
2006-2-5 Unifying Theories of Programming, Springer LNCS 4010 p.1-17 0

Retrospective and Prospective for
Unifying Theories of Programming

Eric Hehner

Department of Computer Science, University of Toronto,
Toronto ON M5S 2E4 Canada

hehner@cs.utoronto.ca

Abstract This paper presents a personal account of developments leading to
Unifying Theories of Programming, and some opinions about the direction the
work should take in the future. It also speculates on consequences the work
will have for all of computer science.

0 UTP and me

My introduction to formal methods was the book a Discipline of Programming [2] by
Edsger Dijkstra in 1976. I wrote a small contribution in a paper named
do considered od [14] in that same year. In that paper I proposed recursive
refinement as a way of composing programs, and a different way of generating the
sequence of approximations for loop semantics that is more general than the one in
Dijkstra's book, applying to all looping constructs, including general recursion.

It was standard in semantics work then (and for some people, it remains so
today) to use a meaning function (sometimes written as ⟦ ⟧) that maps program text
to its meaning. In Dijkstra's book, he used the wp function to map a program text
and postcondition to a precondition. If S is some program text, and R is a
postcondition, then wp(S, R) is the exact precondition for execution of S to 1

 The English meaning of “precondition” is “something that is necessary 1

beforehand”. Dijkstra was using it to mean “something that is sufficient
beforehand”. In Dijkstra's use, the “weakest precondition” wp was the weakest
sufficient condition, i.e. the necessary and sufficient condition. To avoid misusing
the word “precondition”, I am saying “exact precondition” to mean the condition that
is both necessary and sufficient.

http://www.cs.utoronto.ca/~hehner

Eric Hehner 2006-2-51

terminate and establish postcondition R . In my 1976 paper, I made the proposal that
we should stop thinking of programs as mere text, and start thinking of them as
mathematical expressions in their own right. We should not need a function to map a
program to its meaning. My proposal was that, like any mathematical expression, a
program can stand for its meaning all by itself. So, in that paper, program S is a
function that maps a postcondition R to a precondition, written S(R) . Sequential
composition (semicolon) is just function composition. I proposed that the arrow in a
guarded command is a lifted implication, that the box connecting guarded commands
is a lifted conjunction, and that the if fi brackets are a “totalizer”. That proposal
seems tame today, but in 1976 it was apparently bizarre, causing rejection of the
paper in its first submission; and in its second submission the referees insisted that it
be removed from the paper for publication. Since there were other contributions of
the paper that I really wanted published, I obeyed the referees and removed it from
the paper for publication in Acta Informatica in 1979. But it remains in the 1976
technical report version. Fortunately for all of us, Ralph Back in Finland read the
technical report, adopted the proposal, and began the work called “Refinement
Calculus”, culminating in a wonderful book with that same name in 1998 [0].

Meanwhile, I made an amazing discovery: that Dijkstra's book was not the first
work on formal methods; from the lack of references in the book, I had supposed it
was. But it owed a lot to a paper by C.A.R.Hoare in 1969 [16]. That paper, and
another in 1972 on data abstraction [17], and some lectures by Tony on CSP,
convinced me to spend my sabbatical in 1981 in Oxford. It was an intellectually
lively place, including Jean-Raymond Abrial, Steve Brookes, Peter Henderson, Cliff
Jones, Lockwood Morris, David Park, Bill Roscoe, Dana Scott, Ib Sorensen, Joe
Stoy, Bernard Sufrin, Jim Woodcock, and others. But it was not a good year for the
Hoare family.

I had two projects while I was in Oxford. I had started writing a book in the year
before going there, but then David Gries started writing the same book, and sending
me the chapters for comment. David wrote much faster than I did, and quickly
overtook me. So I decided to put my effort into comments on David's book, and
abandon mine. But in Oxford, Tony persuaded me that there is room for another
book, especially if I pitch my book at a different level than David's. So I resumed
writing, aiming for a more advanced audience. The book [12] was published in
Tony's series in 1984, and in it programs were predicate transformers.

My other project in Oxford in 1981 was to find a good model for CSP. I decided
that in this project, programs were not predicate transformers, but predicates. Each
day I would go into Tony's office before he arrived, and fill his board with my latest

2006-2-5 Retrospective and Prospective for Unifying Theories of Programming 2

formulas, hoping that would catch his attention. I guess it worked. The paper [13]
was a technical report in 1981, and published in TCS in 1983.

