
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

19th Canadian Conference on Artificial Intelligence [Proceedings], 2006

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=82701912-a9a3-4e63-a9ad-69279a1c30a5

https://publications-cnrc.canada.ca/fra/voir/objet/?id=82701912-a9a3-4e63-a9ad-69279a1c30a5

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Unsupervised Named-Entity Recognition: Generating Gazetteers and

Resolving Ambiguity
Nadeau, D.; Turney, Peter; Matwin, S.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Unsupervised Named-Entity Recognition:

Generating Gazetteers and Resolving

Ambiguity *

Nadeau, D., Turney, P., and Matwin, S.
June 2006

* published at the 19th Canadian Conference on Artificial Intelligence.

Québec City, Québec, Canada. June 7, 2006. NRC 48727.

Copyright 2006 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

1

Unsupervised Named-Entity Recognition:
Generating Gazetteers and Resolving Ambiguity

David Nadeau1,2, Peter D. Turney1 and Stan Matwin2

1 Institute for Information Technology

National Research Council Canada

Gatineau and Ottawa, Canada

{david.nadeau, peter.turney}@nrc-cnrc.gc.ca
 2 School of Information Technology and Engineering

University of Ottawa

{dnadeau, stan}@site.uottawa.ca

Abstract. In this paper, we propose a named-entity recognition (NER) system that

addresses two major limitations frequently discussed in the field. First, the system

requires no human intervention such as manually labeling training data or creating

gazetteers. Second, the system can handle more than the three classical named-entity

types (person, location, and organization). We describe the system’s architecture and

compare its performance with a supervised system. We experimentally evaluate the

system on a standard corpus, with the three classical named-entity types, and also on

a new corpus, with a new named-entity type (car brands).

1 Introduction

This paper builds on past work in unsupervised named-entity recognition (NER) by

Collins and Singer [3] and Etzioni et al. [4]. Our goal is to create a system that can

recognize named-entities in a given document without prior training (supervised learning)

or manually constructed gazetteers. (We use the term gazetteer interchangeably with the

term named-entity list.)
Collins and Singer’s [3] system exploits a large corpus to create a generic list of proper

names (named-entities of arbitrary and unknown types). Proper names are collected by

looking for syntactic patterns with precise properties. For instance, a proper name is a

sequence of consecutive words, within a noun phrase, that are tagged as NNP or NNPS by

a part-of-speech tagger and in which the last word is identified as the head of the noun

phrase. Like Collins and Singer, we use a large corpus to create lists of named-entities,
but we present a technique that can exploit diverse types of text, including text without

proper grammatical sentences, such as tables and lists (marked up with HTML).

Etzioni et al. [4] refer to their algorithm as a named-entity extraction system. It is not

intended for named-entity recognition. In other words, it is used to create large lists of

2

named-entities, but it is not designed for resolving ambiguity in a given document. The

distinction between these tasks is important. It might seem that having a list of entities in

hand makes NER trivial. One can extract city names from a given document by merely
searching in the document for each city name in a city list. However, this strategy often

fails because of ambiguity. For example, consider the words “It” (a city in Mississippi

State and a pronoun) and “Jobs” (a person’s surname and a common noun). The task

addressed by Etzioni et al. could be called automatic gazetteer generation. Without

ambiguity resolution, their system cannot perform robust, accurate NER. This claim is

supported by the experiments we present in Section 3.
In this paper, we propose a named-entity recognition system that combines named-

entity extraction (inspired by Etzioni et al.[4]) with a simple form of named-entity

disambiguation. We use some simple yet highly effective heuristics, based on the work of

Mikheev [9], Petasis et al. [13], and Palmer and Day [12], to perform named-entity

disambiguation. We compare the performance of our unsupervised system with that of a

basic supervised system, using the MUC 7 NER corpus [1]. We also show that our
technique is general enough to be applied to other named-entity types, such as car brands,

or bridge names. To support this claim, we include an experiment with car brands.

The paper is divided as follows. First, we present the system architecture in Section 2.

