
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre d'actes 2006                                     Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of 

the published version may differ .

Numerical Estimation of the Impact of Interferences on the Localization 

Problem in Sensor Networks

Bouget, Matthieu; Leone, Pierre; Rolim, Jose

How to cite

BOUGET, Matthieu, LEONE, Pierre, ROLIM, Jose. Numerical Estimation of the Impact of Interferences 

on the Localization Problem in Sensor Networks. In: Proceedings of the 5th International Workshop on 

Experimental Algorithms, WEA 2006. Menorca (Spain). Berlin, Heidelberg : Springer, 2006. (Lecture 

Notes in Computer Science) doi: 10.1007/11764298_2

This publication URL: https://archive-ouverte.unige.ch//unige:32654

Publication DOI: 10.1007/11764298_2

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:32654
https://doi.org/10.1007/11764298_2


Numerical Estimation of the Impact of

Interferences on the Localization Problem in

Sensor Networks

Matthieu Bouget, Pierre Leone, and Jose Rolim

Computer Science Department
University of Geneva

1211 Geneva 4
Switzerland

Abstract. In this paper we numerically analyze the impact of interfer-
ences in wireless networks. More particularly, the impact on the proba-
bility of success of a localization algorithm. This problem is particularly
relevant in the context of sensor networks. Actually, our numerical exper-
iments provide information about this algorithm, even when we do not
consider interferences. Indeed, in this case, sharp threshold is observed
on the probability of success of the algorithm. Moreover, our numerical
computations show that the main harmful interferences are the ones oc-
curring between sensors which get localized at the same time and send in
turn their own location. This is demonstrated by varying the time span
of the random waiting time before the emissions. We then observe that
the longer the waiting time the closer the curves are to the ones obtained
without considering interferences. Hence, this proves to be an efficient
way of reducing the impact of interferences on the localization algorithm.
Moreover, our numerical experiments demonstrate that among the sec-
tors of disk with same area, the one with the smaller radius of emission
and larger angle of emission is the more appropriate to the localization
algorithm.

1 Introduction

Wireless networks are undoubtedly appealing for many applications. For
instance, to provide easy access points to Internet from laptop computer,
establishing networks in difficult environment conditions (wireless ad-hoc
networks) typically to help the coordination of the action of rescuers
operating on a disaster site and are the only alternative in the context
of mobile networks. A particularity of wireless networks is that all the
transmissions share the same channel of communication. Different pro-
tocols are available such as Time Division Multiple Access (TDMA),
Frequency Division Multiple Access (FDMA) or Code Division Multiple
Access (CDMA), for multiplexing the channel of transmission. All these



protocols have the same common limitation, as the number of stations
increases the impact of the interferences occurring between simultaneous
emission becomes more stringent and can even prevent the efficient es-
tablishment of the network. Some applications allow the limitation of the
number of stations for instance typical application of Bluetooth based
wireless networks. Bluetooth based ad-hoc networks [21] are possible ex-
tension of the Bluetooth technology and allow the inter-connexion of clus-
ters of Bluetooth nodes by using two radio per nodes.

In this paper, we numerically analyze the impact of the interferences
on the networks performances. Although the numerical tools involved in
our analysis can be tailored to deal with the aforementioned protocols
we proceed to the analysis of a simpler protocol of transmission. The
considered protocol is relevant in the field of sensor networks [1] and we
now particularize our discussion to these class of networks. Moreover,
the impact of the interferences depends on the statistical occupation of
the channels of transmission. Hence, we particularize our analysis to a
probabilistic localization algorithm (discussed below) and actually deal
with the impact of interferences on the performances of this algorithm.

