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Abstract. Causal modeling, such as noisy-OR, reduces probability pa-
rameters to be acquired in constructing a Bayesian network. Multiple
causes can reinforce each other in producing the effect or can undermine
the impact of each other. Most existing causal models do not consider
their interactions from the perspective of reinforcement or undermining.
We show that none of them can represent both interactions. We present
the first explicit causal model that can encode both reinforcement and
undermining and we show how to use such a model to support efficient
probability elicitation.

1 Introduction

A Bayesian network (BN) [7] encodes concisely the probabilistic knowledge about
a large problem domain. However, when a variable has a large number of parent
variables in the BN, acquisition of the corresponding conditional probability
table (CPT) is exponential on the number of parents.

Pearl pioneered idea of noisy-OR model [7]. Henrion [5] added to noisy-
OR model the leaky probability. Diez [1] and Srinivas [9] extended noisy-OR
from binary to multi-valued variables. Heckerman and Breese [4] analyzed a
collection of causal independence relations that allows efficient acquisition of
conditional probability tables in BNs. Lemmer and Gossink [6] proposed recently
the recursive noisy-OR model.

When multiple causes are present, they can reinforce each other in producing
the effect or they can undermine the impact of each other. Unlike [6], previous
work do not consider causal interactions among variables from the perspective of
reinforcement or undermining, and model parameters are limited to probabilities
of single cause events. All previously proposed causal models, including noisy-
OR, recursive noisy-OR, noisy-MAX, noisy-AND and noisy-addition, are limited
to represent either reinforcement or undermining but not both.

In this work, we present an noisy-AND tree model that represents arbitrary
causal interactions among a set of causes, some of them are reinforcing and
others are undermining. Reinforcement and undermining are encoded explicitly
to support probability elicitation and probabilities for multi-cause events can be
incorporated as model parameters if so desired.

In Section 2, we introduce the terminology and define formally reinforcement
and undermining. Section 3 presents how reinforcement and undermining can be



modeled uniformly using noisy-AND gates. Section 4 proposes the noisy-AND
tree model and how to use it to obtain causal probability is described in Section 5.
We present, in Section 6, how to use noisy-AND trees to model causal interaction
when default independence assumptions do not hold. We demonstrate elicitation
of CPTs with noisy-AND trees in Section 7. Section 8 compares related causal
models with noisy-AND trees.

2 Background

We aim to assess a conditional probability distribution of a variable x conditioned
on a set of variables Y based on their causal relation. The causes that we consider
are uncertain causes. Following Lemmer and Gossink [6], an uncertain cause is
a cause that can produce an effect but does not always do so. We denote a set
of binary cause variables as X = {c1, ..., cn} and their effect variable (binary) as
e. For each ci, we denote ci = true by ci1 and ci = false by ci0. Similarly, we
denote e = true by e1 and e = false by e0.

We refer to the event that a cause ci causes an effect e to occur as a causal
event. We denote this causal event by e1 ← {ci1} or simply e1 ← ci1, and we
denote its negation that ci does not cause e as e1 6← ci1. Note that causal event
e1 ← ci1 is not just the concurrence of ci1 and e1. With the above notation, ci

is an uncertain cause of e if and only if 0 < P (e1 ← ci1) < 1.
We denote causal event that a set of causes X = {c1, ..., cn} causes e as

e1 ← {c11, ..., cn1}, or simply e1 ← c11, ..., cn1 or e1 ← x1. When the cause set is
indexed, such as Wi = {c1, ..., cn}, the causal event may be denoted e1 ← wi1.
We allow broad interpretations of causal event by a set of causes, as will be seen
in later sections. For instance, we are not limited to the interpretation in [6]: the
effect is caused by at least one of the causes.

Pearl [7] regards a cause as a certain cause, whose occurrence always causes
the effect. He encodes the causal uncertainty using an uncertain inhibitor. The
conjunction of a certain cause and an inhibitor in his formulation is equivalent
to an uncertain cause.

When modeling a domain with a BN, the set of all causes of an effect variable
e is its parents. We denote the set of all causes of e by C. To capture causes
that we do not wish to represent explicitly, we include a leaky cause variable in
C (as one of c1 through cn).

