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Abstract. Process algebraic specifications can provide useful support
for the architectural design of software systems due to the possibility of
analyzing their properties. In addition to that, such specifications can
be exploited to guide the generation of code. What is needed at this
level is a general methodology that accompanies the translation process,
which in particular should help understanding whether and when it is
more appropriate to implement a software component as a thread or as a
monitor. The objective of this paper is to develop a systematic approach
to the synthesis of correctly coordinating monitors from arbitrary pro-
cess algebraic specifications that satisfy some suitable constraints. The
whole approach will be illustrated by means of the process algebraic
specification of a cruise control system.

1 Introduction

Although process algebras were originally conceived as a means for producing ab-
stract views of concurrent programs and reasoning about their properties [13, 9,
3], due to their compositional nature it was soon realized their adequacy for mod-
eling complex systems [6]. More recently process algebras have been integrated
within the software architecture design level [14,15], because they provide sup-
port for the early assessment of the gross system properties. This has resulted in
a family of process algebraic ADLs, for which several techniques based on equiv-
alence checking have been developed for the component-oriented verification and
diagnosis of architectural mismatch freedom [2,12,11,10,7,1].

At the software architecture design level, process algebras have turned out to
be useful also for code generation purposes. In [12] it is shown how a disciplined
process algebraic modeling is beneficial at subsequent stages for guiding the im-
plementation of Java software. In [4, 5] an automatic code generator is presented,
which translates process algebraic architectural descriptions into multithreaded
Java programs on the basis of a transparent Java package called Sync that en-
sures the correct thread synchronization.

In a process algebraic description, the behavior of a software component is
specified through a sequence of action-based equations, which define possibly
alternative execution traces composed of local actions and actions interacting
with other components. In this framework two natural candidates for the target



of the translation of the process algebraic description of a component are a thread
and a monitor.

What is needed at this level is a general methodology that accompanies the
translation process, which in particular should help understanding whether and
when it is more appropriate to implement a software component as a thread or as
a monitor. This would overcome some limitations that are present in the current
process algebraic approaches. With respect to [12] generality would be gained,
as it would become possible to undertake the translation of arbitrary process
algebraic descriptions. With respect to [4, 5], where only threads are taken into
account, the performance of the generated code may be improved thanks to the
synthesis of monitors as they would reduce the thread context switch frequency.
Moreover the presence of monitors would result in a lightweight concurrency
control management with respect to package Sync, with the monitors themselves
constituting explicit coordination areas that were not available before to the
developer adopting the approach of [4, 5].

The objective of this paper is to develop a systematic approach to the syn-
thesis of correctly coordinating Java monitors from arbitrary process algebraic
component descriptions that satisfy some suitable constraints. The constraints
are related to the fact that a monitor is a passive entity, which typically en-
capsulates data in a way that guarantees a mutually exclusive access. In other
words, a monitor coordinates the access of the threads to its methods, but its
statements are executed by the entering threads. As we shall see, in order to en-
force a correct concurrency control when using a monitor, it is sufficient that a
thread taking the control of the monitor can perform neither interacting actions
nor infinitely many local actions while inside the monitor.

Once these constraints are satisfied, the process algebraic description of a
component can systematically be transformed into a canonical form that we call
monitor normal form, from which it is easy to synthesize a Java monitor. The
constraints and the approach will be illustrated by means of the process algebraic
specification of a cruise control system taken from [12], which will be used as a
running example throughout the paper.

This paper is organized as follows. In Sect. 2 we present the constraints
that guarantee the derivability of a monitor from a process algebraic component
description. In Sect. 3 we show how to transform into monitor normal form
a process algebraic component description that satisfies all the constraints. In
Sect. 4 we describe how to synthesize a Java monitor from a monitor normal
form. Finally, in Sect. 5 we provide some remarks on related and future work.

2 Monitor Constraints

In this section we present a set of constraints under which it is possible to syn-
thesize a correctly coordinating monitor from the process algebraic description
of a software component. Before doing so, we introduce some terminology and
we recall the way in which threads and monitors interact with each other in an
object-oriented language like Java.



2.1 Terminology

In our process algebraic view, both thread and monitor classes should be mod-
eled as architectural element types [1]. An architectural element type represent-
ing a Java class that extends or implements a thread base class will be called
native-thread type and will be translated into a native-thread component. An ar-
chitectural element type representing a Java monitor class will instead be called
monitor type and will be translated into a monitor component.

Furthermore, we distinguish between two kinds of interacting actions, which
we simply call interactions from now on. An active-control interaction is per-
formed by an architectural element whenever it starts communicating with an-
other architectural element. A passive-control interaction is executed by an ar-
chitectural element whenever it is waiting for another architectural element to
start communicating with it. In particular the entry points (and hence implicitly
the exit points) of the monitor types will be described through passive-control
interactions.