Two important characteristics of sensor networks are the large num-
ber of nodes involved in the composition of the networks and that sensors
are usually battery powered, hence limiting the energy consumption is a
key issue to make longer the life-time of the networks [27, 28]. Econom-
ical factors require that sensor should be as cheap as possible and then,
based on limited hardware resources. Also, the protocols involved in the
establishment and use of the networks have to be as simple as possible
to limit the energy consumption due to the exchange of synchronization
messages. These requirements make relevant to consider random access

channel introduced in [4]. Besides its simplicity random access is relevant
in some situations to optimize the transmission delay [7] and hence, can
be a better alternative of the different protocols discussed above (TDMA,
FDMA). Actually, in this paper we consider a slightly more complicated
random access protocols since the stations wait for a random time inter-
val before sending a data. The reason is that in the particular situation
we consider, nearby stations are prone to receive a data at the same time
and the random waiting time reduces the interferences between such sta-
tions [2]. Moreover, to reduce these local interactions the transmissions
are directional.

Another important characteristic of sensor networks is that they are
data-centric, meaning that sensors are less important than the data they
convey. Typically, sensors are used to proceed to some measurements and



convey the measured values towards one (or more) particular stations
which is able to collect and process the data’s. However, for the data to
be meaningful one should attach to it the location where the measurement
was made. This implies that sensors are to be localized. This can be done
by adding hardware resources, for instance GPS electronic devices, to
sensors. But this would conflict with the requirements of minimizing the
energy consumption as well as lowering the price of the entire system. The
probabilistic localization algorithm studied in this paper assumes that a
few sensors (anchors) are equipped with electronic devices to ensure their
localization. The others sensors compute their own position by triangu-
lation (3-lateration) given the position of their localized neighbors. This
procedure requires the estimate of the distance between sensors. This can
be achieved for instance, by Time of Arrival (ToA) or Received Signal
Strength Indicator (RSSI) techniques. The success of the localization al-
gorithm depends on the structure of the communication graph and we
focus on the probability of success of the algorithm with respect to the
networks parameters.

2 Related Work

Due to their importance in sensor networks, localization algorithms are
widely analyzed in the literature. General considerations and presenta-
tions of various strategies can be found in [26, 28, 10]. In [29] the accuracy
of range free localizations algorithms are analyzed. The main interest of
these protocols as opposed to range based protocols is that they minimize
the required hardware. Particularly, there is no need to estimate the dis-
tances between sensors. In [8] numerical evaluation of various protocols is
done in the context of optical sensor networks. In [13, 14] the authors con-
sider a particular technique for estimating the distances between sensors
and proceed to real experiments based on Motes1 sensor systems. From a
complexity point of view, in [3, 6] NP-hardness results are provided for the
localization and connex problems. These results support the application of
approximation algorithms and numerical investigations. Concerning the
analysis of the impact of interferences, we mention [9, 16] and references
therein. These papers are based on a model of interferences called the
capture model which assumes that a communication can be established
given that the ratio of the signal to noise is large enough. Asymptotic
results are provided as the number of sensors goes to infinity. In this pa-
per, we consider a different model called the collision model, at once two

1 http://www.xbow.com



sensors emits towards a third same sensor there is collision and the data
is lost. Moreover, we keep fixed the number of sensors and look for the
impact of the networks parameters. The numerical methods we use for the
numerical experiments are particular stochastic estimation methods [24,
22]. The general frameworks as well as some applications of the methods
are discussed in [19]. The numerical experiments presented in this paper
are different than the ones suggested in [19] and actually both papers are
complementary. As far as we know, no previous similar works are present
in the literature. However, stochastic estimation methods seems to appear
sporadically for dynamic control of communications in wireless networks,
see for instance[17, 20, 25].

3 Sensor Networks Characteristics and the Localization

Protocol

Our model of sensor and sensor networks is based on directional emission
of radio frequency signals. The idealized directional emission pattern we
consider is a sector of disk of radius r and angle α. Notice that this is
general and also incorporate the model of isotropic radiation (α = 360
degree).

Sensors composing the networks establish wireless communication through
directional antenna. The parameters of the communications are the range
(radius) of communication r which is the maximal distance a sensor can
send a data, the angle of emission α and the direction of the emission β.
The former parameter β is chosen randomly and independently by each
sensor with uniform distribution on the circle and the others two param-
eters r, α are the same for all the sensors. We denote by p the area of the
region covered by the emission, see Figure1.