Then, we compare its performance with a supervised baseline system on the MUC 7 NER

corpus in Section 3. Next, we show that the system can handle other type of entities, in

addition to the classic three (person, location, and organization), in Section 4. We discuss
the degree of supervision in Section 5. We conclude in Section 6 by arguing that our

system advances the state-of-the-art of NER by avoiding the need for supervision and by

handling novel types of named-entities. The system’s source code is available under the

GPL license at http://balie.sourceforge.net.

 2 Unsupervised Named-Entity Recognition System

The system is made of two modules. The first one is used to create large gazetteers of
entities, such as a list of cities. The second module uses simple heuristics to identify and

classify entities in the context of a given document (i.e., entity disambiguation).

2.1 Generating Gazetteers

The task of automatically generating lists of entities has been investigated by several

researchers. In Hearst [6], lexical patterns are studied that can be used to identify nouns

from the same semantic class. For instance, a noun phrase that follows the pattern “the

city of” is usually a city. In Riloff and Jones [14], a small set of lexical patterns and a

small set of entities are grown using mutual bootstrapping. Finally, Lin and Pantel [7]
show how to create large clusters of semantically related words using an unsupervised

3

technique. Their idea is based on examining words with similar syntactic dependency

relationships. They show they can induce semantic classes such as car brands, drugs, and

provinces. However, their technique does not discover the labels of the semantic classes,
which is a common limitation of clustering techniques.

The algorithm of Etzioni et al. [4] outperforms all previous methods for the task of

creating a large list for a given type of entity or semantic class; the task of automatic

gazetteer generation. Nadeau [11] shows that it is possible to create accurate lists of cities

and car brands in a nearly unsupervised manner, limiting the supervision to a seed of four

examples. In the remainder of this section, we summarize how to generate a list of
thousands of cities from an initial seed of a few examples, in two steps (repeated if

necessary).

2.1.1 Retrieve Pages with Seed
The first step is information retrieval from the Web. A query is created by conjoining a

seed of k manually generated entities (e.g., “Montreal” AND “Boston” AND “Paris” AND
“Mexico City”). In our experience, when k is set to 4 (as suggested by Etzioni et al. [4])

and the seed entities are common city names, the query typically retrieves Web pages that

contain many names of cities, in addition to the seed names. The basic idea of the

algorithm is to extract these additional city names from each retrieved Web page.

2.1.2 Apply Web Page Wrapper
For each page found in 2.1.1, a Web page wrapper is trained on the k positive examples

that are known to appear in the page, but only if they are strictly contained in an HTML

node (e.g., <td> Boston </td>) or surrounded by a small amount of text inside an HTML

node (e.g., <td> Boston hotel </td>). The remaining HTML nodes in the page are treated

as if they were negative examples, but we only include in the negative set the nodes with

the same HTML tags as the positive examples [11]. For instance, if the k positive nodes
are tagged as bold (i.e., “”), then the negative examples will be restricted to the

remaining bold text in the Web page. The Web page wrapper we used is similar to Cohen

and Fan’s [2] wrapper, in terms of the learning algorithm and the feature vector.

As described above, Web page wrapping is a classification problem. A supervised

learning algorithm is used to classify unknown entities in the current Web page. In this

application, the training set and the testing set are the same. The learning algorithm is
trained on the given Web page and then the learned model is applied to reclassify the text

in the same Web page. Two main problems make this task difficult. First, there is noise in

the class labels in the training data, because everything except the seed words are initially

labeled as negative. If the page contains more than k entities of the desired type, the very

nodes we want to extract were labeled as negative. The second problem is the class

imbalance in the data. Along with the k positive examples, there are usually hundreds or
thousands of negative examples. These two problems are handled by noise filtering and

cost-sensitive classification, respectively.