2.2 Thread-Monitor Interaction

Given a native-thread component 7" and a monitor component M, the interaction
between them takes place by means of the component control switch depicted in
the sequence diagram of Fig. 1. When T intends to interact with M, T invokes a
synchronized method of M — which corresponds to performing an active-control
interaction — so that the thread t leaves T and waits until M is ready to interact.

More precisely, in a synchronous model ¢ waits outside M if another thread
is currently running inside M, otherwise it immediately enters M and possibly
blocks, which happens when ¢ has to wait for a notification related to a condition
synchronization of M that does not hold upon entering M. In an asynchronous
model, instead, an exception is raised if a condition synchronization for ¢ does
not hold and either there is no thread running inside M or the thread currently
running inside M leaves it without notifying such a condition synchronization.
We recall from [12] that a condition synchronization permits a monitor to block
threads until a particular condition holds, such as e.g. a count becoming non-
zero, a buffer becoming empty, or new input becoming available.

When M is ready, ¢ takes its control and executes a sequence of statements
of M corresponding to local actions, at the end of which ¢ possibly notifies one of
the threads blocked inside M about the validity of a condition synchronization
and leaves the monitor. The end of such a statement sequence coincides either
with the monitor termination or with the execution of the last local action before
a passive-control interaction.

In order to achieve a correct concurrency control, it suffices that the thread
taking the control of the monitor executes finitely many statements without
moving to another monitor or invoking a method of another thread before leaving
the monitor in which it is running 3. In this way a thread will stay within the

3 Note that this does not prevent the monitor from invoking methods of the Java
library and creating new non-thread objects.
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Fig. 1. Component control switch from native-thread 7" to monitor M

monitor for a finite amount of time (up to possible condition synchronizations
that will never hold), and will not cause any interference between the monitor
and other monitors.

From the considerations above, we derive that the avoidance of (i) endless
executions of local actions and (i¢) active-control interactions guarantees that
a correctly coordinating monitor can be obtained from the process algebraic
specification of a component. For the sake of completeness, a third technical
constraint, related to the avoidance of (ii7) non-disjoint hybrid choices between
sets of local actions and sets of interactions, must be satisfied.

2.3 Constraint 1: No Endless Executions of Local Actions

Since a monitor is a passive entity that coordinates other components, it is
desirable that a thread taking the control of the monitor runs inside the monitor
only for a finite amount of time. In the worst case, it may happen that the
thread blocks forever inside the monitor because of a condition synchronization
that will never hold. However, this does not prevent other threads from entering
the monitor and running.

In order to achieve finiteness, we need to enforce that the maximum number
of consecutive local actions that can be performed inside a candidate monitor
type is finite. This can easily be checked on the process algebraic description of
a candidate monitor type by verifying the absence of cycles of local actions.

As we shall see in Sect. 4, each local action will be translated into a method
to be manually filled in later on. If we adhere to the guidelines of [5], according
to which non-terminating statements should be avoided within these methods,
a finite sequence of local actions will be executed in a finite amount of time. In
this way the absence of cycles of local actions proved at the process algebraic
level is guaranteed to be preserved at the Java code level.



2.4 Constraint 2: No Active-Control Interactions

A monitor coordinates other components but should not invoke methods of other
monitors or threads. Therefore, a candidate monitor type should not possess any
active-control interaction. This can trivially be verified at the level of the process
algebraic description if this is suitably annotated with information about the
control flow direction (like e.g. in PADL [1]).

The reason for this constraint is to prevent a thread running inside a monitor
from moving to another monitor or invoking a method of another thread before
finishing its execution within the monitor in which it is running. This constraint
thus implies that interferences among monitors are avoided and that any monitor
component can passively interact only with thread components. In particular,
deadlock cannot occur because of a possible invocation of methods belonging
to the same thread that is currently running inside the monitor. Moreover, this
constraint ensures, together with the previous one, that a thread runs inside a
monitor only for a finite amount of time.

Note that this constraint does not prevent a monitor component from invok-
ing methods of the Java library and creating new non-thread objects. In fact,
the methods translating the local actions of the monitor component are free to
create local objects and to interact with them. However, this should not alter
the topology prescribed by the process algebraic architectural description.

2.5 Constraint 3: No Non-Disjoint Hybrid Choices

A hybrid choice in the process algebraic description of a component is a choice
between a non-empty set of interactions and a non-empty set of local actions. The
problem with hybrid choices is that they may hamper the detection of the action
sequence corresponding to the statement sequence that should be executed by a
thread running inside a monitor.