β

r

α p

Fig. 1. Sensor with radius of emission r, angle of emission α and orientation of the
emission β

The model of interferences is the collision model where a collision
occurs at once two stations emit at the same time in the same region.



This is illustrated in Figure 2, x and y are emitters and the hatched
region is where collisions occur and no data from x nor y can be received
in this region.

x
y

Fig. 2. Collision region (hatched), x and y and the emitters.

The sensors are assumed to be randomly and independently scattered
in the unit square region [0, 1]×[0, 1] with uniform distribution. Given the
relative positions of sensors directional communication can be established
between a sensor x toward a sensor y provided the former belongs to area
covered by the emission of x, see Figure 1. This defines the directional
graph of communication. Two example of such graphs are represented on
Figure 3. Up to our knowledge results concerning the connectivity of such
graphs are only of asymptotic character, see [23] and references therein.
The choice of the uniform distribution is arbitrary and the computation
suggested in this paper remain unchanged with a different distribution.
However, the computation is based on the results on the simulation of
the communication graph and, of course, simulation is to be conducted
appropriately.

The localization protocol we wish to numerically analyze the perfor-
mances works as follows. We consider a given sensor network composed
of n sensors. We choose randomly a fixed number l among them and
assume that they are localized sensors. Practically, this corresponds to
scatter randomly n sensors among which l are equipped with electronic
devices to ensure the localization. Each localized sensor choose randomly
and independently a waiting time w in 0, . . . , log(n) and wait for w clock.
Then, it sends to all its neighbors its location (coordinate in the plane)
and we assume that the receivers are able to estimate the distance from
them to the sender. Once a sensor receives the coordinates of three local-
ized neighbors it computes its own location by triangulation (3 lateration)
and becomes localized. Hence, it chooses a waiting time and send its co-
ordinate in turn. The algorithm is successful if more than 90% of the
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Fig. 3. n=100 r=0.2 a=1.5; n=50 r=0.2 R=3.14

sensors manage to compute their location. Notice that 90% is arbitrarily
chosen. However, it is important not to consider the situation where all
the sensors have to be localized for the success of the localizations algo-
rithm. Indeed, if the number of sensors is reasonable (50, 100) some of
them can even be isolated. The 90% is chosen in order to avoid taking
into account such sensors in our numerical computations. The process is
probabilistic since it depends on the random location of sensors as well as
on the random set of initially localized sensors. Hence, it does make sense
to look for the probability of success of the algorithm. Our interest here
is to numerically investigate the probability of success of the algorithm
with respect to the network parameters.

Although the algorithm makes use of a clock we do not assume that
the network is synchronized. Actually, we assume that the time-span of
an emission is contained in a clock interval. So, only emissions occurring
in a given clock interval can lead to collision. It is important to notice that
the main impact of the waiting time is to reduce the collisions occurring
between sensors which are close from each others. Indeed, these sensors
are prone to receive location data’s at the the same at hence, to become
localized at the same time. The choice of the waiting time belonging to
[0, log(n)] is motivated in [2].

4 Numerical Methods

The numerical methods we use to compute the chance of success with
respect of the networks parameters of the localization algorithm are par-
ticularization of stochastic estimation procedures. These methods were



first introduced in [24]. Since their introduction these methods have been
widely applied to deal with stochastic estimation problems, see [22].