Probability of causal event can be used to assess CPT P (e|C). For example,
if C = {c1, c2, c3, c4}, then P (e1|c11, c20, c31, c41) = P (e1 ← c11, c31, c41). Note
that only cause variables of value true are included in the right-hand side of the
causal probability.

When multiple causes are present, they may reinforce each other in producing
the effect. That is, their combined influence is greater than that from only some
of them. Alternatively, multiple causes may undermine each other in producing
the effect. Below, we define reinforcement and undermining formally.

Definition 1 Let R = {W1, W2, ...} be a partition of a set X of causes, R′ be a
proper subset of R, and Y be the union of elements in R′. Sets of causes in R
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are said to reinforce each other, if for every subset R′ ⊂ R, it holds that

P (e1 ← y1) ≤ P (e1 ← x1).

Otherwise, sets of causes in R are said to undermine each other.

When each Ri is a singleton, reinforcement corresponds to positive causal-
ity in [6] and undermining corresponds to inhibition. Hence, reinforcement and
undermining are more general. They allow modeling of reinforcement of sets of
causes when causes in some set are undermining. Similarly, they allow modeling
of undermining of sets of causes when causes in some set are reinforcing. This
will become more clear in Section 4.

3 Noisy-AND Gates for Reinforcement and Undermining

We propose to model reinforcement as well as undermining uniformly based on
AND gate, which we refer to as noisy-AND gate. It builds on previous work
with noisy-OR [7] and noisy-AND [2], but takes a different perspective from
reinforcing and undermining interactions among uncertain causes.

We assume that, by default, sets of reinforcing causes R = {W1, ..., Wm},
where Wi and Wj are disjoint for all i and j, satisfy failure conjunction:

(e1 6← w11, ...,wm1) = (e1 6← w11) ∧ ...∧ (e1 6← wm1). (1)

That is, sets of reinforcing causes fail to produce effect if each set of causes has
failed to produce the effect. We also assume that, by default, sets of reinforcing
causes satisfy failure independence:

P (e1 6← w11, ...,wm1) = P (e1 6← w11) ... P (e1 6← wm1). (2)

That is, failure events e1 6← w11, ..., e1 6← wm1 are independent of each other.

(a)

e     c1        11
e     c1        n1...

(b) 1        11          n1e     c   ,...,c

...

1        11          n1e     c   ,...,c

e     c1        11
e     c1        n1

Fig. 1. Noisy-AND gate.

We model the default reinforcing interaction graphically with the noisy-AND
gate in Figure 1 (a), where each Wi = {ci} is a singleton, m = n, failure con-
junction is expressed by the AND gate, and failure independence is expressed by
lack of direct connection between individual failure events. The following Lemma
confirms their reinforcement. Due to space limit, we omit proofs for all formal
results.
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Lemma 1 Let R = {W1, W2, ...} be a partition of a set X of uncertain causes
of effect e and sets in R satisfy Eqns (1) and (2). Then, interaction among sets
of causes in R is reinforcing.

When each Wi is a singleton, Eqn (2) can be alternatively written as

P (e1 ← c11, ..., cn1) = 1−
n∏

i=1

(1− P (e1 ← ci1)), (3)

which is the noisy-OR model [7]. Therefore, Lemma 1 also formalizes relation
between noisy-OR and reinforcement. We refer to the noisy-AND gate in Figure 1
(a) as the default model for reinforcement. The default model represents only
one possible reinforcement among sets of causes. We present representation for
different reinforcements in Section 6.

Next, we consider undermining. We assume that, by default, sets of under-
mining causes satisfy success conjunction:

e1 ← x1 = (e1 ← w11) ∧ ...∧ (e1 ← wm1). (4)

That is, when sets of undermining causes succeed in causing the effect in under-
mining way, each set of causes must have been effective. We emphasize that the
success occurs in an undermining way. If any set of causes has occurred but has
failed to be effective, it would not undermine the other sets of causes. We also
assume that, by default, sets of undermining causes succeed independently, i.e.,

P (e1 ← x1) = P (e1 ← w11) ... P (e1 ← wm1). (5)

The following lemma confirms their undermining interaction, whose proof is
straightforward.

