Choreography and Orchestration conformance
for system design*

Nadia Busi, Roberto Gorrieri, Claudio Guidi,
Roberto Lucchi, and Gianluigi Zavattaro

Department of Computer Science, University of Bologna, Italy
{busi,gorrieri,cguidi,lucchi,zavattar}@cs.unibo.it

Abstract. In a previous work we have presented a formal framework
devoted to show the relevance of choreography and orchestration in the
design of service oriented applications. Even if useful to start a formal in-
vestigation of the relationship between choreography and orchestration,
the proposed framework was not suitable to specify real case studies. In
fact, it simply permitted to specify all possible computations abstract-
ing away from the conditions driving the choice of the actual behaviour.
In this paper we tackle this problem by introducing the notion of state
variables. The addition of state requires a substantial modification of the
entire framework because the same state variable, at the level of choreog-
raphy, can be actually stored in distributed orchestrators that will need
to synchronize in order to maintain consistent views. In order to faith-
fully investigate this problem we also need to modify the formal model at
the orchestration level, moving from synchronous to asynchronous com-
munication as the latter is the communication modality of the ordinary
communication infrastructures.

1 Introduction

Choreography and orchestration languages are used for composing service-based
applications. The former ones allow to manage applications composed of a num-
ber of services in a top view manner, that is the conversation rules which govern
the interactions between the services involved in the applications, whereas the
latter ones provide a mean to program the internal executable behaviour of some
specific service, called orchestrator, responsible to coordinate the collaborating
services. These approaches have been separately developed by industrial consor-
tia and international organizations as W3C and OASIS. In particular, WS-CDL
[W3C] and WS-BPEL [OAS] specifications represent the most credited languages
for the Web Services technology which deal with choreography and orchestration
respectively.

Our work aims at synergically exploiting both languages for designing service-
based applications where choreography and orchestration can be used for giving
different views of the same system. The former one abstracts away from single

* Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

service peculiarities and, by means of roles, describes the behaviours of system
participants focusing on their access points and the interactions they perform.
The latter one is centered on single services by allowing to design their internal
activities by means of workflow operators and message exchange capabilities.

In this context the challenge is to identify the interdependencies between
the two views and, in particular, a relationship which allows to verify whether
a choreography and an orchestrated system describe the same application. A
first effort in this direction has been presented in [BGG'05] where a formal
framework, devoted to express the relationship between choreography and or-
chestration, was introduced. The framework is composed by two calculi, inspired
by WS-CDL and WS-BPEL, which capture the peculiarities of choreography
and orchestration and a notion of conformance between them. In particular, all
the framework is centered on the basic interaction mechanisms and the com-
positional operators exploited to program more complex patterns. Even if the
compositional operators are the same at the choreography and the orchestration
levels, the basic interaction mechanisms are significantly different. At the chore-
ography level, the basic interaction mechanisms are atomic synchronizations that
permit an instantaneous flow of information between two roles. At the orchestra-
tion level, on the contrary, the basic interaction mechanisms consider the act of
sending (executed by one process) separated from the act of receiving (executed
by another independent process). Finally, conformance is a relationship between
the two calculi, inspired to bisimulation, which allows us to verify whether the
interactions performed by an orchestrated system behave in accordance with the
interactions expressed by a given choreography.

Although the interaction mechanisms that can be described with the frame-
work that we have proposed in [BGG105] are relevant for managing service-
oriented applications, they are insufficient for describing complex systems. The
main lack of expressiveness is concerned with the impossibility to describe the
choices that are performed depending on the contents of the exchanged mes-
sages. For instance, let us consider a electronic shop that allows payments via
services provided by either Visa or Master Card depending on the kind of credit
card used by the buyer. In this example, the interaction pattern that can be
expressed with the choreography calculus in [BGG105] is an alternative choice
between a basic interaction involving the electronic shop and the Visa service,
or a basic interaction involving the electronic shop and the Marter Card ser-
vice. The condition governing this choice cannot be specified. Nevertheless, this
condition is definitely relevant when conformance comes into play; for instance,
an orchestrator that randomly sends the request for payment to either Visa or
Master Card is conformant if we abstract away from this aspect.

The aim of this paper is to tackle this lack of expressiveness of our previous
version of the framework. The main idea we follow is to introduce state variables
both in the choreography and in the orchestration calculi. This extension requires
a substantial redefinition of the entire framework. Intuitively, the main problem
is concerned with the fact that a state variable at the choreography level could
be distributed among different and possibly distributed processes at the orches-

tration level. For instance, an airplane reservation role could be embodied by a
travel agency and several airplane company services. In this case, a state variable
associated to the airplane reservation role (e.g. the departure date) is distributed
among the travel agency and the airplane companies contacted to complete the
reservation. Moreover, in order to faithfully model at the orchestration level the
problem of synchronizing the distributed views on the shared state variables,
we need to consider asynchronous communication® as this is the communication
modality provided by the ordinary communication infrastructures.

Many technical novelties are necessary to model faithfully state variables;
here we simply recall the most relevant ones. In the calculi, choices are now ex-
pressed with two distinct operators: an external non-deterministic choice guarded
by basic interaction operations and a conditional construct depending on the
state of variables. The operational semantics of the orchestration language is
strongly influenced by the asynchronous communication mechanism; in fact, in
order to model the basic request-response communication pattern, it is necessary
to keep track of the relationship between an asynchronous request message and
the corresponding asynchronous response message. The main novelties are in
the definition of the conformance relation. In particular it deals with the initial
internal state of processes and then introduces different kinds of silent actions
for distinguishing between internal and coordinating interactions. The former
one is used to describe internal synchronization while the latter one expresses
the interactions the orchestrators exploit for respecting the constraints of the
choreography and that are not considered in it.