To apply these methods, we first need to define the probabilistic frame-
work. In our problem what is probabilistic is the communication graph
(which depends on the sensors location as well as on the orientation of the
emission) and on the initially localized sensors. We denote by Adj the set
of adjacency matrix which corresponds to possible communication graphs.
This set is a probabilistic space and there exists a probability measure on
it which does not need to be explicited. We denote by Ω the set of sub-
set of sensors which are initially localized. This set is also a probabilistic
space embodied with a probability measure corresponding to choosing l

of them among the set of sensors. In a given set of computation, all the
network parameters are kept constant except the angle on transmission
α. Then, the localization algorithm can be seen as a map

L : Adj × Ω × [0, 2π] → {0, 1} (1)

where L(a, ω, α) is 0 or 1 depending on the success (more than 90% of
localized sensors) or failure of the localization algorithm. The fixed net-
work parameters are omitted to simplify the notation. Given a particular
value p ∈ [0, 1], our problem is to find the particular value of α such that

Prob(L(·, ·, α) = 1) = p. (2)

In the formula above, the probability is taken with respect to the Adj×Ω

space and α is a definite numerical value. This is why we use the ’dot’
notation L(·, ·, α). Although the underlying probability space has to be
taken in mind, we also use the simplified notation L(α). The computations
introduced below are based on simulations of the localization algorithm.
At each step of the computations a communication graph is generated, a
fixed number of initially localized sensors are determined and the process
is simulated. This leads to an observed success or failure of the localization
algorithm. This observation is denoted by L(α).

To solve this problem we use stochastic estimation methods in the re-
gion where d

dα
Prob(L(α)) is large since the convergence speed is propor-

tional to this term (see later). In the regions where the above mentioned
derivative is small, hence slowing the convergence rate of the stochastic
estimation method, we use the typical estimator which consists in averag-
ing the results of a large number of observations. In both cases, we check
that the results belong to a confidence interval of 3 degrees with proba-
bility 95% [15]. To construct the confidence interval we basically use 20



estimates and the mean value as the result when the confidence interval
is much smaller than 3 degrees. Basically, the number of iterations of the
stochastic estimation methods to compute one estimate is about 30’000
(α30′000 in Theorem ??). In the region where the method becomes not
efficient enough we use the mean of about 100’000 observations to reach
the fixed confidence interval.

To proceed to the computation with the stochastic estimation method,
we first fix some parameters, namely n the number of sensors and r the
radius of emission. Then, we choose a value p of the probability of success
and look for the corresponding value of the angle of emission α. To avoid
the choice of a value of p too big and hence not corresponding to any α, we
compute α̃ such that m(α̃) is maximal with a Kiefer-Wolfovitz algorithm
[18] and estimate its value by averaging about 100′000 observations (the
procedure is done about 20 times to construct the confidence interval).
The stochastic estimation algorithm is based on the hypothesis that there
exist a value α∗ of the parameter such that

m(α∗) = Prob
(

L(α∗) = 1
)

= p, (3)

and

m′(α∗) > 0. (4)

Then, it can be proven [24, 31] that the sequence (αn)n≥0 recursively
defined by

αn+1 = αn +
1

n

(

p − L(αn)
)

(5)

converges to α∗, i.e. (αn → α∗). Moreover,

√
n(αn − α∗) → N

(

0,
σ2

(2m′(α∗) − 1)

)

At each step of the computation a random communication graph has
to be generated with the corresponding value of the parameter αn. The
localization algorithm is then simulated and the result is denoted by L(αn)
which is 0 or 1 accordingly to the success or failure of the algorithm. The
fact that the function m(α) is differentiable is discussed in [19]. It is due to
the fact that the state of outcomes is finite. Actuallay, the same argument
is applicable to the situation where collisions are taken into account. By a
suitable change of sign in the formula (5), one can cope with the situation
where m′(α) < 0.



5 Numerical Results

Besides the dependence on the network parameters, we are interested
in observing the impact on the interferences between simultaneous emis-
sions. Hence, we provide two set of experiments with the same parameters,
one assumes that the communications are not altered by interferences and
the second one takes into account interferences with the collisions model.