Lemma 2 Let R = {W1, W2, ...} be a partition of a set X of uncertain causes
of effect e and sets in R satisfy Eqns (4) and (5). Then, interaction among sets
of causes in R is undermining.

Again, the default model represents only one possible undermining inter-
action among sets of causes. We describe representation of other undermining
interactions in Section 6.

4 Noisy-AND Trees

Consider two sets X and Y of causes that reinforce each other. It is possible that
causes within X undermine each other, and so do causes within Y . In general,
such interplay of causal interactions of different natures can form a hierarchy.
In this section, we present a graphical representation to model such a hierarchy.
It is based on noisy-AND gates and has a tree topology. We term it noisy-AND
tree. We assume that a domain expert is comfortable to assess reinforcing and
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undermining interactions among causes according to some partial order and is
able to articulate the hierarchy.

For example, consider a patient in the process to recover from a disease
D. Taking medicine M helps recovery and so does regular exercise. Patient’s
normal diet contains minerals that facilitate recovery but taking with medicine
M reduces effectiveness of both.

The causes and effect involved are defined as follows:

– e1 : Recovery from disease D within a particular time period.
– c11: Taking medicine M .
– c21: Regular exercise.
– c31: Patient takes his/her normal diet.

For the purpose of prognosis, one needs to assess P (e1 ← c11, c21, c31). To
ease the task, a physician may consider first undermining interaction between
c1 and c3. (S)he then considers reinforcing interaction between sets {c1, c3} and
{c2}. Thus, the physician has articulated an order for stepwise assessment. In
addition, the physician also assesses

P (e1 ← c11) = 0.85, P (e1← c21) = 0.8, P (e1← c31) = 0.7.

If this is all the information that the physician can provide, the causal interaction
can be modeled as the noisy-AND tree in Figure 2 (a).

e     c   1        21

e     c   1        31

(b)(a) 1        11    21    31e     c   ,c   ,c

1        11    21e     c   ,c

e     c   1        111        11e     c   

1        11    21    31e     c   ,c   ,c

e     c   1        21

e     c   1        31

1        11    31e     c   ,c

Fig. 2. (a) Noisy-AND tree model of disease example. (b) Alternative model.

From the upper AND gate and Eqn (5), we derive P (e1 ← c11, c31) = 0.595,
an effect of undermining. The output of the upper AND gate is negated (shown
by the white oval) before entering the lower AND gate and the corresponding
event has probability P (e1 6← c11, c31) = 0.405. From the lower AND gate and
Eqn (2), we derive

P (e1 6← c11, c21, c31) = P (e1 6← c11, c31)P (e1 6← c21) = 0.081,

and P (e1 ← c11, c21, c31) = 0.919. The following defines a noisy-AND tree in
general.

Definition 2 Let e be an effect and X = {c1, ..., cn} be a set of uncertain causes
that is known to have occurred. An noisy-AND tree for modeling causal inter-
action among elements of X is a directed tree where the following holds:
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1. There are two types of nodes on the tree. An event node is shown as a black
oval and a gate node is shown as an AND gate. Each event node has an
in-degree ≤ 1 and an out-degree ≤ 1. Each gate has an in-degree ≥ 2 and an
out-degree 1.

2. Every link connects an event node with a gate node. There are two type of
links: forward links and negation links. Each link is directed from its tail
node to its head node consistently along the input-to-output stream of gates.
A forward link is shown as a line and is implicitly directed. A negation link
is shown as a line with a white oval at the head and is explicitly directed.

3. All terminal nodes are event nodes and each is labeled by a causal event in
the form e1 ← y or e1 6← y. Exactly one terminal node, called the leaf,
is connected to the output of a gate and has y = x1. Each other terminal
node is connected to the input of a gate and is a root. For each root, y is a
proper subset of x1, it holds

⋃
i yi = x1 with i indexing roots, and for every

two roots with yj and yk, it holds yj ∩ yk = ∅.
4. Multiple inputs of a gate g must be in one of the following cases:

(a) Each is either connected by a forward link to a node labeled with e1 ← y,
or by a negation link to a node labeled with e1 6← y. Output of g is
connected by a forward link to a node labeled with e1 ← ∪iyi.