There are other works that consider both choreography and orchestration
as complementary approaches for managing service oriented systems. In [CHYa)|
and [CHYb] Honda et al. present two process calculi: one inspired to WS-CDL
and the other to pi-calculus, they formalize the two calculi without present-
ing any formal relation between them. In [DD04] Dijkman and Dumas exploit
Petri nets for describing choreography, orchestration and service interface be-
haviours focusing on the relationship between a single orchestrator w.r.t. a given
choreography. In [BBM™05] Schifanella et al., by means of automaton, defines a
conformance notion which allows them to test whether interoperability is guar-
anteed by limiting the notion to systems involving only two peers. Some other
papers about conformance exist like [HMO05] and [BGJT05]. The former focuses
on automated testing of behavioural contracts provided by a service, whereas
the latter deals only with systems composed by two peers.

The paper is structured as follows. Section 2 presents the language for de-
scribing choreography whereas in Section 3 we present the orchestration one. In
Section 4 the conformance notion is defined and in Section 5 a business appli-
cation case study is reported. Section 6 concludes the paper by reporting some
final remarks and future work.

! The formal framework in [BGG105] considers synchronous communication both for
choreography and for orchestration.

2 A formal model for choreography

In this section we introduce the formal model for representing choreography.
Intuitively, a choreography is described by three main components: the roles,
the initial state constraints on variables and the conversations.

A role represents the behaviour that a participant has to exhibit in order to
fulfill the activity defined by the choreography. Each role, which is identified by
a name, is equipped with a set of variables and a set of operations.

Operations represent the access point and can have one of the following
interaction modalities: One-Way or Request-Response. Indeed, in WSDL speci-
fications, the most significant types of operations are the One-Way, where only
the incoming message is defined, and the Request-Response, where both the
incoming message and the response one are defined.

Let us now introduce the formalization of roles, variables and operations. Let
Var be the set of variables ranged over by z,y, z, k. We denote with x tuples
of variables, for instance, we may have & = (x1, 23, ..., ;). Let OpName be the
set of operation names, ranged over by o, and OpType = {ow,rr} be the set
of operation types where ow denotes a One-Way operation whereas rr denotes
the Request-Response one. An operation is described by its operation name and
operation type. Namely, let Op = {(o,t) | 0 € OpName, t € OpType} be the
set of operations where each operation is univocally identified by its name. Let
RName be the set of the role names, ranged over by p and Role, defined as
{(p,w,V) | p € RName, w C Op,V C Var}, be the set which contains all the
possible roles.

The state of a choreography describes the variable values and it is represented
by a function S¢ : Var — ValU{L} from variables to the set ValU{L} ranged
over by w. Val, ranged over by v, is a generic set of values on which it is defined
a total order relation?. Sc(x) represents the value of variable z in the state S¢
(Sc(z) = L means that x is not yet initialized), while S¢[v/x] denotes the state
Sc where z holds value v (we use S¢[0/Z] when dealing with tuples of variables),
formally:

v if ' =x

Sclv/a] =S¢ Se(') = {Sc(fr’) otherwise

A choreography can be designed by considering the fact that some variables
can hold only a limited set of values within the initial state. This is the case,
for example, of a binary variable which can assume only the values 0 or 1. The
following grammar allows us to generate logic conditions on variables which we
will exploit for expressing the constraints of the initial state and conditional
constructs:

xu=z<ele<z|[-x|xAx

where e denotes an expression which can contain variables references and which
can be evaluated into a value v or, when some variables within the expression

2 we extend such an order relation on the set Val U {L} considering | < v, Yo € Val

are not instantiated, into the symbol L. In the following we use e —gs, w to
denote that, when the state is S¢, the expression e is evaluated into the value
w. It is worth noting that constraints such as x = v, # v and v; <z < vy can
be defined as abbreviations. We exploit the notation S¢ x for denoting that
the state S¢ satisfies the condition x. The satisfaction relation for F is defined
by the following rules:

Sc(z)=L=SckH(x<LAL<x)
e —s, 0,Sc(r) <v=S8Sctkx<e
e =5, 1,0 < Sc(x)=Scke<uz
ScFXANSckX"=Sc kX AY'
~(Sc Fx) = Sct~x

CU o=

We highlight the fact that rule 1 states that when a variable x is defined with
value | the only condition which can be satisfied on such a state is z = L.

The conversations among the roles are defined by using a conversation lan-
guage whose definition follows where we intend I as a finite non-empty subset
of natural numbers:

C:=0]|n]| C’;(i|~C|C| Zjezm;ci | E?ejxﬁm;ci
n = (pa, pB,0,T,y,dir) |z :=e

In the following we use C'Lp, ranged over by C, to denote the set of con-
versations. 71 represents the basic building block of a conversation which can be
an interaction or an assignment. (pa, pB,0, 7,4, dir) means that an interaction
from role p4 to role pp is performed. In particular, o is the name of the oper-
ation (o,t) € Op on which the message exchange is performed. Variables Z and
y are those used by the sender and the receiver, respectively and dir € {1, |}
represents if the interaction is a request (1) or a response (|) one. x := e means
that the result of the evaluation of the expression e is assigned to the variable
x. Coherently with the grammar of logic conditions, here we abstract away from
the syntax of expression e and we exploit the evaluation function <—g¢ intro-
duced above. A conversation can be the null one (0), a basic operation (7), the
sequential composition (C; ('), the parallel composition (C' | C) or two different
kind of choices: the non-deterministic choice (Zje 7 Mi; Ci) and the deterministic
one (Zf’é 1 Xi'1i; C;). The former non-deterministically selects a conversation to
execute independently from the state of the choreography whereas in the latter
the selection is driven by guard conditions . The choice is deterministic because
the guards are evaluated in a sequential order.