4

At this point, our technique goes beyond the system of Etzioni et al. [4], which uses a

simple Web page wrapper, consisting of hand-crafted rules. To handle the problem of

noise in the class labels, we use a filtering approach inspired by Zhu et al. [16]. The noise
filtering strategy is to simply remove any instance similar to a positive instance. We say

that two nodes are similar when their feature vectors are identical, except for the text

length feature. (Refer to Cohen and Fan [2] for a description of the Web page wrapper’s

features.) Using this filter, an average of 42% of the examples that are initially labeled as

negative are removed from the training set. These examples are left in the (unlabeled)

testing set. When the trained model is later applied to the testing set, some of the removed
examples may be classified as positive and some may be classified as negative.

To handle the class imbalance problem, we use a cost-sensitive supervised learning

system. Using the original unbalanced dataset, the wrapper is almost incapable of

extracting new entities. It mainly guesses the majority class (negative) and only extracts

the initial seed from Web pages. To discourage the learning algorithm from using the

trivial solution of always guessing the majority class, a high cost is assigned to
misclassification errors in which a positive example is classified as negative. This cost-

sensitive approach over-samples the positive examples to rebalance the dataset. This

rebalancing must be done for each individual Web page, to take into account the

imbalance ratio of each wrapper.

Past research suggests that supervised learning algorithms work best when the ratio of

positive to negative examples is near 1:1 [8]. We hypothesized that the wrapper would
work best when we rebalanced the dataset by duplicating positive instances until the ratio

reached 1:1. To verify this hypothesis, we studied the behavior of the wrapper with

different ratios on a set of 40 Web pages. As expected, we found that the wrapper

performance is optimal when the ratio is approximately 1:1. We therefore use this ratio in

the experiments in Sections 3 and 4.

2.1.3 Repeat
The two steps above (2.2.1, 2.2.2) are repeated as needed. Each iteration brings new

entities that are added to the final gazetteer. At each iteration, k new randomly chosen

entities are used to refresh the seed for the system. Entities are chosen from the gazetteer

under construction. Preference is given to seed entities that are less likely to be noise, such

as those appearing in multiple Web pages.

2.2 Resolving Ambiguity

The list lookup strategy is the method of performing NER by scanning through a given
input document, looking for terms that match a list entry. The list lookup strategy suffers

from three main problems: (1) entity-noun ambiguity errors, (2) entity boundary detection

errors, and (3) entity-entity ambiguity errors. Due to these three problems, the gazetteer

generating module presented in Section 2.1 is not adequate, by itself, for reliable named-

entity recognition. We found heuristics in the literature to tackle each of these problems.

5

2.2.1 Entity-Noun Ambiguity
Entity-noun ambiguity occurs when an entity is the homograph of a noun. The plural word

“jobs” and the surname “Jobs” is an example of this problem. To avoid this problem,
Mikheev [9] proposes the following heuristic: In a given document, assume that a word or

phrase with initial capitals (e.g., “Jobs”) is a named-entity, unless (1) it sometimes appears

in the document without initial capitals (e.g., “jobs”), (2) it only appears at the start of a

sentence or at the start of a quotation (e.g., “Jobs that pay well are often boring.”), or (3) it

only appears inside a sentence in which all words with more than three characters start

with a capital letter (e.g., a title or section heading).

2.2.2 Entity Boundary Detection
A common problem with the list lookup strategy is errors in recognizing where a named-

entity begins and ends in a document (e.g., finding only “Boston” in “Boston White

Sox”). This can happen when a named-entity is composed of two or more words (e.g.,

“Jean Smith”) that are each listed separately (e.g., “Jean” as a first name and “Smith” as a
last name). It can also happen when an entity is surrounded by unknown capitalized words

(e.g., “New York Times” as an organization followed by “News Service” as an unlisted

string). Palmer and Day [12] propose the longest match strategy for these cases.

Accordingly, we merge all consecutive entities of the same type and every entity with any

adjacent capitalized words. We did not, however, merge consecutive entities of different

types, since we would not have known the resulting type.
The rule above is general enough to be applied independently of the entity type. We

found that other merging rules could improve the precision of our system, such as “create

a new entity of type organization by merging a location followed by an organization”.

However, we avoided rules like this, because we believe that this type of manual rule

engineering results in brittle, fragile systems that do not generalize well to new data. Our

goal is to make a robust, portable, general-purpose NER system, with minimal embedded
domain knowledge.