(b) Each is either connected by a forward link to a node labeled with e1 6← y,
or by a negation link to a node labeled with e1 ← y. Output of g is
connected by a forward link to a node labeled with e1 6← ∪iyi.

Degree restriction in Condition 1 ensures that an event represents the output
of no more than one gate and is connected to the input of no more than one
gate. Condition 4 ensures that inputs to each gate either all corresponds to causal
events in the form of e1 ← y, or all corresponds to causal events in the form of
e1 6← y. Semantically, 4 (a) corresponds to undermining sets of causes and 4 (b)
corresponds to reinforcing sets.

5 Noisy-AND Tree Evaluation

A noisy-AND tree can be used to evaluate P (e1 ← x1) given P (e1 ← y) or
P (e1 6← y) for each root node. The computation can be performed recursively
by decomposing the noisy-AND tree into subtrees. The following lemma shows
that such decomposition is valid.

Lemma 3 Let T be a noisy-AND tree, the leaf of T be v, and the gate connected
to v be g. Let v and g be deleted from T , as well as the links incoming to g. In
the remaining graph, each component is either an isolated event node or a noisy-
AND tree.

A noisy-AND tree can be evaluated according to the following algorithm.

Algorithm 1 GetCausalEventProb(T)
Input: A noisy-AND tree T.
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denote leaf of T by v and gate connected to v by g;
for each node w directly connected to input of g, do

if probability P (w) for event at w is not specified,
denote sub-AND-tree with w as the leaf by Tw;
P (w) = GetCausalEventProb(Tw);

if (w, g) is a forward link, P ′(w) = P (w);
else P ′(w) = 1− P (w);

P (v) =
∏

w P ′(w);
return P (v);

The following theorem establishes soundness of GetCausalEventProb. We
define the depth of a noisy-AND tree to be the maximum number of gate nodes
contained in a path from a root to the leaf.

Theorem 1 Let T be a noisy-AND tree where probability for each root node is
specified in the range (0, 1) and P (v) be returned by GetCausalEventProb(T ).
Then P (v) is a probability in the range (0, 1) and it combines given probabilities
according to reinforcement or undermining specified by the topology of T .

Note that the topology of T is a crucial piece of knowledge. For the above
example, suppose the physician articulates a different order, which is shown in
Figure 2 (b). The physician feels that reinforcing interaction between c1 and c2

should be considered first. The undermining interaction between sets {c1, c2}
and {c3} should then be considered. Applying GetCausalEventProb, we obtain
P (e1 6← c11, c21) = 0.03 and P (e1 ← c11, c21, c31) = 0.679.

6 Relaxing Default Assumptions

A noisy-AND tree assumes, by default, failure independence for reinforcing sets
of causes and success independence for undermining sets of causes. For given
sets of causes, the expert may disagree with such assumptions. This may man-
ifest in terms of disagreement of the expert with output event probability of a
noisy-AND gate. When this occurs, noisy-AND tree representation allows easy
modification by deleting the corresponding AND gate from the tree. In partic-
ular, let g be the gate in question and its output be connected to node v. If
the expert disagrees with the event probability computed for node v, the entire
subtree with v as the leaf can be discarded by deleting the link (g, v). Node v
remains in the resultant new noisy-AND tree as a root node. The expert can
then specify a proper event probability for v.

For instance, with the noisy-AND tree in Figure 2 (a), suppose that the
expert disagrees with P (e1 ← c11, c31) = 0.595. Instead, (s)he feels that 0.4 is
more appropriate. Note that this assignment is consistent with the undermining
interaction between c1 and c3, but the degree of undermining is different from
what the default assumption dictates. We can then remove root nodes labeled
by e1 ← c11 and e1 ← c31 as well as the gate that they are connected to. As the
result, node e1 ← c11, c31 becomes a root node and P (e1 ← c11, c31) = 0.4 can
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be assigned to it. Applying GetCausalEventProb to the new noisy-AND tree, we
obtain P (e1 ← c11, c21, c31) = 0.88.

