Binding Time Based Concept Instantiation in
Feature Modeling

Valentino Vranié¢ and Miloslav Sipka

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology
Slovak University of Technology, Ilkovicova 3, 84216 Bratislava 4, Slovakia
vranic@fiit.stuba.sk, miloslav.sipka@gmail.com

Abstract. In this paper, we address the issue of concept instantiation
in feature modeling with respect to binding time. We explain the impact
of such instantiation on applying constraints among features expressed
in feature diagrams and as additional constraints and propose a way to
validate a concept instance under these new conditions.

1 Introduction

Feature modeling aims at expressing concepts by their features as important
properties of concepts taking into account feature interdependencies and vari-
ability in order to capture the concept configurability [3]. A concept is an un-
derstanding of a class or category of elements in a domain [3]. Individual ele-
ments that correspond to this understanding are called concept instances. While
a concept represent a whole class of systems or parts of a system, an instance
represents a specific configuration of a system or a part of a system defined by a
set of features. Concept instances may be used for feature model validation and
manual or automatic configuration of other design models or program code of
specific products in a domain [2, 3].

When designing a family of systems, we have to balance between statically
and dynamically bound features. In general, dynamic binding is more flexible
as we may reconfigure our system at run time, while static binding is more
efficient in terms of time and space. Although they often embrace the information
on feature binding time, contemporary approaches to feature modeling do not
consider the time dimension during concept instantiation.

This paper focuses on the issue of concept instantiation (Sect. 2) and vali-
dation of concept instances with respect to binding time (Sect. 3). The paper is
closed by a discussion (Sect. 4).

2 Concept Instantiation in Time

Binding time describes when a variable feature is to be bound, i.e. selected to
become a mandatory part of a concept instance. The set of possible binding times



depend on a solution domain. For compiled languages they usually include source
time, compile time, link time, and run time [1].

An instance I of the concept C at time ¢ is a concept derived from C by
selecting its features which includes the C’s concept node and in which each
feature f whose parent is included in I obeys the following conditions:

1. If f is a mandatory feature, f is included in I.

2. If f is a variable feature whose binding time is earlier than or equal to t,
f is included in I or excluded from it according to the constraints of the
feature diagram and additional constraints associated with it. If included,
the feature becomes mandatory for I.

3. If f is a variable features whose binding time is later than ¢, f may be
included in I as a variable feature or excluded from it, or the constraints
(both feature diagram and additional ones) on f may be made more rigid
as long as the set of concept instances available at later instantiation times
is preserved or reduced.

As follows from this definition,! a feature in a concept instance may be bound,
in which case it appears as a mandatory feature, or unbound, in which case it
stays variable. Mandatory features and features bound in previous instantiations
are considered as bound. A concept instance may be instantiated further at later
instantiation times.

The constraints—both feature diagram and additional ones—on a variable
features whose binding time is later than the instantiation time may be made
more rigid as long as the set of concept instances available at later instantiation
times is preserved or reduced. An example of this is a transformation of a group
of mandatory or-features (Fig. 1a) into a group of alternative features (Fig. 1b).

(a) (b) (©)

Fig. 1. Reducing the set of concept instances.

Variable features with binding times later than the instantiation time are
potentially part of concept instances at later binding times. Again, such features
may be excluded at instantiation times earlier than their binding times as long
as the set of concept instances available at later instantiation times is preserved
or reduced. Consider a group of three alternative features (Fig. 1b) with run-
time binding. At source time, one of these features may be excluded (Fig. 1d).
However, none of the two remaining features may be excluded since preserving

! The definition is based on our earlier concept instance definition [7].



only one of them will force us to make it mandatory, which is illegal, or optional,
which will allow an originally unforeseen concept instance to be created: the one
with no features from the group.