The semantics of C'Lp is defined in terms of a labelled transition system
[Kel76] which describes the evolution of a conversation joined with a state. Let
Acte ={u | p= (pa,pn,0,0,dir)} U {7} be the set of actions ranged over by v
where ;1 represents parameterized interactions. (C,S¢) — (C’,S5) means that
the conversation C' in the state S¢ evolves in one step in a configuration (C”, S¢)
performing the action v. Let I'c be the set of all possible states over the variables
in Var. We define —C (CLp, I'c) x Acte x (CLp, I'¢) as the least relation which

satisfies the axioms and rules of Table 1 and closed w.r.t. =, where = is the least
congruence relation satisfying the axioms at the end of Table 1.

(INTERACTION 1)

((PAaPByovaga T):SC) - (Ov Sc[ﬁ)/g]), = (pA,pB,O,ﬁ), T)v w = Sc(i')
(INTERACTION 2)

((pa, pB,0,%,7,1),8c) 2 (0,8c[@/F]), p= (pa,pr,0,®,]), © = Sc(§)

(AsSIGN) (SEQUENCE)

€ TSc v (C,Sc) = (C,8¢)
(z:=e,8c) = (0,8¢[v/z]) (C;D,Sc) % (C'; D, SL)

(PARALLEL) (ConGR)
(C,Sc) = (C', St) C'=C,(C,Sc) = (D,S¢),D =D’
(C|D,Sc) = (C"| D,S¢) (C',Sc) = (D', 8¢)
(CHOICE 1) (CHOICE 2)
(ni;ciaSC) = (C.:,Sé;),l €l Sc X (T]’H‘SC) = (07SIC)7SC)7/_Xjaj el,j<i
(Zje[ni; Ci, So) 2 (Cl,S5) (Zil xi™i; Ci, Sc) = (Ci, S&)

(STRUCTURAL CONGRUENGE)
0;C=C cjo=cC
C|D=D|C (C|D)|F=C|(D|F)

Table 1. Semantics of CLp

The structural congruence =, which equates the conversations whose be-
haviour cannot be distinguished, expresses that (C, |) is an abelian monoid
where 0 is the null element. Furthermore, the rule 0; C = C' means that when
a conversation completes then the other one which follows in sequence can be
performed.

The description of axioms and rules follows. The axioms INTERACTION de-
scribe that an interaction, which is a request or a response one depending on
the value of dir, is performed. When a request is performed (dir =1) the in-
formation contained in the variables within the sender role p4 are passed to
the variables y within the receiver role pp exploiting the operation o of the
role pg. When a response is performed (dir =]) the information contained in
the variables i within the receiver role pp are passed to the variables & within
the sender role p4 exploiting the operation o of the role pg. The rule ASsiGN
states that the resulting value of the expression e, evaluated within the state S¢,
is assigned to a variable x thus updating the state of the choreography. Rules
SEQUENCE, PARALLEL and CONGR are standard. Rule CHOICE 1 deals with

the non-deterministic choice which is independent of the state. It is worth not-
ing that the construct n;; C; guarantees that the conversation can always move.
Rule CHOICE 2, on the contrary, deals with deterministic choice depending on
the state S¢. Here, we want to highlight that guards are sequentially evaluated
and the first which is satisfied in the state S¢ is selected.

Now we are ready to define a choreography. A choreography, denoted by
C, is defined by the tuple (C, X, X) where C € CLp, ¥ C Role is a finite
set containing all involved roles and X is a logic condition which expresses the
variables constraints of the initial state. The constraint expressed by X is strictly
pertaining to the choreography because it expresses the set of possible values that
variables can hold at the initial state. It is worth noting that such a constraint
is not considered when the system evolves.

We say that a choreography C = (C, X, X) is well-formed if: i) the sets of
variables used by roles are disjoint, ii) the variables appearing in each guard
condition and each assignment in C' involve variables of a single role. In the
following we consider only well-formed choreographies.

3 A formal model for orchestration

An orchestrator can be seen as a process, associated to an identifier, that can
exchange information, represented by variables, with other processes. Let 1D be
the set of possible orchestrator identifiers ranged over by id. The language is
defined as it follows where we intend I as a finite non-empty set of indexes:

6@,§) |e|a=ec|P;P|P|P| i e P | ¥, 2P,
)

An orchestrated system FE consists of the parallel composition of orchestra-
tors. An orchestrator [P, S];q is a process P identified by id whose variables
state is §. The variables state of an orchestrator is described by a function
S : Var — Val U {L} mapping variables to values as defined for the choreogra-
phy. Informally, the idea is that orchestrators are executed on different locations,
thus they can be composed by using only the parallel operator (||). Processes can
be composed in parallel (]), sequence (;) and with two different alternative com-
position operators: one is composed of input guarded processes and the other
one is composed of processes guarded by conditions on variables state (such
processes are of the form x?P where x is the condition associated to P).