This flexibility of noisy-AND tree allows it to be used in an interactive way,
increasing its expressive power as a tool for probability elicitation: An expert
can start by articulating a noisy-AND tree where each root is labeled by a single
cause ci. The default assumptions on failure and success independence now allow
computation of probability for each non-root causal event. This can be viewed
as the first approximation of the expert’s subjective belief. The expert can then
examine each computed event probability and decide if it is consistent with
his/her belief.

Upon identification of disagreement over a node v connected to the output
of a gate g, the expert can trace backward to input events connected to g. The
expert will decide whether (s)he disagrees with the probabilities of any input
events. If no such disagreement is identified, then the expert must be disagreeing
with the degree of reinforcement or undermining implied by the assumption on
failure or success independence. (S)he can then assess a probability for the output
event as we illustrated above. Note that this assessment, with the computed
probability as reference, is easier than an assessment to be made from vacuum.
On the other hand, if disagreement with the probability of an input event is
identified, the processing continues by tracing further back towards root nodes.

It is possible that as the expert traces disagreements, makes modifications
to event probabilities, and deletes subtrees, a deep noisy-AND tree started with
becomes very shallow in the end. Many root node labels now consist of a subset
of causes, instead of a single one at the start. The topology of the resultant
noisy-AND tree becomes very different. This does not mean that the original
noisy-AND tree was wrong. It has disappeared after serving its useful role in
elicitation.

7 Elicitation of CPTs With Noisy-AND Trees

We demonstrate how to use noisy-AND trees to elicit CPTs in BNs with an
example. Consider an effect (child) variable e with a set of seven causes (parents)
in a BN: c1, ..., c7. Suppose that a domain expert identifies the following three
subsets of causes and interaction within each subset:

– Subset s1: c1 and c2 are undermining each other.
– Subset s2: c2, c3 and c4 are reinforcing each other.
– Subset s3: c6 and c7 are reinforcing each other.

The expert assesses that interaction between subsets s1 and s2 is also under-
mining and, together as a group, they reinforce s3. Without further quantita-
tive information, these assessments produce the noisy-AND tree in Figure 3 (a).
Suppose that the following probabilities for single-cause events are also provided:

P (e1 ← c11) = 0.65, P (e1← c21) = 0.35, P (e1← c31) = 0.8,

P (e1 ← c41) = 0.3, P (e1← c51) = 0.6, P (e1← c61) = 0.75, P (e1← c71) = 0.55.
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e     c   ,c   , ...,c1        11    21           n1

e     c   , ...,c1        31           n11        21e     c   e     c   , ...,c1        21           n−1,1

e     c   , ...,c1        21           n−1,1

...

(a) (b)

1        11e     c   

e     c   , ...,c1        31           n1

e     c   , ...,c1        21           n1

e     c   , ...,c1        11           n−1,1g1 g2

g5

e     c   ,c   ,c   ,c   ,c   ,c   ,c1        11    21    31     41    51     61    71

e     c   ,c   ,c   ,c   ,c1        11    21    31     41    51

e     c   ,c1        11    21

e     c   ,c1        61    71

e     c   ,c   ,c1        31    41     51

1        21e     c   

1        31e     c   

g

1        71e     c   

g43

e     c   1        11

1        51e     c   
1        41e     c   

e     c   1        61

Fig. 3. (a) An example noisy-AND tree. (b) Graphical model for recursive noisy-OR.

To assess P (e1|c11, ..., c71), we apply GetCausalEventProb to obtain

P (e1|c11, ..., c71) = P (e1 ← c11, ..., c71) = 0.912.

To assess P (e1|c11, c21, c30, c41, c51, c61, c71), eliminate node e1 6← c31 from Fig-
ure 3 (a) and modify output labels for g2, g3 and g5. The evaluation gives

P (e1|c11, c21, c30, c41, c51, c61, c71) = P (e1 ← c11, c21, c41, c51, c61, c71) = 0.906.