2.2.3 Entity-Entity Ambiguity
Entity-entity ambiguity occurs when the string standing for a named-entity belongs to

more than one type. For instance, if a document contains the named-entity “France”, it

could be either the name of a person or the name of a country. For this problem, Petasis et
al. [13], among others, propose that at least one occurrence of the named-entity should

appear in a context where the correct type is clearly evident. For example, in the context

“Dr. France”, it is clear that “France” is the name of a person.

We could have used cues, such as professional titles (e.g., farmer), organizational

designators (e.g., Corp.), personal prefixes (e.g., Mr.) and personal suffixes (e.g., Jr.), but

as discussed in the preceding section, we avoided this kind of manual rule engineering.

6

Fig. 1. Simple alias resolution algorithm

Instead, we applied a simple alias resolution algorithm, presented in Figure 1. When an

ambiguous entity is found, its aliases are used in two ways. First, if a member of an alias

set is unambiguous, it can be used to resolve the whole set. For instance, “Atlantic ocean”

is clearly a location but “Atlantic” can be either a location or an organization. If both

belong to the same alias set, then we assume that the whole set is of type location. A
second way to use the alias resolution is to include unknown words in the model.

Unknown words are typically introduced by the heuristic in Section 2.2.2. If an entity

(e.g., “Steve Hill”) is formed from a known entity (e.g., “Steve”) and an unknown word

(e.g., “Hill”), we allow occurrences of this unknown word to be added in the alias group.

Definitions:
D = a given input document.

},...,{ 1 naaA = = the set of all sets of aliases in the document D .

},...,{ 1 mi eea = = a set of aliases = a set of different entity instances, referring to

the same actual entity in the world.

psDe ,,= = a unique instance of a named-entity, consisting of a string s in

document D at position p .

),(overlap ji ee = a Boolean function; returns true when iii psDe ,,= and

jjj psDe ,,= and the strings is and js share at least one word with more

than three characters; returns false otherwise.

Algorithm:
Let {}=A .

For each instance of a named-entity e in document D :

If there is exactly one alias set ia with a member je such that

),(overlap jee , then modify A by adding e to ia .

If there are two or more alias sets ia , ja with members ke , le such that

),(overlap kee and),(overlap lee , then modify A by creating a new

alias group pa that is the union of ia , ja , and }{e , add pa to A , and

remove ia and ja from A .

Otherwise, create a new alias set qa , consisting of }{e , and add qa to A .

7

3 Evaluation with the MUC-7 Enamex Corpus

In the Message Understanding Conferences (MUC), the Named-Entity Recognition

(NER) track focuses on the three classical types of named-entities: person, location, and

organization. These three types of named-entities are collectively called Enamex. In this

section, we compare the performance of our system with a baseline supervised system,

using the Enamex corpus from MUC-7. For this experiment, a portion of the corpus is
given to the supervised system in order to train it. Our unsupervised system simply

ignores this portion of corpus.

The same baseline experiment was conducted on MUC-6 and MUC-7 by Palmer and

Day [12] and Mikheev et al. [10] respectively. Their systems work as follows. A training

corpus is read and the tagged entities are extracted and listed. Given a testing corpus, the

lists are used in a simple lookup strategy, so that any string that matches a list entry is
classified accordingly.

Table 1 presents the results of Mikheev on MUC-7 (in the “Learned lists” columns).

There is also a comparison with a system that uses hand-made lists of common entities (in

the “Common lists” columns). The “Combined lists” columns are based on a combination

of both approaches. In Table 1, “re” is the recall, “pr” is the precision, and “f” is the

f-measure (the harmonic mean of precision and recall), expressed as percentages.