In fact, recalled that the monitor entry and exit points are described through
passive control interactions, to automatically detect the beginning and the end
of the action sequence in a candidate monitor type we need that the sequence is
comprised between two passive-control interactions. A choice between a passive-
control interaction and a local action would make it impossible to decide whether
the currently running thread has completed its task or not, unless the two actions
are preceded by two disjoint conditions.

As a consequence of this constraint, a candidate monitor type can contain
only choices among all interactions or all local actions. This can easily be checked
at the process algebraic description level. In addition, hybrid choices are admit-
ted provided that the involved actions are preceded by disjoint boolean condi-
tions, i.e. the logical conjunction of the condition of any involved interaction and
the condition of any involved local action must be false.

3 Syntactic Transformation into Monitor Normal Form

Once the three constraints defined in the previous section are satisfied by the
process algebraic description of a candidate monitor type, it is possible to proceed



to the transformation of the description itself into monitor normal form. Starting
from this canonical form, it will be possible to straightforwardly synthesize the
Java implementation of the monitor type.

In order to facilitate the derivation of each method of the targeted Java
monitor class, a good idea may be to rewrite the process algebraic specification
of the monitor type in such a way that all the interacting actions are collected
into a single equation. Due to constraint 2, each such interaction is a passive-
control one, so if we place all of them at the beginning of a different branch of
a choice, we exactly characterize the point at which the monitor is waiting for a
thread to take its control.

The process algebraic specification in monitor normal form obtained at the
end of the rewriting process will be formed by:

— An interacting choice equation, which is composed of a choice in which every
branch starts with an interaction possibly followed by local actions only.

— A group of local equations, which are original equations of the monitor type
that include only local actions.

— A group of setting equations, which are the original non-local equations whose
branches that have been moved to the interacting choice equation are re-
placed by an invocation of the latter equation with suitably set parameters.

This monitor normal form can be achieved through a sequence of five steps,
which will be exemplified on the process algebraic description of a cruise control
system taken from [12].

3.1 Example: A Cruise Control System

An automobile cruise control system is governed by means of three buttons — on,
off, and resume — and takes into account two pedals — accelerator and brake.
When the engine is running and on is pressed, the cruise control system records
the current speed and maintains the car at this speed. When accelerator,
brake or off is pressed, the cruise control system disengages but retains the
speed setting. If resume is pressed, the system accelerates or de-accelerates the
car back to the previously-recorded speed.

The kernel of the cruise control system is provided by a cruise controller,
which includes a speed control that is initially disabled. While the latter clears
and records the speed setting and, when enabled, sets the throttle according to
the current speed and the recorded speed, the behavior of the former is more
complex. When the engine is switched on (engine0On), speed clearing is triggered
(clearSpeed) and the cruise controller becomes active. When active, pressing on
triggers the recording of the current speed (recordSpeed) and enables the speed
control (enableControl). The system is then cruising. Pressing on again triggers
the recording of the new current speed and the system remains cruising. Pressing
off, brake or accelerator disables the speed control (disableControl) and
sets the system to standby, from which the system can return to the cruising
state whenever resume or on is pressed. Switching the engine off (engine0ff)
at any time makes the cruise controller inactive and the speed control disabled.



We now provide the FSP specification [12] of the cruise controller:

INACTIVE = (engineOn->clearSpeed->
(engine0ff->INACTIVE
|on->recordSpeed->enableControl->CRUISING
)
),
CRUISING = (engineOff->disableControl->INACTIVE
| {off,brake,accelerator}->disableControl->STANDBY
| on->recordSpeed->enableControl->CRUISING
),

STANDBY = (engineOff->INACTIVE
| resume->enableControl->CRUISING
| on->recordSpeed->enableControl->CRUISING
).
where:

— INACTIVE, CRUISING, and STANDBY are the names of the three process alge-
braic equations that formalize the behavior of the cruise controller.

— engineOn, engineOff, on, off, brake, accelerator, and resume are the
interactions.

— clearSpeed, recordSpeed, enableControl, and disableControl are the
local actions.

— The symbol “->” is the action prefix operator: {a1,...,a,} -> P executes
an action from the set and then behaves as P.

— The symbol “|” is the choice operator: P; | P, behaves as either P; or Ps.

If engineOn, engineOff, on, off, brake, accelerator, and resume are con-
sidered as passive-control interactions, it is not difficult to observe that all the
three monitor constraints defined in Sect. 2 are satisfied by the FSP description
of the cruise controller.