We have used the same noisy-AND tree to assess both probabilities above.
This is not necessary. That is, noisy-AND trees do not require that different
causal probabilities to be assessed using the same tree. If the expert feels that
a particular combination of a subset of causes follows a different pattern of
interaction, a distinct noisy-AND tree can be used, without producing invalid
CPT. Commonly, we expect that one tree can be used for assessment of all
probabilities in a CPT. If the expert is happy with the result, the complexity of
his/her assessment task is only O(n), where n is the number of causes.

Suppose that the expert believes that 0.906 is too high for P (e1|c11, c21, c30, c41,
c51, c61, c71) and (s)he attributes to the output from gate g4 P (e1 6← c61, c71) =
0.113 as too low. Instead, (s)he believes 0.2 is a better assessment. In response,
we remove the subtree with g4 as the leaf and specify 0.2 as the probability
for the new root event node e1 6← c61, c71. GetCausalEventProb now generates
P (e1|c11, c21, c30, c41, c51, c61, c71) = 0.833.

8 Related Models Of Causal Interaction
We compare noisy-AND trees with related models of causal interaction. As we
have defined reinforcement and undermining under the binary context, the fol-
lowing analysis is restricted to such context if appropriate.

Some models of causal interaction are limited to represent either reinforce-
ment or undermining but not both. Noisy-MAX model [1] becomes noisy-OR
model when variables are binary. Therefore, from Lemma 1, when domain is
binary, noisy-MAX represents only reinforcing interaction.
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Similarly, noisy-MIN model [2] becomes noisy-AND when variables are bi-
nary. Hence, according to Lemma 2, when domain is binary, noisy-MIN repre-
sents only undermining interaction.

Lemmer and Gossink [6] proposed RNOR to model reinforcement. To as-
sess effect probability due to a set of causes, RNOR model can combine causal
probabilities due to subsets of causes, where each subset may not be singleton.
Their combination at subset level has influenced our thinking in formulation of
noisy-AND trees. According to RNOR, for a set of causes X = {c1, ..., cn}, if
P (e1 ← c11, ..., cn1) is not provided by the expert, it is estimated as

P (e1 ← c11, ..., cn1) = 1−
n∏

i=1

1− P (e1 ← c11, ..., ci−1,1, ci+1,1, ..., cn1)
1− P (e1 ← c11, ..., ci−1,1, ci+2,1, ..., cn1)

(6)

as long as causes in X are reinforcing. However, if causes in X are undermining,
the result from the equation may not be a valid probability.

No graphical representation of RNOR was proposed in [6]. We present a
graphical model which reveals the independence assumption underlying RNOR.
Using failure events, we rewrite Eqn (6) below:

P (e1 6← c11, ..., cn1) =
n∏

i=1

P (e1 6← c11, ..., ci−1,1, ci+1,1, ..., cn1)
P (e1 6← c11, ..., ci−1,1, ci+2,1, ..., cn1)

(7)

=
n∏

i=1

P ((e1 6← ci+1,1) ∧ (e1 6← c11, ..., ci−1,1, ci+2,1, ..., cn1))
P (e1 6← c11, ..., ci−1,1, ci+2,1, ..., cn1)

(8)

=
n∏

i=1

P (e1 6← ci+1,1|e1 6← c11, ..., ci−1,1, ci+2,1, ..., cn1) (9)

Figure 3 (b) shows the graphical model of RNOR based on Eqn (7) and
Eqn (9). A gate representing ”conditioning” has been introduced and is shown
as a triangle with a vertical bar in the center. We refer to the gate as a COND
gate. The output of a COND gate is the event of its left input event conditioned
on its right input event. Note that e1 6← ci+1,1|e1 6← c11, ..., ci−1,1, ci+2,1, ..., cn1

is a well defined event. Each input event to a COND gate is associated with a
real potential. Its output event is assigned a potential defined by the division of
the two input potentials (the one in the left divided by that in the right). For
the AND gate, its output event is assigned a potential defined by the product of
potentials of its inputs. Inputs of each gate are not connected in any path other
than through the gate.