Table 1. Results of a supervised system on MUC-7

 Learned lists Common lists Combined lists

 re pr f re pr f re pr f

organization 49 75 59 3 51 6 50 72 59

person 26 92 41 31 81 45 47 85 61
location 76 93 84 74 94 83 86 90 88

For the purpose of comparison, we ran our system on MUC-7 using gazetteers that we

generated as described in Section 2.1. We generated gazetteers for some of the subtypes

of named-entities given by Sekine [15]. The generated gazetteers are described in Table 2.
We also used a special list of the months of the year, because we noticed they were an

abnormally important source of noise on the development (dry run) set.1 Many months are

also valid as personal first names.

1 It can be argued that the month list is a form of manual rule engineering, contrary to the principles

discussed in Section 2.2.2. We decided to use it because most of the noise was clearly corpus-

dependant, since each article contains a date header. For results without the month list, subtract

5% from the precision for the person type.

8

Table 2. Type and size of gazetteers built using Web page wrapper

Gazetteer Size

Location: city 14,977

Location: state / province 1,587

Location: continent / country / island 781
Location: waterform 541

Location: astral body 85

Organization: private companies 20,498

Organization: public services 364

Organization: schools 3,387

Person: first names 35,102
Person: last names 3,175

Person: full names 3,791

Counter-examples: months 12

List size depends on the performance of the Web page wrapper at extracting entities.
Nadeau [11] showed that lists have a precision of at least 90%. We did not restrict the web

mining to a specific geographic region and we did not enforce strict conditions for the list

elements. As a result, the “state / province” list contains elements from around the world

(not only Canada and the U.S.) and the “first name” list contains a multitude of

coumpound first names, although our algorithm is designed to capture them by merging

sequences of first names, as explained in Section 2.2.2.
Table 3 shows the result of a pure list lookup strategy, based on our generated

gazetteers (in the “Generated lists” columns). For comparison, Table 3 also shows the best

supervised results from Table 1 (in the “Mikheev combined lists” columns). The results

we report in Tables 1, 3, 4, and 5 are all based on the held-out formal corpus of MUC-7.

Table 3. Supervised list creation vs. unsupervised list creation techniques

 Mikheev combined lists Generated lists

 re pr f re pr f

organization 50 72 59 70 52 60

person 47 85 61 59 20 30

location 86 90 88 83 31 45

We believe the comparison in Table 3 gives a good sense of the characteristics of both

approaches. The supervised approach is quite precise but its recall is lower, since it cannot

handle rare entities. The unsupervised approach benefits from large gazetteers, which

enable higher recall at the cost of lower precision.

The case of locations is interesting. There is evidence that there is a substantial
vocabulary transfer between the training data and the testing data, which allows the

supervised method to have an excellent recall on the unseen texts. Mikheev’s lists get a

9

high recall with a list of only 770 locations. The supervised method benefits from highly

repetitive location names in the MUC corpus.

These results are slightly misleading. The MUC scoring software that produces these
measures allows partial matching. That means, if a system tags the expression “Virgin

Atlantic” when the official annotated key is “Virgin Atlantic Group”, it will be credited

with a success. In Table 4, we provide another view of the system’s performance, which

may be less misleading. Table 4 gives, for our system, the precision and recall of all entity

types at the level of tokens (i.e., performance at finding exact string matches) and types
(i.e., performance at correctly classifying the entity types).

Table 4. Generated list performance on text and type matching

Generated lists

re pr f

tokens 61 29 39

types 72 34 46

The next step in our evaluation consists in adding the heuristics presented in Sections

2.2.1 to 2.2.3. These heuristics are designed to be unsupervised; that is, they require no

training (unlike n-gram contexts, for example) and they are not deduced from our domain

knowledge about a specific entity type. Table 5 shows the contribution of each heuristic.
The “Generated lists” columns are copied from Tables 3 and 4, to show the performance

of the list lookup strategy without disambiguation (i.e., Section 2.1 without Section 2.2).