3.2 Step 1: Rewriting Complex Choices

If the process algebraic specification of a monitor type contains some choices
among interactions that are written in an abbreviated notation, such choices
must be expanded. Likewise, if the specification contains some nested choices
among interactions, such choices must be flattened. By doing so, it will be easier
to handle the branches of the choices among interactions as we shall see in the
subsequent steps.

In the FSP specification of the cruise controller, the equations INACTIVE and
STANDBY do not contain complex choices, while the equation CRUISING contains
the abbreviated FSP notation {<action list>}, hence it is expanded into:

CRUISING = (engineOff->disableControl->INACTIVE
|off->disableControl->STANDBY
|brake->disableControl->STANDBY
|accelerator->disableControl->STANDBY
| on->recordSpeed->enableControl->CRUISING
)



3.3 Step 2: Splitting the Equations

Since in the interacting choice equation of the monitor normal form any branch
must start with an interaction, every interaction or choice among interactions
that does not occur at the beginning of the body of an equation must be moved
together with what follows it into a new equation. The moved block is replaced
in the original equation by an invocation of the new equation. At the end of this
splitting process, any interaction will be at the beginning of some equation.

In the FSP specification of the cruise controller, only the first equation needs
to be transformed, because in the equations CRUISING and STANDBY all the occur-
rences of interactions are already at the beginning of some branch. The equation
INACTIVE thus becomes:

INACTIVE = (engineOn->clearSpeed->SPLIT_1_INACTIVE),
SPLIT_1_INACTIVE = (engineOff->INACTIVE
| on->recordSpeed->enableControl->CRUISING
)

3.4 Step 3: Building the Interacting Choice Equation

The interacting choice equation can now be built by suitably merging into a
single equation the equation body branches that start with an interaction.

In order to preserve the semantics of the original equations of the monitor
type, the resulting interacting choice equation needs several parameters repre-
senting the current interacting state of the monitor. Such a state can be encoded
through the non-local equation (among the ones present at the end of step 2)
describing the current behavior — bounded integer parameter eq — and the set
of interactions that are currently enabled — boolean parameters g_ representing
guards associated with the enabledness of the interactions. Note that parame-
ter eq is strictly necessary because the same set of interactions may be enabled
in several different non-local equations. On the other hand, the guards g_ are
necessary to decide the branch to be undertaken in the current interacting state
and, as we shall see, useful to implement the condition synchronizations.

The body of the interacting choice equation is thus a guarded choice among
all the merged equation body branches. In particular, if one of the involved
bodies started with a single interaction, the whole body becomes a branch of
the interacting choice equation. Instead, if it started with a choice among all
interactions, each branch of such a choice becomes a branch of the interacting
choice equation. Finally, if it started with a disjoint hybrid choice, only the
branches starting with an interaction move to the interacting choice equation *.

Each branch of the interacting choice equation is preceded by a boolean
expression composed of the logical conjunction of: the control that the value
of eq corresponds to the value associated with the non-local equation body
that contained the considered branch, the guard g_ associated with the first

4 We shall see later on that this does not disrupt the semantics of the disjoint hybrid
choice, hence of the original process algebraic specification.



interaction of the branch itself, and other possible conditions inherited from the
original branch.

In the FSP specification of the cruise controller, the bodies of the equations
INACTIVE, SPLIT_1_INACTIVE, CRUISING, and STANDBY are represented by the
values 0, 1, 2, and 3 of parameter eq, respectively, and their branches are merged
into the following interacting choice equation:

INTER_CH_EQ[eq:0..3] [g_engineOn:Boolean] [g_engine0ff:Boolean]
[g_on:Boolean] [g_off:Boolean] [g_resume:Boolean]
[g_brake:Boolean] [g_accelerator:Boolean] =

(when((eq==0) && g_engineOn) engineOn->clearSpeed->SPLIT_1_INACTIVE

|when((eq==1) && g_engine0ff) engine0ff->INACTIVE
|when((eq==1) && g_on) on->recordSpeed->enableControl->CRUISING
|when((eq==2) && g_engine0ff) engine0ff->disableControl->INACTIVE
|when((eq==2) && g_off) off->disableControl->STANDBY
|when((eq==2) && g_brake) brake->disableControl->STANDBY
|when((eq==2) && g_accelerator) accelerator->disableControl->STANDBY
|when((eq==2) && g_on) on->recordSpeed->enableControl->CRUISING
|when((eq==3) && g_engine0ff) engine0ff->INACTIVE
|when((eq==3) && g_resume) resume->enableControl->CRUISING
|when((eq==3) && g_on) on->recordSpeed->enableControl->CRUISING

)

3.5 Step 4: Rewriting Non-Local Equations into Setting Equations

The interacting choice equation built in step 3 does not replace the original
equations. This refers not only to local equations and equations with disjoint
hybrid choices — which are not completely involved in the construction of the
interacting choice equation — but also to the other equations, as invocations to
them are still around.