3 Concept Instance Validation

A concept instance is valid if its features satisfy the constraints. In general, a
constraint—be it a feature diagram constraint or an additional one— may be
evaluated only if all the features it refers to are bound. However, some logical
expressions can be evaluated without knowing the values of all of their variables.
Suppose we are instantiating a simple concept in Fig. 2a at source time (with no
additional constraints). If we bind the x feature, the or-group constraint will be
satisfied regardless of the y feature binding. Thus, we may omit this constraint
transforming the y feature into an optional one as shown in Fig. 2b.

It is also possible to omit x. The only possibility for y is to leave it optional,
as shown in Fig. 2¢, but it has to be assured it will finally be bound (which can
be done only at run time). For this purpose, we must add a trivial constraint to
this instance: y (y has to be true, i.e. bound).

source time run time run time run time

(2) (b) ()

Fig. 2. Dealing with features whose binding time is later than the instantiation time.

By excluding features from feature diagrams, the feature diagram constraints
are gradually relinquished. After a successful concept instance validation, all
additional constraints that refer to the features whose binding time is not later
than the instantiation time can be safely removed from the model. All other
constraints have to be postponed for further instantiation.

4 Discussion

In this paper, we presented an approach to concept instantiation with respect
to binding time. We analyzed the impact of introducing the time dimension
into concept instantiation on concept instance validation with respect to both
feature diagram and additional constraints. We have also developed a prototype
tool that supports such instantiation (available at http://www.fiit.stuba.sk/
~vranic/fm/).

Concept instantiation with respect to feature binding time is similar to staged
configuration of feature models proposed in conjunction with cardinality-based



feature modeling [5, 6]. Although consecutive work [4] mentions a possibility of
defining configuration stages in terms of the time dimension, this approach does
not elaborate the issue of feature binding time with respective consequences on
validation of concept specializations.

Concept instantiation with respect to binding time can be used to check for
“dead-end” instances that may result into invalid configurations of a running
system. Such configuration may miss some features required by other, bound
features, which will lead to a system crash if such features are activated. Simi-
larly as staged feature model configuration, concept instantiation with respect
to binding time could be used for creating specialized versions of frameworks [5],
which would represent a source time instantiation, and in software supply chains,
optimization, and policy standards [4].

Partial validation of the constraints that incorporate unbound features may
be improved by transforming them into the normal conjunctive form. This would
enable to extract parts of such a constraint with bound features, while conjuncts
with unbound features would be simple enough to directly determine whether
they can be evaluated or not. As a further work, we plan to explore consequences
of applying this approach to cardinality-based feature models [5].

Acknowledgements The work was supported by Slovak Science Grant Agency
VEGA, project No. 1/3102/06, and Science and Technology Assistance Agency
of Slovak Republic under the contract No. APVT-20-007104.

References

[1] James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.

[2] Krzysztof Czarnecki and Michal Antkiewicz. Mapping features to models: A tem-
plate approach based on superimposed variants. In Robert Gliick and Michael R.
Lowry, editors, Proc. of Generative Programming and Component Engineering, 4th
International Conference, GPCE 2005, LNCS 3676, pages 422—437, Tallinn, Esto-
nia, October 2005. Springer.

[3] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programing: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[4] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-
based feature models and their specialization. Software Process: Improvement and
Practice, 10:7-29, January/March 2005.

[6] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration
through specialization and multi-level configuration of feature models. Software
Process: Improvement and Practice, 10:143-169, April/June 2005.

[6] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-based feature mod-
eling and constraints: A progress report. In International Workshop on Software
Factories, OOPSLA 2005, San Diego, USA, October 2005.

[7] Valentino Vranié. Reconciling feature modeling: A feature modeling metamodel.
In Matias Weske and Peter Liggsmeyer, editors, Proc. of 5th Annual International
Conference on Object-Oriented and Internet-Based Technologies, Concepts, and
Applications for a Networked World (Net.ObjectDays 2004), LNCS 3263, pages
122-137, Erfurt, Germany, September 2004. Springer.