Table 5. Performance of heuristics to resolve named-entity ambiguity

Generated lists

 H1 (Entity-noun

ambiguity)

 H1 + H2 (Entity

boundary)

 H1 + H2 + H3

(Entity-entity

ambiguity)

 re pr f re pr f re pr f re pr f

org. 70 52 60 69 73 71 69 74 71 71 75 73

per. 59 20 30 58 53 55 66 63 64 83 71 77

loc. 83 31 45 82 69 75 81 77 79 80 77 78

tok. 61 29 39 61 57 59 72 72 72 74 72 73

type 72 34 46 71 67 69 72 73 72 77 75 76

The contribution of each heuristic (H1, H2, H3) is additive. H1 (Section 2.2.1) procures

a dramatic improvement in precision with negligible loss of recall. The main source of

ambiguity is clearly, then, entity-noun homographs such as jobs, gates, and bush.

Heuristic H2 (Section 2.2.2) gives almost no change in precision and a small gain in
the recall of individual entity types (the first three rows in Table 5). As explained, these

scores are misleading because they count partial matches and thus these scores are not

sensitive to the boundary detection errors that are corrected by H2. However, the

10

performance of token matching is greatly improved (fourth row in Table 5). We noticed

that most corrected boundaries are attributable to person entities composed of a known

first name and an unlisted capitalized string standing, presumably, for the surname.
H3 (Section 2.2.3) mainly increases precision and recall for named-entities of the

person type, due to the the alias resolution algorithm. An occurence of a full person name

is usually unambiguous and thus can help with annotating isolated surnames, which are

often either ambiguous (they can be confused with organization names) or simply unlisted

strings. Since this heuristic is about resolving ambiguity in named-entity types, the

expected result is an improvement in classification of types, and it can indeed be observed
in the fifth row.

4 Evaluation with Car Brands

There are many more types of named-entities than the three classical types in Enamex.

Sekine et al. [15] propose a hierarchy of 200 types of named-entities. Evans [5] proposes

a framework to handle such wide variety. His approach is based on lexical patterns,
inspired by Hearst [6]. He paired this technique with a heuristic for handling ambiguity in
capitalized words. Our system is similar, but it is based on a method proven to give better

recall at finding entities [4].

In this section, we show how the system performs on the task of recognizing car

brands. Intuitively, it may appear this type is easier to handle than a type such as persons

that has an almost infinite extension. However, recognizing car brands poses many

difficulties. Car brands can be confused with common nouns (e.g., Focus, Rendez-Vous,
Matrix, Aviator) and with company names (e.g., “Ford” versus “Ford Motor Company”).

Another difficulty is the fact that new car brands are created every year, so keeping a

gazetteer of car brands up-to-date is challenging.

We created a small pilot corpus composed of news specifically about cars from some

popular news feeds (CanWest, National Post, and The Associated Press). We use eight

documents, for a total of 5,570 words and 196 occurrences of car brands.
The Web-page wrapper technique was used to generate a list of 5,701 car brands and

the heuristics of sections 2.2.1 to 2.2.3 were applied without any modifications. Table 6

reports the results.

Table 6. System performance for car brand recognition

 Generated list H1, H2 and H3

 re pr f re pr f

cars 86 42 56 85 88 86

tokens 71 34 46 79 83 81

types 86 42 56 85 88 86

11

The performance on this task is comparable to the Enamex task. Without ambiguity

resolution (in the “Generated list” columns), the precision is low, typically under 50%.

This is the impact of frequent and ambiguous words like “will” (Toyota Will) and noise in
our list (e.g., new, car, fuel). The ambiguity resolution algorithms (in the “H1, H2, and

H3” columns) raise the precision above 80%. The remaining recall errors are due to rare

car brands (e.g., “BMW X5 4.8is” or “Ford Edge”). The remaining precision errors are

due to organization-car ambiguity (e.g., “National” as in “National Post” versus

“Chevrolet National”) and noise in the list (e.g., Other, SUV). We believe that the good

performance of gazetteer generation combined with ambiguity resolution on an entirely
new domain emphasizes their domain-independent character and shows the strength of the

unsupervised approach.

5 Supervised versus Unsupervised

We describe our system as unsupervised, but the distinction between supervised and

unsupervised systems is not always clear. In some systems that are apparently

unsupervised, it could be argued that the human labour of generating labeled training data
has merely been shifted to embedding clever rules and heuristics in the system.