0 represents the null process. Communication mechanisms model Web Ser-
vices One-Way and Request-Response operations. In particular, we have three
kinds of primitives for synchronization, one for the internal synchronization and
two for the external one. The former simply consists of a channel o that different
threads of the process running in parallel can use to coordinate their activities. In
this case no message is exchanged; this is because the orchestrator variables are
shared by all threads running on that orchestrator. The primitives for external

(In) (Our)

(0,8) > (0,8) (3,8) > (0,S)

(ONE-WAYOUTASYN) (ONE—VVAYOU?)~ (()NE—\’VAYIN)~
@(5).8) = (B(S@H)).S) ((6®),8) Y (0,8) (o(@),8) Y (0,8[5/i])

(REQ-OUTASYN) (REQ-OUT) o
(0(#,9),9) = (8@, 9).S) ((6(5,9)),8) “"2™ (0n(7),S)

(RESP-OUTASYN) (Resp-OuT) o
@n(5),S) = (Gu(S@H))).S) ((8a(3)),S) ¥ (0,8)

(REQ-IN) (RESP-IN)
(%,9)(n)

(o(&,§, P),S) "2 (Py6n (), S[5/7]) (on(@),S) ™Y (0, S[5/4])

Table 2. Axioms over P

synchronization, that is between different orchestrators, are the following ones:
o(Z) and o(y) represent the input and the output of a single message whereas
the primitives o(Z, gy, P) and o(Z,q) represent coupled messages exchanges. In
particular we have that o(Z) represents a One-Way operation whose name is o
where the received information is stored in the tuple of variable Z of the receiver.
o(g) represents a One-Way invocation whose name is o and the sent information
is stored in the tuple § of the sender. o(Z, g, P) represents a Request-Response
operation whose name is o. In this case the process receives a message and stores
the received information in & then it executes the process P and, at the end,
sends the information contained in § as a response message to the invoker. Fi-
nally, o(Z,) represents the invocation of a Request-Response operation whose
name is 0. The process sends the information contained in T as a request message
and stores the information of the response message in y. The processes = := e
deal with variable assignment.

Let OL be the set of all the orchestrated system ranged over by E. The se-
mantics of OL is defined in terms of a labelled transition system which describes
the evolution of an orchestrated system. To this end we exploit the syntax of the
language enhanced with terms we use to describe asynchronous communication
as it follows:

P:u=...| (©®)) | (0(0,9)) | (0n(0))

We define — as the least relation which satisfies the axioms and rules of Ta-
bles 2, 3 and 4. Let Actor, = {0,0,0(?),0(0), (0, k)(n),o(0, 2)(n), 0, (0), 0,(0), 0,7}
be the set of actions ranged over by «. o is a parameterized action of the form

(INT-SYNC)

(AssIGN)
e—s v (P.S) % (P1,8), (@8) > (@)
(z:=e,8) > (0,S[v/z]) (P\QS) - (P Q,S)
(CoNGRP)
P=p P, (P,S)5(Q,S) Q@ =prQ
(P,8) (@, 8"
(PAR-INT) (SEQ)
(P,8) 2 (P',S) (P,S) = (P',8)

(P1Q,8) > (P'Q,8) (P;Q,8) > (P;Q,8)

(CHOICE 1) (CHOICE 2)
(e; P, S) L (P,S') iel Stxi Shxy,jelj<i
(s € Py S) = (P8 (Xl xi?Pi 8) = (B, S)

(STRUCTURAL CONGRUENGE OVER P)

Pl0=pP 0;P=pP (P|Q)=p(Q]|P) |
((0);Q)=p ((0)|1Q) ((0(2));Q) =p ((0(7)) |Q)
((0(9,9));: Q) =p (<6 SNQ) ((0n(9));Q) =p ({0n(9)) Q)

Table 3. Rules over P

(id,id', 0,0, dir) where id, id" are orchestrators ids, o is an operation name, ¢ are
tuples of values and dir € {1,]}.

Table 2 deals with IN, OuT, ONE-WAYOUT, ONE-WAY-IN, REQ-OUT, REQ-
IN, RESP-OUT, RESP-IN axioms. It is worth noting that the processes (o),
(©(9)),(0(Z,7)),(0,(0)) model asynchronous communication which characterize
Service Oriented Computing and in particular Web Services. Indeed, every time
an outcoming message process is performed, they “freeze” the value of the vari-
able to be sent and, by exploiting the structural congruence rules of Table 3, they
goes in parallel with the other processes. In the REQ-IN rule, after the reception
of a request on a Request-Response operation the process P must be executed
before sending the response.