The body of each non-local equation is thus rewritten in such a way that its
possible local branches are preserved. By contrast, its branches that have been
moved to the interacting choice equation are replaced by a single invocation of
the latter equation with suitably set actual values for parameters eq and g_. So,
we refer to such a rewritten equation as a setting equation.

The actual value of eq passed to the interacting choice equation has to be the
value associated with the setting equation body. The actual values of the boolean
guards are set as follows. If an interaction does not occur at the beginning of
any moved branch of the original non-local equation, then the corresponding
guard g_ is set to false. If it occurs instead and at least one of its occurrences
was not guarded by any condition in the original branch that contained it, the
corresponding guard g_ is set to true. Finally, if it occurs and all of its occurrences
were guarded by some condition in the original branches that contained them,
the corresponding guard g_ is set to the logical disjunction of these conditions
(if at least one of them holds true, then the interaction is enabled).

If an original non-local equation started with a single interaction or a choice
among interactions only, its body is entirely replaced by an invocation of the
interacting choice equation having the above-mentioned actual values for eq



and g_. In the case in which the original equation contained a disjoint hybrid
choice, instead, its body preserves all the local branches. The other (interact-
ing) branches, moved together with their conditions to the interacting choice
equation, are replaced by a single branch. This branch contains the invocation
of the interacting choice equation preceded by the logical disjunction of all the
conditions associated with the interacting branches. In this way the semantics
of the selection between the group of local branches and the group of interacting
branches is preserved, with the selection within the latter group being deferred
to the interacting choice equation.

In the FSP specification of the cruise controller, the non-local equations
INACTIVE, SPLIT_1_INACTIVE, CRUISING, and STANDBY are rewritten into the
following setting equations:

INACTIVE =

INTER_CH_EQ[O] [True] [False] [False] [False] [False] [False] [False],
SPLIT_1_INACTIVE =

INTER_CH_EQ[1] [False] [True] [True] [False] [False][False] [False],
CRUISING =

INTER_CH_EQ[2] [False] [True] [True] [True] [False] [True] [Truel],
STANDBY =

INTER_CH_EQ[3] [False] [True] [True] [False] [True] [False] [False]

3.6 Step 5: Rearranging the Interacting Choice Equation

As a final step, the interacting choice equation undergoes to a sorting of its
branches as well as to a number of optimizations. On the one hand, the branches
are lexicographically sorted on the basis of their guards g_ associated with their
starting interactions. The reason is that all the branches starting with the same
interaction will be translated into a single synchronized method of a Java monitor
class, hence this sorting should facilitate the code generation.

On the other hand, some optimizations are useful to simplify the structure of
the interacting choice equation and thus of the monitor to be synthesized. First,
if an interaction occurs at the beginning of only one of the branches associated
with a same value of eq, in that branch the possible condition inherited from the
original branch can be removed. In fact, the same condition is already contained
in the guard g_ associated with the considered branch.

Second, if all the branches with the same initial interaction are associated
with a single value of eq, the check on eq can be removed from these branches. In
fact, this means that the initial interaction was present only in a single non-local
equation body of the original specification, and the guard g_ associated with the
action can be true only when eq has that value.

Third, if several branches are identical up to their boolean expressions — i.e.
checks on different values of eq and possibly other different conditions inherited
from the original specification — these branches can be collapsed into a single
one. This new branch is preceded by an expression which includes, besides the
checks on g_ and the different values that eq can take on, the logical disjunction
of the conditions of the collapsed branches. If the interaction occurs only at the



beginning of such a new branch, by virtue of the first two optimizations the
disjunction of the inherited conditions and the check on eq can be removed.

In the FSP specification of the cruise controller, the second optimization can
be applied to the branches starting with engineOn, off, brake, accelerator,
and resume. The third optimization can be applied to the branches beginning
with engineOff and corresponding to the values 1 and 3 of eq, and to the
branches beginning with on and corresponding to the values 1, 2, and 3 of eq.
In the latter case the check on the different values of eq can be removed. After
applying such optimizations, the interacting choice equation becomes:

INTER_CH_EQ[eq:0..3] [g_engineOn:Boolean] [g_engineOff :Boolean]
[g_on:Boolean] [g_off:Boolean] [g_resume:Boolean]
[g_brake:Boolean] [g_accelerator:Boolean] =

(when(g_engine0On) engineOn->clearSpeed->SPLIT_1_INACTIVE
|when(g_engineOff && ((eq==1) || (eq==3))) engine0ff->INACTIVE
|when(g_engineOff && (eq==2)) engine0ff->disableControl->INACTIVE
| when (g_on) on->recordSpeed->enableControl->CRUISING
| when (g_off) off->disableControl->STANDBY
| when (g_brake) brake->disableControl->STANDBY
|when(g_accelerator) accelerator->disableControl->STANDBY
| when (g_resume) resume->enableControl->CRUISING
)

3.7 Correctness of the Transformation

The syntactic transformation of the process algebraic description of a monitor
type into monitor normal form is correct in the following sense.