I liked the idea of using predicates for programs so much that I decided to apply
it beyond CSP to a wide variety of programming constructs. My principles of
“predicative programming” were:
• a specification is a predicate2

• refinement is implication
• a program is an implemented specification
In 1982, IFIP Working Group 2.3 (Programming Methodology) allowed me an
extraordinary 4 hours to present these ideas. For the most part, the presentation went
very well, but there was one point that went badly. I wanted a “total correctness”
formalism (who wouldn't?), and I achieved it by borrowing the weakest specification
(given an initial state, any final state is satisfactory) to represent possibly
nonterminating computations. I “justified” it by saying that if you don't care what the
result is, then you don't care if there is a result (I am not defending that argument any
more). I gained “total correctness” at the cost of making sequential composition
(semicolon) almost but not quite associative. I had a theorem saying that if the state
space is infinite (one integer variable makes it infinite) then semicolon is associative
for all programs. I had another theorem saying that if there is at least one variable
not appearing in any program (one unused boolean variable is enough), then again
semicolon is associative for all programs. I remember Butler Lampson saying that I
should just assume there's one extra variable, and get on with it. I also remember that
Tony was unhappy; for him, associativity of semicolon had to be unqualified.

In 1982 March, Tony came to Toronto for a week, in part so that we could
resolve the problem. I was opposed to adding an extra boolean variable that would
not appear in any program, but would burden nearly every non-program
specification. Tony was opposed to any qualification on associativity. In the end,
Tony convinced me to add the alternative he preferred as an appendix to my paper. I
tried to give the variable some physical motivation, so I called it s for “start/stop”,
saying that s with “initial” decoration means “the computation has started” and that
s with “final” decoration means “the computation has stopped”. That variable

 I am using the word “predicate” here as I used it back then, and as some people still 2

use it today, to mean a boolean expression, particularly one that contains or may
contain subexpression(s) of other type(s), and/or quantifiers. I now say “boolean
expression” no matter what types its subexpression have, and no matter what
operators are used within. I now use “predicate” to mean a function whose result is
boolean.

Eric Hehner 2006-2-53

became the ok variable in UTP [15]. “Predicative Programming” was published
[11] in CACM in 1984.

There was a growing number of theories of programming. I had predicative
programming; Edsger Dijkstra had wp ; Cliff Jones had VDM; David Parnas had
limited domain relations, and a second theory that he called “standard semantics”;
and there was another theory of partial relations proposed by Bill Robison and
independently by Bernard von Stengel, that later became the refinement semantics of
Z. These were not just notationally different; they had substantive differences in
expressive power and in their treatment of termination. So I set out to compare these
different theories in a paper called “Termination Conventions and Comparative
Semantics”, published in Acta Informatica in 1988 [10]. The basis of the comparison
was a translation from each of them to my own predicative semantics, and vice versa.
I included a catalogue of semantics for all the aforementioned theories, expressed
both with and without the extra boolean variable that indicates proper termination.
So, in my mind at least, this paper was very much a forerunner of the UTP work.

One more idea that may have influenced UTP is parallel by merge. In 1990,
Theo Norvell was my PhD student, and he suggested parallel by merge as a way of
defining parallel composition that is both implementable and insensitive to frame.
That is the form of parallelism in the 1993 edition of my book a Practical Theory of
Programming [5], and in UTP in 1998. I have since abandoned it, and for the 2002
edition and onward I have returned to simple conjunction (to keep implementability,
it must be sensitive to frame) that I had used from 1981 to 1989 [11, 13].

Since publication of UTP, both it and my work have been extended to include
probabilistic computation [6], but I think neither work influenced the other; perhaps
we were both influenced by the same source [18].

This history of work leading to UTP has been a personal one, and I am not sure
it accords well with a history that Tony Hoare and He Jifeng might tell. My doubt
comes from the fact that none of the work I have mentioned, except for the predicate
model of CSP [13], was referenced in the UTP book.

1 UTP without me

I am pleased to think that I made some contribution to the UTP project. But there is
an important point on which I have tried hard and so far failed to have any influence.
I think the point is inevitable, so I will now make another attempt.