In Table 3 there are the rules over P where the ASSIGN one deals with vari-
ables assignment within the orchestrators. Rule INT-SYNC deals with internal
synchronization whereas CONGRP with internal structural congruence denoted
by =p. PAR-INT and SEQ describe the behaviour of processes composed in par-
allel and sequentially, respectively. Finally CHOICE]1 and CHOICEZ2 describe the
behavior of the two alternative composition operators. The former one non-

(RULES OVER E)

(ONE-WAYSYNC)
[P7 S}Zd oﬂ) [P/aSl]id 5 [Qv T]id’ 0&;) [le T,}id' ;0 = (Zd7 id/,07 1~}7 T)

[P, Slia || [Q, Tiar = [P',8ia || [Q, T Niar

(REQ-SYNC)
[P, 8)ia "2 (P8, 1Q, T "2 QT i
[P,Slia || @ Tliar = [P',S8ia || [Q's T)iar

n fresh
o= (id7 id,7 07 67 T)

(RESP-SYNC)
[P, Slia ol [P, S'Nia , [Q, Tliar onl) Q. Ta ,o = (id,id 0,7,])
[P, Sia 1 [Q, Thiar = [P, 8ia || Q. T Niar

(PAR-EXT) (CONGRE) (INT-EXT)
B2 E, E\=E,, B, 2 E) E),=E, (P,8) > (P, S)
Ei || B2 2 El | E2 E, 2L Ey [P,8),y = [P, 8],

(STRUCTURAL CONGRUENCE OVER E)

PEPQ

——————— L E=EE B (B E)= (B E)| Es
[P,S],y =1Q, Sy

Table 4. Rules over E

deterministically selects among the processes guarded by inputs which can be
consumed, while the latter one resembles the deterministic choice, depending on
variables state, used in choreography.

In Table 4 the rules at the level of orchestrator system are considered. Rule
ONE-WAYSYNC deals with the synchronization on a One-Way operation be-
tween two orchestrators whereas the rules REQ-SYNC and RESP-SYNC deal with
that on a Request-Response one. Rule REQ-SYNC exploits a fresh label n which
is generated in order to univocally link the response synchronization defined
in rule RESP-SYNC. Considering the axioms REQ-OUT and REQ-IN indeed, the
Request-Response primitives will be transformed into two ONE-WAY (invocation
and reception) identified by the label n which is unique and univocally deter-
mined during the synchronization. It is worth noting that all the synchronizations
which are performed between different orchestrators are labelled with an action
0. This fact will be fundamental for the definition of the conformance notion
presented in the next section. PAR-EXT deals with external parallel composi-
tion and CONGRE is for external structural congruence denoted by =. INT-EXT
expresses the fact that an orchestrator behaves in accordance with its internal
processes.

4 Conformance between choreography and orchestration

Our proposal defines a conformance notion based on a relation between the la-
belled transition system of choreography and the labelled transition system of
another model obtained from the orchestration system by associating choreogra-
phy roles to the orchestrators. In particular, let C = (C, X, X) be a choreography
and E be an orchestrated system. We define a joining function, named ¥, for
associating the orchestrators and the variables of E to the roles of C and we test
the conformance, up to ¥, of E and C by using a relation where the o labels of
the former are compared with the u ones of the latter.

Definition 1 (joining functions). A joining function is an element of the set
{#|¥:ID— RNameU{L} x (Var - VarU{Ll})}

containing functions which associate to each orchestrator identifier a pair com-
posed of a choreography role (or the L wvalue in case no role is associated) and
a function from orchestrator variables to choreography variables (or the L value
in case no variable is associated). We denote with W' the projection of ¥ on
the first element of the pair (the associated role), with W? the projection on the
second element (the variable mapping function).

Given a joining function ¥ and an action o = (id, id’, 0, 0, dir) of a given or-
chestrated system where id and id" are orchestrator identifiers, o is an operation,
¥ are tuples of values and dir € {1, |}, we denote with

Vo] = (P (id), ¥ (id'), 0,9, dir)

the renaming of the orchestrator identifiers with the joined roles. The projection
W? will be exploited for joining the initial values of the choreography variables
to the related ones of the orchestrated system.

Now we introduce the conformance notion between a choreography and an
orchestrated system which exploits a relation, named conformability relation,
inspired to bisimulation [Mil89]. Given a choreography C = (C, X, X) an orches-
trated system E and a joining function ¥, the idea is to consider all the possible
choreography states which satisfy the initial constraint X and for each of them
test, up to ¥, the conformability (>y) between the labelled transition system
of the choreography and a new labeled transition system for the orchestrated
systems that we call the joined labelled transition system. In particular, in this
new transition system the initial values of the variables of the orchestrated sys-
tem are joined with the choreography ones up to ¥2. Furthermore, some hiding
operators are applied to the orchestrated system in order to observe only those
interactions which are relevant for the choreography. Hiding consists of replacing
labels with 7 or with a special label 7 and it is applied to three kinds of actions:
(i) the interactions that involve an orchestrator not joined with any role are
replaced with 7; (ii) the interactions performed on operations not declared in
the choreography are replaced with 7; (iii) the interactions which are performed

between orchestrators joined with the same role are replaced with 7. The case
(iii) is concerned with interactions that corresponds to internal operation within
the same role at the level of choreography, while cases (i) and (ii) correspond to
coordinating actions that are introduced only at the level of orchestration in or-
der to coordinate distributed orchestrators. For this reason we distinguish these
two kinds of actions introducing the new label 7. Formally, such a difference
comes into play in the conformability relation.