If interferences are not taken into account the set of random communi-
cation graphs on which the localization algorithm succeeds is monotone.
Broadly speaking, this means that by adding new edges to a (successful)
communication graph leads again to a communication graph on which the
localization algorithm succeeds. In our setting of experiments, edges are
added by increasing the angle of emission α. This is a particular situation
for which there are general applicable theoretical results. In particular,
sharp threshold is expected as the number of sensors increases [11, 12, 5,
30]. This means that if the number of sensors is large enough we should
observe that, as the angle of emission increases, the probability of success
suddenly changes from small values (close to 0) to larger values (close to
1). However, that such a sharp threshold can be observed as the interfer-
ences are taken into account is no at all an evidence from a theoretical
point of view.

To conduct the numerical experiments, we fix n the number of sensors
as well as the radius of emission r and the number of initially localized
sensors (anchors). Then, we look for the curve describing the probability
of success of the localization protocol with respect to the angle of emission
α, i.e. Prob(L(α) = 1). The numerical experiments are conducted once
considering the interferences between simultaneous emissions and once
without. This allows measuring the impact of the interferences on the
localization algorithm. On a same figure, the experiments are repeated
with different values of the radius of emission r, keeping n constant, to
measure the impact on increasing the radius on emission. Proceeding
this way, we have to keep in mind that increasing the radius of emission
increases the energy consumption. Indeed, the energy consumed increases
as rγ , where 2 ≤ γ ≤ 5 depending on the environment conditions. This
point is very important to be considered since minimizing the energy
consumption is a key issue in wireless sensor networks.

The numerical experiments introduced above are repeated with dif-
ferent number of sensors n and different number of anchors.

In Figure 4, the number of sensors is n = 50 and 5 of them are
anchors. The right picture shows the numerical results without collisions.
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Fig. 4. n = 50 sensors, 5 anchors, with collisions (left) and without (right). The curves
depicted from right to left are going in increasing the radius of emission. Waiting time
in [0, 4]

It is observed, as theoretically expected, that as the radius of emission
increases the angle of emission necessary to ensure the same probability
of success decreases. As colisions are taken into account one observe on
Figures 4,5,6 that increasing the angle of emissions increases initially the
chance of success up to a maximal value and afterwards the chance of
succes decreases. On these figures one can also observe that for large
value of the emission angle, the performances are better with small radius
of emission. The qualitative behavior does not change as the number of
anchors changes.

It is worth to stress the importance of the waiting time, compare
Figures 4 and 7 as well as the results plotted in Figures 8,9. Sensors
which receive a location data at a same time wait for a random time in
0, . . . , loge(n), in order to reduce the interferences between such stations
[2]. Our numerical computations confirm that this waiting time is efficient
in reducing the impact of the interferences on the localization algorithm.
Indeed, for large values of n the number of sensors composing the net-
works, we observe, see in particular Figure 9, that the performances of the
algorithm with and without interferences are very close from each other.

Although this observation is intuitively clear when assuming no in-
terferences, it is not at all evident that this can still be observed when
considering the interferences between simultaneous emissions. However, it
is a general observation (see Figures 4,8,9,5,6,7) that increasing the angle
of emission increases the chance of success of the localization algorithm.

To reinforce this observation we run simulations of the localization
algorithm without waiting time and observe that in the same condition



the localization algorithm fails nearly all the time to locate a significant
set of sensors. Moreover, the bound loge(n) ≈ 4 for the waiting time is
obtained with an asymptotic analysis and hence, is valid as the number of
sensors is large enough. Actually, we observe as the number of sensors is
smaller, Figure 4, that the impact of the interferences on the performance
of the localization algorithm is much more important. We ran a new set
of simulations with n = 50 sensors and a waiting time bounded by 10.
The results are plotted in Figure 7 and comparing the results obtained
without interferences (right of Figure 4) it is clear that the impact of a
longer waiting time on improving the performances of the algorithm is
important.
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Fig. 5. n = 50 sensors, 10 anchors, with collisions (left) and without (right). The curves
depicted from right to left are going in increasing the radius of emission. Waiting time
in [0, 4]

In Figures 4, 5, 6, the probability of success of the algorithm is plotted
with n = 50 sensors with respectively 5, 10 and 15 anchors. Only minor
improvements can be observed by comparing the numerical results.