Theorem 1. Let M be the process algebraic description of a monitor type and
let M’ be the process algebraic description of the monitor normal form obtained
by applying to M the syntactic transformation. Then the LTS underlying M’ is
isomorphic to the LTS underlying M. ]

4 Monitor Implementation

The application of the steps illustrated in the previous section allows an arbi-
trary process algebraic description of a monitor type to be rewritten into its
semantically equivalent monitor normal form. In this section we show how to
synthesize a monitor component as a Java class from a monitor normal form.

In the Java monitor class, the interacting choice equation will be translated
into a set of public synchronized methods each corresponding to a different
interaction. Instead, the setting and local equations will be translated into non-
public methods of the monitor. Finally, the constructor of the Java monitor
class will invoke the method corresponding to the first equation of the process
algebraic description.

The synthesis of the monitor will be exemplified below by translating into
Java code the monitor normal form of the process algebraic description of the
cruise controller. This is accomplished through a sequence of four steps, which
guide the automated generation of the Java code.



4.1 Translating Local Actions into Stub Class Methods

On the basis of the approach proposed in [5], each local action of the process
algebraic description of a monitor type will be synthesized in the Java mon-
itor class as an invocation of a non-completely specified public method of an
auxiliary class, which we call stub class. In this way the software developer can
subsequently fill in the methods associated with the local actions, without any
intervention on the main monitor class. The stub class will be instantiated by
the constructor of the Java monitor class.

Recalled that the FSP specification of the cruise controller contains the local
actions clearSpeed, recordSpeed, enableControl, and disableControl, the
related Java stub class LocalActionsController is synthesized as follows:

class LocalActionsController {
public LocalActionsController() {/+ FILL IN THE CONSTRUCTOR BODY */}
public void clearSpeed() {/* FILL IN THE METHOD BODY */}

public void disableControl() {/* FILL IN THE METHOD BODY */}
}

4.2 Synthesizing the Monitor Class Constructor

The first-executed method of the Java monitor class, i.e. the constructor, is in
charge of the instantiation of the stub class for the local actions and of the
invocation of the method corresponding to the (local or setting) equation of the
monitor normal form associated with the first equation of the original process
algebraic description.

Besides the definition of the constructor, at the beginning of the monitor class
there is the declaration/definition of some private members. The first private
member is an object of the stub class for the local actions that will be instantiated
by the constructor. Then, an integer variable eq and a boolean array guard[]
are declared, which translate the parameters of the interacting choice equation,
together with the definition of some integer constants associated with the setting
equations, which represent the values that eq can take on.

Referring to the monitor normal form of the cruise controller, the Java mon-
itor class starts as follows:

private LocalActionsController laController;
private int eq;
private boolean guard[];

private final static int INACTIVE =0,
SPLIT_1_INACTIVE = 1,
CRUISING =2,
STANDBY =3;

public Controller() {
laController = new LocalActionsController();
inactive();

}



4.3 Translating Setting and Local Equations

The setting and local equations of the monitor normal form are translated into
non-public methods of the Java monitor class. Since these equations do not
contain interactions, only sequences of/choices among local actions have to be
considered during their translation.

While a sequence of local actions can easily be synthesized as a sequence of
invocations of the associated stub methods, a choice among local actions has to
be treated carefully. In fact, even if the branches of the choice can be guarded by
some conditions, it is not necessarily the case that such conditions are disjoint.
One possibility is to translate such nondeterministic choices by means of the
selection statements provided by Java, with the software developer subsequently
removing nondeterminism at the code level. Another possibility is to synthesize
a probabilistic mechanism to randomly select a branch whose associated con-
dition holds true. This solution may be appropriate for the implementation of
simulation software and randomized concurrent algorithms.

An invocation of a setting or local equation is turned into an invocation of the
monitor class method translating the equation itself. Each setting equation con-
tains in turn an invocation of the interacting choice equation, which corresponds
to the fact that the thread currently running inside the monitor is on the verge of
leaving it. This invocation is translated into a sequence of assignment statements
in which eq and guard[] are set to the corresponding actual parameters speci-
fied in the invocation. Since before leaving the monitor the thread has to notify
the other threads possibly blocked inside the monitor, the assignment statement
sequence is followed by an invocation of the Java method notifyAl1l() to wake
up all the threads waiting inside the monitor. The unblocking conditions, which
have just been updated by setting guard[], will be handled by the synchronized
methods translating the interacting choice equation.