Eqn (9) and Figure 3 (b) reveal that RNOR model assumes that conditional
failure event denoted by e1 6← ci+1,1|e1 6← c11, ..., ci−1,1, ci+2,1, ..., cn1 (where i
runs from 1 to n) is independent of each other. This is not surprising as RNOR
is derived from rewriting Eqn (3) and it assumes failure independence among all
causes. However, when RNOR is used recursively by replacing default probabili-
ties on input of some COND gates, the independence assumption is invalidated,
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while the topology of the graphical model and the rule of probability combination
(Eqn (6)) remain and do not reflect such invalidation.

On the other hand, independence assumptions made in noisy-AND trees
are local to each gate. Assumption made relative to a gate governs only the
probability combination at the output of the gate and is independent of the
assumptions made at other gates. When the default probability produced by a
gate is replaced and the corresponding subtree removed, it does not invalidate
any independence assumptions at other gates in the remaining noisy-AND tree.
That is, modification of a noisy-AND tree does not invalidate the coherence of
the underlying independence assumptions.

Noisy-addition [3] can represent neither reinforcement nor undermining. Con-
sider a noisy-adder with two binary causes c1 and c2 whose domains are {0, 1}.
It has the following DAG model, where i1 and i2 are intermediate variables and
effect e = i1 + i2:

c1 −→ i1 −→ e←− i2 ←− c2

The model assumes P (ij = 0|cj = 0) = 1 and 0 < P (ij = 1|cj = 1) < 1
for j = 1, 2. For simplicity, we assume P (i1 = 1|c1 = 1) = P (i2 = 1|c2 = 1)
and denote their value by q. Note that P (e = 1|c1 = 1) = P (i1 = 1|c1 = 1). To
decide whether this model can represent reinforcement or undermining, P (e =
1|c1 = 1, c2 = 1) should be compared with q. We derive the following:

P (e = 1|c1 = 1, c2 = 1)
= P (i1 = 0, i2 = 1|c1 = 1, c2 = 1) + P (i1 = 1, i2 = 0|c1 = 1, c2 = 1)
= P (i1 = 0|c1 = 1)P (i2 = 1|c2 = 1) + P (i1 = 1|c1 = 1)P (i2 = 0|c2 = 1)

Denoting P (e = 1|c1 = 1, c2 = 1) by r, we have r = 2q(1−q). If q < 0.5, then r >
q. If q > 0.5, then r < q. By Definition 1, if a causal model is reinforcing, then no
matter what value P (e1 ← y1) is, the relation P (e1 ← y1) ≤ P (e1 ← x1) must
hold and reverse of the inequality must hold for undermining. Being unable to
maintain the inequality across the entire range of values for P (e1 ← y1) implies
that noisy-addition is unable to represent either reinforcement or undermining.

Noisy-AND trees differ from those considered by Heckerman and Breese [4] in
that the amechanistic model has essentially a star topology and other three mod-
els (decomposable, multiply decomposable and temporal) are essentially binary
trees. When the binary tree is instantiated according to noisy-OR, noisy-AND,
noisy-MAX, noisy-MIN, noisy-addition, it inherits limitations of these models as
discussed above. In these models, each root node must be a single cause variable,
while noisy-AND trees allow a root node to represent a causal event of multiple
causes.

Pearl [8] analyzed causation using functional causal models. Our work is
consistent with his functional approach and in particular proposes noisy-AND
trees as a useful boolean functional model.
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9 Conclusions

Causal interactions may be reinforcing or undermining. Distinction of them can
facilitate causal modeling and CPT elicitation in construction of Bayesian net-
works. We have shown that existing causal models can model either one type of
interactions (such as noisy-OR, noisy-AND, noisy-MAX, noisy-MIN and recur-
sive noisy-OR) or none of them (such as noisy-addition). We present the first
explicit causal model, termed noisy-AND trees, that can encode both reinforce-
ment and undermining. Furthermore, existing causal models, except recursive
noisy-OR, limit model parameters to probabilities of single cause events, and
recursive noisy-OR introduces inconsistent dependence assumptions when prob-
abilities of multi-cause events are integrated through recursion. On the other
hand, noisy-AND trees integrate probabilities of both single cause events and
multi-cause events coherently. Therefore, noisy-AND trees provide a simple yet
powerful new approach for knowledge elicitation in probabilistic graphical mod-
els.
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