With the numerical experiments of Figure 4, 8, 9 it is possible to
estimate the impact of the shape of the emission pattern on the success
of the localization algorithm. For this purpose, we consider a value of p =
0.45 choosen arbitrarily. For each couple (ri, αi) leading to a probability
of success of p = 0.45 we compute αi × r2

i which is proportional to the
area of the emission pattern. The results are plotted in Figures 10, 11,
12 corresponding respectively to n = 50, 100, 1000 sensors, i.e. couples
(ri, αi) are measured on the Figures 4, 8, 9, respectively. The numerical
results show that the probability of success depends on the product α×r2.
Actually, the probability depends on the shape of the emission pattern
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Fig. 6. n = 50 sensors, 15 anchors, with collisions (left) and without (right). The curves
depicted from right to left are going in increasing the radius of emission. Waiting time
in [0, 4]
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Fig. 7. n = 50 sensors, 5 anchors with collisions. The curves depicted from right to left
are going in increasing the radius of emission. Waiting time in [0, 10]
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Fig. 8. n = 100 sensors, 5 anchors, with collisions (left) and without (right). The curves
depicted from right to left are going in increasing the radius of emission. Waiting time
in [0, 5]
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Fig. 9. n = 1000 sensors, 5 anchors, with collisions (left) and without (right). The
curves depicted from right to left are going in increasing the radius of emission. Waiting
time in [0, 7]
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Fig. 10. n = 50 sensors, 5 anchors, with collisions (blue) and without (red). Variation
of the area of the emission pattern (with p = 0.45 constant) as a function of r. Plot of
α(x) × x2, x = 6, 7, . . . with respect to x
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Fig. 11. n = 100 sensors, 5 anchors, with collisions (blue) and without (red). Variation
of the area of the emission pattern (with p = 0.45 constant) as a function of r. Plot of
α(x) × x2, x = 6, 7, . . . with respect to x
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Fig. 12. n = 1000 sensors, 5 anchors, with collisions (blue) and without (red). Variation
of the area of the emission pattern (with p = 0.45 constant) as a function of r. Plot of
α(x) × x2, x = 6, 7, . . . with respect to x

and not uniquely on the area covered. This leads to the question whether
there exists an optimal shape of the emission pattern? We can obtain a
first answer by restricting the shape of the emission pattern to be a sector
of the disk and assume that the energy consumption is proportional to the
area covered by the emission pattern. The numerical results in Figures
10, 11, 12 show that to minimize the energy consumption, keeping the
probability of success constant, the radius of emission has to be chosen
as small as possible (and increase the angle of emission to keep constant
the probability of success). In our setting this implies that the optimal
shape of the emission pattern for the localization problem is the circle.
More generally, we can postulate that the symmetric radiation pattern is
much more appropriate to the localization algorithm.

We should mention that the numerical methods used in this paper
prove to work well and lead to some useful numerical results. The com-
putations show clearly the relevance of the waiting time before emitting.
This is also relevant to model dynamical behavior of sensor networks.

The threshold behavior of the probability of success of the localization
algorithm as interferences are not taken into account can be theoretically
explained. Such results are general and based on monotone events. In
our setting, an event such as the success of the localization protocol, is
monotone if by adding some edges the localization process is still success-
full. Once we consider the interferences, the event is no longer monotone
since adding some edges can lead to harmful interferences preventing the
success of the localization algorithm.



In [19] it is pointed out that the slope of the probability of success
is related to the expected number of pivotal sensors, i.e. sensors which
cannot be removed without preventing the success of the localization algo-
rithm. Numerical methods are used to estimate this slope. The practical
interest of estimating the expected number of pivotal sensors is due to
the fact that this leads to an estimate of the network robustness. The less
pivotal sensors, the more robust is the network. Again, this result, based
on an application of Russo’s formula, is theoretically validated only when
no interferences are taken into account and development of a theoretical
framework as interferences are considered would be of practical interest
in sensor networks.
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