Referring to the monitor normal form of the cruise controller, the translation
of the setting equation INACTIVE is implemented as follows:

protected synchronized void inactive() {

eq = INACTIVE;

guard = new boolean[] {true, false, false, false, false, false, false};

notifyAll();

}

4.4 Translating the Interacting Choice Equation

Any group of branches of the interacting choice equation that start with the same
interaction is translated into a public synchronized method of the monitor class.
The resulting methods basically translate the communication of the passive-
control interactions of the monitor type with the active-control interactions of
native-thread types to which the passive-control ones are attached.

At the beginning of each such method, the boolean guard associated with
the related interaction is translated into a condition synchronization statement:

while (!<guard>)
wait();



If the boolean guard is true, a thread can enter the monitor without blocking.
Otherwise it blocks on the Java method wait () until another thread leaves the
monitor by setting the guard to true and notifying about this event.

The condition synchronization is implemented in a different way whenever
the related interaction is asynchronous. The reason is that in this case, if the
condition synchronization is false, an entering thread has to exit the monitor
without blocking. This is implemented as follows:

if (!<guard>)
throw new AsyncInteractionNotReadyException();

After the condition synchronization, within the method associated with an
interaction we have an if-else statement, which handles the selection among
the branches (starting with the considered interaction) based on the value of eq.
For those branches sharing the same value of eq a nested selection statement is
necessary, which is based on inherited conditions.

Referring to the monitor normal form of the cruise controller, the branches
of the interacting choice equations starting with engineOff are translated into
the following method (index 1 of guard[] is associated with engineOff):

public synchronized void engineQOff ()
throws AsyncInteractionNotReadyException {
if ('guard[1])
throw new AsyncInteractionNotReadyException();
if ((eq == SPLIT_1_INACTIVE) || (eq == STANDBY))
inactive();
else /* if (eq == CRUISING) */ {
laController.disableControl();
inactive();
}
}

5 Conclusion

In this paper we have addressed the problem of synthesizing concurrency control
components, in the form of Java monitor classes, from arbitrary process algebraic
specifications. The problem of synthesizing Java monitors has been previously
addressed in [16, 8] outside the process algebra field.

In [16] a tool equipped with a model checker automatically generates Java
monitor classes from monitor descriptions written in Action Language. The cor-
rectness of the synchronization and of the behavior of the generated Java mon-
itor is guaranteed by construction, independently of the context of the monitor
description. Unlike our approach, this approach requires that the monitor de-
scription conforms a priori to a specific monitor template.

In [8] implementations of synchronization policies are generated in Java
through synchronized methods and lock objects. While in the previously de-
scribed approaches the generated Java monitors are obtained from formal speci-
fications and are correct by construction, in this approach the code is generated
from critical regions delimited by the developer with high-level synchronization



directives and the correctness of the implemented synchronization policies is
verified at the code level via model checking.

For the future we plan to conduct further investigations on the monitor con-
straints, in particular with respect to specific contexts, and to develop a tool —
to be hopefully integrated inside the automatic code generator PADL2Java [4, 5]
— that synthesizes a Java monitor class from any process algebraic specification
that satisfies the three constraints.
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A Appendix

We proceed by showing for each of the five steps of the transformation consid-
ered in isolation that the labeled transition system underlying the input process
algebraic description of the step is isomorphic to the labeled transition system
underlying the output process algebraic description of the step.

Step 1 (Rewriting Complex Choices). Denoted by M; the output of step 1, M;
is obviously isomorphic to M because step 1 simply expands abbreviated choices
or flattens nested choices.

Step 2 (Splitting the Equations). Denoted by Ms the output of step 2, Mj is
isomorphic to M; because step 2 simply splits those equation branches that
contain an interaction not occurring at the beginning of the branch itself. More
precisely, if the branch of an equation E is of the form:
fr—P2—...—= B —a—P

where (i is a local action for each k = 1,...,n and « is an interaction, then the
following new equation is defined:
SPLIT 1. F=a— P

and the branch is rewritten into:

61— 02— ...— 0B, — SPLIT_1_E
The rewritten branch and the new equation considered as a whole are clearly
isomorphic to the original branch. Similar is the case in which there is a choice
among a set of interactions instead of a single interaction .