Definition 2 (Joined labelled transition system). Given a choreography
C = (C,X,X), an orchestrated system E € OL and a joining function ¥ such
that Im* (W) = Y U {L}3, let wo be the set of operations involved within the
choreography C, let w, be the set of operations exhibited by the processes of E
and let Eop = w,/we be the set of operations exhibited by E and which do not
appear within the roles of C. Let E| be the set of orchestrator identifiers id of
E for which ¥(id) = L. We denote the joined labelled transition system with:

EAQ/Q/EOP//EJ_///Eid

where:

— E™W? is an operator which associates the values of the choreography vari-
ables in Sc¢ to the corresponding variables in the states of E up to the joining
function W%, Formally let Z;q and §j;q be the tuples of variables in Var which
belong to the state of the orchestrator id and for which the following con-
ditions hold respectively: W2 (id)(Z;q) # L, 2(id)(Jia) = L and let ;q be
the tuple of values of the choreography variables joined with the variables T;q
that is U;q = Sc(W2(id)(Z:q4)). We have that the E™W? is inductively defined
as follows:

- [P,S]3¥? = [P, S[Via/Tia, L/ Gial)ia
- E7W? =[P, S[0ia/Tid, L/Gia)lia | B W2

— /Eop is a hiding operator which hides, replacing with T moves, all the tran-
sitions which contain operations contained in Eop

— JE. is a hiding operator which hides, replacing with T moves, all the tran-
sitions which contain orchestrators not joined with any role.

— [Eiq hides, replacing with 7 moves, all the interactions between the same
role (the id of the sender is the same of the receiver).

In the following we present the conformability relation between the labelled
transition system of the choreography and the orchestrated system one. Con-
formability is inspired by bisimulation but some differences exist. In particular,
conformability considers 7 and 7 moves differently. Indeed, in order to abstract
away from coordinating interactions on the orchestration side, we will exploit the
particular arrows = and = for representing the concatenation of the following

8 Im* (@) = {¥'(id) | id € ID}

transitions %> and 5575 respectively. This means that we focus on observ-
able interactions which are represented by o for the orchestrated system and by
p = Wllo] for the choreography. Furthermore, 7 actions in choreography, which
correspond to assignments, are related to internal role actions in orchestration.
It is worth noting that here, we are not interested to distinguish between dead-
lock and termination states both in choreography and orchestration which are
related in conformability by introducing the set of states C5(S¢) and Ej defined
in the following.

Definition 3 (Conformability). Let ¥ be a joining function. A relation Ry C
((CLp,I'c)x OL) is a conformability relation if ((C,Sc), E) € Re implies that
C € Cs(Sc) and E € Ej or, for all p € Actc and for all 0 € Actor, the
following conditions hold:

1. (C.Sc) B (', 8)=ES EANE S E'ANE'S B
A((C,8L), B") € Ry AV [o] =

2. (C,50) L (C',8L) > E S EANE L E'AE" S B
A((C,SL), E™) € Ry

3. E2 E' = (C,80) 5 (C',8L) A (C',8L) 45 (C7, 8L A
A(C", SE) T (C SEY A ((C,82), E') € Ry AW [o] = p

4. ES E = ((C,8¢),E") € Ry V ((C,Sc) = (C',SL) A ((C',S5), E') € Ry)

where 7 € {T,7}, the arrow 2 means the concatenation of the following transi-

tions: 55 and Cs(S¢) and Ej are defined as follows:

— C5(Sc) ={C € CLp |YC" € CLp Bv, 8. st. (C,Sc) % (C',SL)}
— Es={E€OL|?E' €OLst. E>EVELEVESDE'}

We write (C,S¢) by E if there exists a conformability relation Ry such that
((C,S¢),E) € Ry.

We can now conclude this section reporting the formal definition of our con-
formance notion.

Definition 4 (Conformance). Given a choreography C = (C, X, X), an or-
chestrated system E € OL and a joining function W such that Im*(¥) = YU{L},
let we be the set of operations involved within the choreography C, let w, be the
set of operations exhibited by the processes of E and let Eop = w,/wc be the set
of operations exhibited by E and which do not appear within the roles of C. Let
E| be the set of orchestrator identifiers id of E for which ¥(id) = L. We say
that E is conformant to C if the following condition holds:

VSc € I s.t. Sc X, (C,Sc) >y EAW2/EOP//EL///EM

PRICE
goodc,nume -;l/\ d ORDE
STioen M good, numy

outcomes

C

buyc,cardg ncarde BU;

RESULT
RECEIPT outcome cardy, ncardw, pricew

PAY

B

receipts

Fig. 1. Interactions among the roles

Observe that on the right hand side of by the joined labelled transition system
of the orchestrated system defined in Definition 2 is considered.

5 Example

Here we reason about the meaning of conformance by using an example. Let us
now consider a business scenario where a customer invokes a market service in
order to buy some goods and it receives the price as a response. Considering the
price, the customer will buy or not the goods (in this case, for the sake of clarity,
we have choosen 100 as a constant for discriminating the price but, in order to
abstract away from this value, it could be possible to use a variable with a range
of values). If the customer sends a message for buying the market will invoke
a supplier service for making the order. The supplier service will accept or not
the order. In the case the order can be fulfilled, the market service will invoke a
bank service for the payment and will return a positive answer to the customer,
the bank service concurrently will send a receipt to the cutomer.

In order to define the choreography let us consider four roles: pc which repre-
sents the customer behaviour, pys which represents the market service, pg which
represents the bank service for credit card payment and pg which represents the
supplier service. For each role we define the following operations and sets of
variables:

we = {(RESULT, ow), (RECEIPT, ow)}, wy = {(PRICE,rr), (BUY,ow)},
ws = {(ORDER,r71)}, wp = {(PAY,ow)}.