In our gazetteer generator (Section 2.1), the supervision is limited to a seed of four

entities per list. In our ambiguity resolver (Section 2.2), we attempt to minimize the use of

domain knowledge of specific entity types. Our system exploits human-generated HTML

markup in Web pages to generate gazetteers. However, because Web pages are available

in such a quantity and because the creation of Web pages is now intrinsic to the workflow
of most organization and individuals, we believe this annotated data comes at a negligible

cost. For these reasons, we believe it is reasonable to describe our system as unsupervised.

6 Conclusion

In this paper, we presented a named-entity recognition system that advances the state-of-

the-art of NER by avoiding the need for supervision and by handling novel types of

named-entities. In a comparison on the MUC corpus, our system outperforms a baseline
supervised system but it is still not competitive with more complex supervised systems.

There are (fortunately) many ways to improve our model. One interesting way would be

to generate gazetteers for a multitude of named-entity types (e.g., all 200 of Sekine’s

types) and use list intersection as an indicator of ambiguity. This idea would not resolve

the ambiguity itself but would clearly identify where to invest further efforts.

12

Acknowledgements

We would like to thank Caroline Barrière, who provided us with helpful comments on an

earlier version of this work. Support of the Natural Sciences and Engineering Research

Council and of the Communications and Information Technology division of the Ontario

Centres of Excellence is gratefully acknowledged.

References

1. Chinchor, N. (1998) MUC-7 Named Entity Task Definition, version 3.5. Proc. of the Seventh
Message Understanding Conference.

2. Cohen, W. and Fan, W. (1999) Learning Page-Independent Heuristics for Extracting Data from

Web Page, Proc. of the International World Wide Web Conference.

3. Collins M. and Singer, Y. (1999) Unsupervised Models for Named Entity Classification. Proc.
of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and
Very Large Corpora.

4. Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D. S.

and Yates, A. (2005) Unsupervised Named-Entity Extraction from the Web: An Experimental

Study. Artificial Intelligence, 165, pp. 91-134.

5. Evans, R. (2003) A Framework for Named Entity Recognition in the Open Domain. Proc.
Recent Advances in Natural Language Processing.

6. Hearst, M. (1992) Automatic Acquisition of Hyponyms from Large Text Corpora. Proc. of
International Conference on Computational Linguistics.

7. Lin, D. and Pantel, P. (2001) Induction of Semantic Classes from Natural Language Text.

Proc. of ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

8. Ling, C., and Li, C. (1998). Data Mining for Direct Marketing: Problems and Solutions. Proc.
International Conference on Knowledge Discovery and Data Mining.

9. Mikheev, A. (1999) A Knowledge-free Method for Capitalized Word Disambiguation. Proc.
Conference of Association for Computational Linguistics.

10. Mikheev, A., Moens, M. and Grover, C. (1999) Named Entity Recognition without Gazetteers.

Proc. Conference of European Chapter of the Association for Computational Linguistics.

11. Nadeau, D. (2005) Création de surcouche de documents hypertextes et traitement du langage

naturel, Proc. Computational Linguistics in the North-East.
12. Palmer, D. D. and Day, D. S. (1997) A Statistical Profile of the Named Entity Task. Proc. ACL

Conference for Applied Natural Language Processing.

13. Petasis, G., Vichot, F., Wolinski, F., Paliouras, G., Karkaletsis, V. and Spyropoulos, C. D.

(2001) Using Machine Learning to Maintain Rule-based Named-Entity Recognition and

Classification Systems. Proc. Conference of Association for Computational Linguistics.

14. Riloff, E. and Jones, R (1999) Learning Dictionaries for Information Extraction using Multi-

level Bootstrapping. Proc. of National Conference on Artificial Intelligence.

15. Sekine, S., Sudo, K., Nobata, C. (2002) Extended Named Entity Hierarchy, Proc. of the
Language Resource and Evaluation Conference.

16. Zhu, X., Wu, X. and Chen Q. (2003) Eliminating Class Noise in Large Data-Sets, Proc. of the
International Conference on Machine Learning.