Steps 3 and 4 (Building the Interacting Choice Equation and Rewriting Non-

Local Equations into Setting Equations). The outcome of step 3 is the following

interacting choice equation:

INTER_CH _EQ[eq : 0..n — 1][g_ap : Boolean]. .. [g-qm—1 : Boolean] =
(when((eq ==0) && g-op1 && co1) o1 — FPoq,

|when((eq == 1) && g-oy; && ¢ ;) . ; — Pij,
|when((eq ==n —1) && g-an-1p, ., && cn1p,,) 14,1 = Po-1,,

)

where:

n is the number of non-local equations of Ms.
b; is the number of interacting branches of non-local equation i (0 < i <

n—1).
— m is the number of interactions occurring in the non-local equations of Ms.
— ;5 € {a,...,an_1} is the interaction occurring at the beginning of branch

7 (0 <j <b; —1) of non-local equation 7 (0 <i <n—1).
— ¢;,; is the logical condition possibly inherited from branch j (0 < j <b; —1)
of non-local equation ¢ (0 <47 <n —1).



In step 4 each non-local equation of Ms is rewritten into a corresponding setting
equation, in such a way that all possible local branches are preserved, while its
branches that have been moved in step 3 to the interacting choice equation are
replaced by a single invocation of the latter with suitably set actual values for
parameters eq and g_. More precisely, non-local equation ¢ (0 < i < n —1) is
rewritten into the following setting equation:
SETTING_EQ, =

(when(V52g' ci )

INTER_CH -EQ]] [Vje{o..bifl\ai,j:ao} Cigl. .- [Vje{o__bﬁl\ai_,j:am_l} ¢ijl,
|when(cip,)  Bib, — Pip,,

e
|when(cip,+di—1)  Bivitdi—1 — Piprdi—1
)

where:

- \/?;01 ci,j is the logical disjunction of the conditions of the interacting branches
of non-local equation i (0 <i<n—1).

— vje{o..bi—uai,j:ak} ci,j is the logical disjunction of the conditions of the in-
teracting branches starting with interaction oy (0 < k < m —1) in non-local
equation ¢ (0 < ¢ < n — 1). This disjunction is taken to be false whenever
the related index set is empty.

— d; is the number of local branches of non-local equation 7 (0 <i <n —1).

Note that constraint 3 guarantees the disjointness of the set of conditions asso-
ciated with the interacting branches from the set of conditions associated with
the local branches:

(V eii) A\ i) = false
=0 j=bs

The interacting choice equation and the group of setting equations considered
as a whole are isomorphic to the group of non-local equations of M. Thus, the
output Ms 4 of the steps 3 and 4 is isomorphic to Mj.

Step 5 (Rearranging the Interacting Choice Equation). The output M’ of step 5
is isomorphic to M3 4 because step 5 simply sorts the branches of the interact-
ing choice equation and eliminates from it the redundancies introduced in the
previous two steps.

More precisely, let us consider the three optimizations. The first optimization
of the interacting choice equation can be done if an interaction ay, (0 < k < m—1)
occurs at the beginning of only one of the branches associated with a same value
i (0 <7< mn—1)of eq. In fact, this means that the original non-local equation
i (from Mj) contained only one branch j' (0 < j' < b; — 1) starting with ay.
Thus, referring to the setting equation ¢, it holds VjE{O.‘bifl\ai,j:ak} Cij = Cijr-
Whenever the interacting choice equation is invoked by the setting equation 4,
g-ay jv is set to ¢; j» hence g_a; o && c¢; j» coincides with ¢; j && ¢; 0. As a




consequence, condition ¢; j+ is redundant and can be removed from the related
branch of the interacting choice equation.

The second optimization can be done if all the branches with the same initial
interaction «ay, are associated with a single value h (0 < h < n —1) of eq. In
fact, whenever setting equation i # h invokes the interacting choice equation,
then \/je{o..bi—l\ai,j:ak} ¢i,j = false because the index set of the disjunction is
empty. This means that ¢ # h implies g_ay = false. Instead, when ¢ = h and
ajj = oy, for some j = 0..b; — 1, we have that the check on eq is redundant
because (eq == i) && g-a; ; coincides with g_cy; j. So, the check on eq can be
removed from all the branches associated with interaction ay,.

The third optimization can be done if several branches are identical up to
their boolean expressions. In fact, the two following branches:

|when((eq == 1) && g-0y; && ¢ ;) o — Pij,

|when((eq == h) && g-an,; && cny)  apg — Puy
where o; j = ap,; = oy and P; ; = P,; = P, can be collapsed into the following
single branch:

|when(((eq ==1) || (eq == h)) && g-on && (cij || cnt)) ax— P
which is isomorphic to the two branches above considered as a whole. The same

argument applies to an arbitrary number of branches that are identical up to
their boolean expressions.