Ve = {goodc, numc, buyc, carde, nearde, pricec, outcomec, receiptc }
Var = {goodr, numag, buyar, cardas, necard g, priceps, outcomens

Vs = {goodg, numg, priceg, outcomeg }

Vg = {cardp,ncardp, receiptp, pricep }

Let X be the set of roles defined in the following way:

X =A{(pc,wec,Ve), (par,war, V), (ps,ws, Vs), (pB,ws, VB)}-

Let Con be the following conversation:

Con ::= (PriceReq; BuyReq; (buyc = accepted?Order; BuyResp)) |
| outcomep = OK?Payment

PriceReq := (pc, pm, PRICE, goode o numc, goodys o numpy, 1)

; (pc,pM,PRICE,pT’I;CEC,pT"I;CBM, l)

BuyReq ::= ((pricec > 100?buyc = cancelled; cardc := null;ncarde := null)
@ (pricec < 1007buyc = accepted))
i (pc,pm, BUY, buyc o carde o ncarde, buyas o cardys o neardyy, 1))

Order ::= (pm, ps, ORDER, good s o num s, goods o numg, T)
i (pm, ps, ORDER, outcomey;, outcomeg, |)

BuyResp ::= (pum, po, RESULT, outcome s, outcomec, 1)

Payment ::= (par, pB, PAY, cardys o ncardys o pricens, cardg o ncardp o priceg, 1)

i (pB, pc, RECEIPT, receiptg, receiptc, 1)

Finally, we define the following initial constraints over the variables:

X = goodc € {apple, banana} A

A

>

>>>> > > >

0 <numc < 200 A

cardc € {visa, mastercard} A

ncardc = pricec = buyc = receiptc = outcomec = L A

goodyr = numypy = cardyr = neardyr = buypyr = outcomenr = L A
50 < pricepr <200 A

goods = numg = cardg = L A

outcomeg € {OK, REJECTED} A

receiptg = Receipt Doc N

cardg = ncardg = priceg = L

We consider the choreography Chor = (Con, X, X). In Fig. 1 are graphically
represented the interactions among the roles set by Con without showing the
order they are performed. The circles are the roles, the bold segments are the
operations and the arrows are the interactions. In the following we present two
possible orchestrated systems both conformant with the choreography Chor.
Here we intend to show that the orchestrated system can have different levels of
refinement without loosing the conformance with a given choreography.

1. We consider an orchestrated system E; with four orchestrators: C, M, S
and B whose definition follows:

goode,nume

pricem

buyc,carde, ncardc Y
RESULT

RECEIPT outcomen

receipty

receipts

Fig. 2. Orchestration system FEs

Eyi=C|M|S|B

C ::= [(PRICE(goodc o numc, pricec);
i ((pricec > 100?buyc = cancelled; carde = null; ncarde = null)
@ (pricec < 1007buyc = accepted)); BUY (buyc o cardec o neardc)
; RESULT (outcomec)) | RECEIPT (receiptc)]c

M ::= [PRICE(goodys o num s, priceas, 0)
| (BUY (buyas o cardys o ncardys); buyy = accepted?Ord)]
Ord ::= ORDER(goodas o numpy, outcomeyy); (RESULT (outcomens)
| outcomen = OKTPAY (cardys o neardys o pricep))

S ::= [ORDER(goodgs o numg, outcomeg, 0)]g

B ::= [PAY (cardp o ncardg o priceg); RECEIPT (receiptp)| g

We consider a joining function ¥ where C, M, S and B embody roles pc, par, ps
and pp, respectively that is:

q;l(c) - pCaLDI(M) = pJvawl(S) = pSakpl(B) = PB;

wl(id) = L forid ¢ {C,M, S, B}.

As far as the variables are concerned we consider a joining function projection
W? which joins the orchestrated system variables with the choreography ones
that have the same name.

2. We consider a system FEo where there are more than four orchestrators.
In particular the supplier service and the bank service are splitted into three
orchestrators which are joined to the same role.

PS,

Eyu=C | M S| Sz || Ss| Byl Bz || B

= [(PRICE(good¢c o numc, pricec);
i ((pricec > 100?buyc = cancelled; carde = null; ncarde = null)
@ (pricec < 1007buyc = accepted)); BUY (buye o carde o ncardc))
; RESULT (outcomec)) | RECEIPT (receiptc)]c

M ::= [PRICE(goodys o numy, priceps, 0) |
| ((BUY (buyns o cardps o ncardyr); buyy = accepted?Ord))| s
Ord ::= ORDER(goodys o numy, outcomeyr); (RESULT (outcome)
| outcomenr = OK?TPAY (cardys o ncardyy o pricepy))

S1 ::= [ORDER(goodg; o numgy, outcomes, SelS)]s1
SelS ::= goodg1 = apple’ORDER3(goodgy o numg, outcomeg)
@ goods1 = banana?’ORDER;(goodsi o numgi, outcomegy)

Sy ::= [ORDER4(goodgs o numgsa, outcomega, 0)]s2
S3 ::= [ORDERg3(goodgss o numgs, outcomegs, 0)] g3
By := [PAY (cardp; o ncardpy o pricepy);

i (cardpy = visa?PAYy(cardp; o ncardpy o pricep)

@ cardp; = mastercard?PAYs(cardg) o ncardp; o prices1))]B1
By ::= [PAY 3 (cardps o ncardps o priceps); RECEIPT (receipt 2)| po
Bj := [PAY3(cardps o ncardps o priceps); RECEIPT (receipt gs)] B3

We consider the following joining function: ¥'(C) = pc, W1 (M) = par, W1 (S;) =
Wl(Ss) = ps,W'(Ss) = ps, W' (B1) = pp, ¥ (Bz) = pp, V' (Bs) = p

Wl(ld) =1 fO’I“ ’Ld ¢ {C, M, Sl,SQ,Sg,Bl,BQ,Bg}.

