parameters, Clean_Command_Line, Check_Options 

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, Find_Function_Name 

Report_Metrics, Create_Node, Append_Element, Delete_Element 

Shared 
type-name 
variables 

Error, Create_List, Is_Empty_List, Destroy_Node 

Get_Parameters, Clean_Command_Line, Check_Options 

Count_Lines, Classify_Line, Start_Tokenizer, Get_Token, Find_Function_Name 

Report_Metrics, Create_Node, Append_Element, Delete_Element 

Shared 
type-name 
variable 
tokens 

Error, Create_List, Is_Empty_List, Destroy_Node 
Table 6. Candidate objects for each of the coupling metrics. 

Domain expert chooses objects 

In this step the domain expert analyzed the objects for reasonableness. Each metric was analyzed 
individually, and the results of this analysis are given below. One of the criteria used in the analysis was 
whether the partitions corresponded to the modules in the C program, which exhibited good modular design 
in the first place. In particular, we were always interested to see if the candidate objects for a given 
coupling metric successfully identified the list data type. The time taken for this step was 16 hours. 

The direct invocation metric provides a good breakup of the objects, but was unable to satisfactorily 
identify the list data type. It groups the functions that relate to extracting parameters since those functions 
invoke each other. However, the list functions do not necessarily invoke each other. The indirect invocation 
metric provides a breakup of objects very similar to the direct invocation metric. And similarly, it is not 
able to identify the list data type. This may indicate that these metrics will give similar results in general. If 
so, then the direct invocation metric should be used since it is easier to calculate. 

The shared parameters metric is able to identify the list data type as it clusters all but one function in the 
same object. It places the functions Error and Report_Metrics in the same object as functions which classify 
lines. Since this metric only considers the parameter list of functions it does not always separate functions 
that have separate responsibilities. 

The calculation of the shared variable metrics in general took up a substantial amount of time, but their 
results were not very different to the direct invocation metric. None of the shared variable metrics were 
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able to identify the list data type; they all tended to have the functions related to the abstract data type either 
in the utility object or grouped with the Report_Metrics function. 

Most coupling metrics placed the function Report_Metrics in a separate object. The task of reporting 
metrics (in ccount) follows that of counting and classifying lines, and hence it is best to use different 
classes for these to separate responsibilities. 

If the list data type were already identified, the direct invocation metric would be the fastest and easiest 
to use to help determine objects. The shared parameters metric provides the best breakup of the objects; it 
comes closer than any other metric in identifying the list data type. 

 
Figure 4. Class diagram for object-oriented ccount application. 

Based on the above observations and using the candidate objects as references, we chose the following 
classes for coding the object oriented version of ccount. The list data type is identified and encapsulated in 
its own class. The functions main, Error, and Report_Metrics were each placed in their own class. Figure 4 
gives a class diagram of the application. 

Class::CError 
    Error() 

Class::CCount 
    main() 

Class::CReport 
    Report_Metric() 

Class::CCounter 
    Count_Lines() 
    private: 
        char *ch_ptr 
        char identifier[MAX_IDENT+1] 
        char function_name[MAX_IDENT+1] 
        char_class charClass[128] 
        Classify_Line() 
        Start_Tokenizer() 
        Get_Token() 
        Find_Function_Name() 
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Class::CParams 
    Get_Parameters() 
    private: 
        short is_tabbed 
        char *delimiter 
        char **files 
        Check_Options() 
        Clean_Command_Line() 

Class::CList 
    Is_Empty_List() 
    Create_List() 
    Append_Element() 
    Delete_Element() 
    private: 
        CElement *list 
        Create_Node() 
        Destroy_Node() 

Coding 

For coding in C++ the following guidelines were followed. 
• Rather than using malloc and realloc functions to allocate memory, new was used. 
• Rather than using #define, const was used. 
• Some variables had to be renamed to adhere to C++ naming convention. 

Otherwise, an effort was made to keep the function names the same and the algorithms the same. Due to 
the similar structure and syntax of the C and C++ languages, it was possible at times use the C functions 
with few changes. 

The parameters extracted from the command line were placed as private variables in the class CParams 
and were accessed using public access get methods. The list was made a private variable in the CList class; 
only the methods in the CList class modified the list. 

The global (file scope) variables accessed by the functions Get_Token, Start_Tokenizer, and 
Find_Function_Name were made private variables of the class CCounter. 

To ensure that the code developed in C++ gave the same result as the C version, the 19 regression tests 
developed for C code in [3] were utilized. Abnormal inputs were provided to check if the code is able to 
handle them. And the output generated for the statistics of a valid C file was verified to ensure that it was 
accurate. The C++ version was found to perform satisfactorily and it passed all the test cases. 

Time taken for the coding of ccount in C++ was 24 hours. 

Process variables captured 

The times taken for each step are shown in Table 7. The total time taken for the process was 93 hours. 
Though we did not record the times it took to calculate each metric in identify objects step, we estimate that 
we did not spend more than six hours calculating the direct invocation metric and the shared parameter 
metric—the two metrics that seemed to give the best results.  

 
Step Time taken 

Create stop list 1 hour 

Create flow graph 1 hour 

Dependency list 2 hours 

Identify objects 48 hours 
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Domain expert analysis 16 hours 

Coding 23 hours 

Total 93 hours 

Table 7. Process Variables 
The following data was captured for the ANSI C version and C++ version of ccount.  
Statistics for the C version: 
• Number of non-commentary lines of code : 749  
• Number of files : 7 
• Numbers of Functions : 17 

Statistics for the C++ version: 
• Number of objects : 6 
• Number of real objects : 4 
• Number of utility objects : 2 
• Real objects with one function : 1 
• Number of non-commentary lines of code : 679 

Conclusion and future work 

Coupling metrics provide a good starting point for identifying objects, but the metrics we used in this 
study had limitations. For example, they were not able to completely identify the list data type in ccount. 
Hence domain expert analysis is an important step in the process—it is necessary for finalizing the optimal 
objects from the candidate objects identified from the coupling metrics. 

The largest amount of time spent in the process was in determining the coupling metrics. The direct 
invocation metric and shared parameters metric were found to provide reasonable objects very close to the 
objects finalized by the domain expert. The time taken to determine these two metrics was considerably 
less than the time it took to determine the shared variable metrics, since they do not require the collection 
of the detailed summary data shown in Table 3. Therefore, the process could be accelerated if only the 
direct invocation and shared parameter metrics were taken into consideration. Using a tool like the CIA (C 
Information Abstraction System) [4] would also help in speeding up the process. 

Some things to consider for future case studies would be using the direct invocation and shared 
parameter metrics in conjunction to arrive at candidate objects. When more than one metric is used, one 
could either sum the metrics or assign a weight to each metric, indicating that one form of coupling is 
considered more relevant [5]. For example, we might calculate the combined direct invocation and shared 
parameters metric as 2 * direct invocation metric + 3 * shared parameters metric. In this case the higher 
weight attached to the shared parameters metric indicates a data definition coupling is more relevant than 
routine call coupling. 

This case study presents a good first step in determining how to reengineer a legacy procedural system 
into an object-oriented system. The methodology we examined was found to be helpful in identifying 
objects. It can also serve as a framework that is usable with coupling metrics other than those presented 
here.  
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