As for as the variables are concerned we exploit the same rule used for ex-

ample 1 but with the following differences:

S1)(goods1 = goods)
S1)(numg; = numg)
By

B

)

)

(cardpy = cardp)
1)(

)

)(pricep; = priceg)
2)(outcomegy = outcomeg)
3)(outcomegs = outcomeg)

Bs)(receiptps = receiptp)
Bs)(receiptps = receiptg)

w2 (
w2 (
w2 (
w(
w2(S
w?(s
w2 (
v (

The first orchestrated system joins strongly the choreography because there is

an

orchestrator for each role and all the variables are the same, furthermore

all the communications follow the choreography conversation. On the contrary,
the second one shows how roles can be splitted on more than one orchestrator
without loosing the conformance with the choreography. In particular it is worth

noting that interactions within roles S and B are irrelevant to the end of confor-
mance because they are performed between orchestrators joined with the same
role. Such a kind of interaction are hidden by the j/FE;q operator.

6 Conclusion

In this work we continue the line of research initiated in [BGGT05] devoted to
the formalization of the notion of conformance between a choreography and an
orchestrated system, as well as the formalization of the notion of orchestration
and choreography languages. More precisely, we extend our formal framework
with the notion of state and asynchronous communication. The introduction of
state is fundamental to specify the dependencies of system behavior on actual
values, for instance, the fact that a customer selects one seller because it offers
the best price. The second modification is useful to have a closer modeling of
the way orchestrators actually communicate on, e.g., the Internet.

From a technical point of view, these extensions have required a considerable
amount of work related to an appropriate modeling of nondeterminism. In par-
ticular, we had to significantly rephrase the notion of conformance. Moreover,
the new notion of conformance supports the distributed implementation at the
orchestration level of choreography roles. For instance, an abstract role for credit
card payment can be actually implemented by means of a group of orchestrators
that support the interaction between banks and credit card institutions.

The conformance notion we have defined between these two concrete lan-
guages is a powerful mechanism for designing and developing complex systems.
The designer can start the design phase by programming the choreography and,
in a second stage, to program and refine orchestrated systems testing, step by
step, its conformance w.r.t. the choreography thus obtaining a correct imple-
mentation of the system.

As future work we intend to develop a mathematical machinery for extracting
the interfaces and the workflow skeleton of the orchestrators starting from a given
choreography. This will permit to verify the conformance even when the whole
set of orchestrator is not completely known (the unknown orchestrators will be
synthesized directly from the the choreography). As far as process calculi are
concerned we intend to make a closer comparison between the two languages we
propose and the most interesting proposals like WS-BPEL for orchestration and
WS-CDL for choreography. In [GGLO05] we present a partial comparison which
investigates the interactions patterns by drawing a parallel between WS-CDL
and our choreography language.

References

[BBM105] M. Baldoni, C. Badoglio, A. Martelli, V. Patti, and C. Schifanella. Verify-
ing the conformance of web services to global interaction protocols: a first
step. In Proc. of Web Services and Formal Methods Workshop (WS-FM’05),
volume 3670 of LNCS, pages 257-271. Springer-Verlag, 2005.

[BGGT05] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gian-

[BGJ105)

[CHYa]

[CHYD)

[DDO04]

[GGLO5]
[HMO5]
[Kel76]

[Mil89]
[OAS]

(W3]

luigi Zavattaro. Choreography and orchestration: A synergic approach for
system design. In ICSOC (International Conference of Service Oriented
Computing), pages 228-240, 2005.

T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Stef-
fen. On the Correspondence Between Conformance Testing and Regular
Inference. In Proc. of Fundmental Approaches to Software Engineering
(FASE’05), volume 3442 of LNCS, pages 175-189. Springer-Verlag, 2005.
Marco Carbone, Kohei Honda, and Nabuko
Yoshida. Programming interaction with types.
[http://www.w3.0org/2002/ws/chor/5/06/F2F Junel4.pdf], W3C WS-
CDL WG London F2F, June 14 2002.

Marco Carbone, Kohei Honda, and Nabuko Yoshida. A theoretical basis of
communication-centred concurrent programming. Posted at w3-chor mail-
ing list, November 2005.

Remco Dijkman and Marlon Dumas. Service-oriented design: A multi-
viewpoint approach. Int. J. Cooperative Inf. Syst., 13(4):337-368, 2004.
R. Gorrieri, C. Guidi, and R. Lucchi. Reasoning on the interaction patterns
in choreography. In Proc. of Web Services and Formal Methods Workshop
(WS-FM’05), volume 3670 of LNCS, pages 333-348. Springer-Verlag, 2005.
R. Heckel and L. Mariani. Automatic Conformance Testing of Web Services.
In Proc. of Fundmental Approaches to Software Engineering (FASE’05),
volume 3442 of LNCS, pages 34—48. Springer-Verlag, 2005.

Robert M. Keller. Formal verification of parallel programs. Commun. ACM,
19(7):371-384, 1976.

Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
OASIS. Web Services Business Process Ezecution Lan-
guage Version 2.0, Working Draft. [http://www.oasis-
open.org/committees/download.php/10347 /wsbpel-specification-draft-
120204.htm].

W3C. Web Services Choreography Description Language Version 1.0. Work-
ing draft 17 December 2004. [http://www.w3.org/TR/2004/WD-ws-cdl-10-
20041217/).