The tradition in programming theories is not to speak directly about execution
time. To refer to theories that talk about whether a computation terminates, and the

2006-2-5 Retrospective and Prospective for Unifying Theories of Programming 4

result upon termination, we commonly use the words “total correctness”, suggesting
that nothing else is of interest. I suspect the sentiment was (and maybe still is) that
execution time is too dependent on factors (compiler, hardware) beyond the program.
There are circumstances when time is important, called real-time or reactive
programming. And theories have been invented [1], and new ones are still being
invented [3], to reason about execution time. An entire logic, called temporal logic,
was invented to specify and reason about timing. But none of that is necessary. All
you need to do is add a time variable, placing increments (t:= t+something) in the
program wherever they are needed to account for the time required by the other
operations in the program. Then you reason about the time variable exactly the same
way you reason about the other variables, using exactly the same theory you were
using before you added time. I presented this position in a paper [9] published in
1989 January.

Then in June of that year, in the opening address of the first MPC [8], I presented
a more compelling reason for the inclusion of a time variable. To calculate the exact
execution time, the time variable can be real-valued, and the increments should be
exactly the execution time of the instructions compiled for the machine that will
execute the instructions. A more abstract, machine-independent measure of time uses
an integer-valued time variable, counting iterations of loops and recursive calls,
ignoring all else. A still more abstract measure of time uses a boolean-valued time
variable that just distinguishes finite execution time (termination) from infinite
execution time (nontermination); that is the ok variable of UTP. But there's a big
difference between numeric (real- or integer-valued) time and boolean time: the
former can tick, and the latter cannot. We can do arithmetic on the time variable if it
is a numeric type, but not if it is boolean. And that has a profound effect on the
semantics and proof rules of the programming language, as I shall explain.

2 If and When

The acceptance of 0 as a number has taken a long time, and is still incomplete. In
English, no-one quite knows whether to treat 0 as singular or plural, does he? On
your keypad or telephone it is placed after 9 , which is mathematically silly. In the
1991 Toronto phone book, there is a page that helpfully gives the time difference to
various places in the world; to the U.K. it says “+5”, and to Costa Rica it says “–1”.
But to Cuba it says “NA”, and the legenda explains “time difference not applicable”.
By 1996 they tried to correct it; for Cuba it says “=”, with the same explanation. In

Eric Hehner 2006-2-55

1997 they discovered the number 0 , but they felt the need then, and still do today, to
explain that 0 means “no time difference”.

When we say “There are a number of issues to discuss.”, we don't mean there
might be 0 of them. When 0 really is a possibility, people often add the phrase “if
any”, as in “Please put all the leftovers in the fridge, if there are any.”. They create a
case analysis, when none was needed. For example, the 1991 Canadian census asked
the question “How many persons who have a usual home somewhere else in Canada
stayed here overnight between 1991 June 3 and 4?”, then offers a place to tick if
there were none, and a box to fill with the number of persons if there were some.
The people designing the form probably know perfectly well that the box is
sufficient, but without the place to tick “if none” they would be overwhelmed by
people complaining that they can't answer the question.

The Fortran language of 1955 had a loop construct, but its body had to be
executed at least once; I suppose it seemed senseless to have a loop whose body
might be executed 0 times. The error was corrected in Algol in 1958, and in PL/I,
and in Pascal, in part: iteration might be 0 times, but the data structure over which
one is iterating, the array, had to have at least one element. In Pascal that meant there
was no null string. And that put the algebra of data structures back where the algebra
of natural numbers was prior to 1930. We learn, but slowly; two steps forward, one
step back.

The authors of UTP might have chosen to include a boolean variable to
distinguish executions that take 0 time from those that take positive time. This
variable would complicate the semantics to no advantage, and it would infect all
specifications, causing the authors to invent “designs”, which are specifications with
this variable suppressed but still implicit. I commend the authors for not making this
mistake. Perhaps someday, in English (or its successor), we won't feel the need to
ask for “the number, if any”; we will simplify by just asking for “the number”,
accepting 0 as an answer.

In English, one sometimes hears the phrase “if ever”, or “if and when”, as in “I'll
deal with that if and when it happens.”. If we just say “I'll deal with that when it
happens.”, undoubtedly someone would immediately ask: “What if it never
happens?”. But it seems to me that case is already covered: if it never happens, I'll
deal with it never. We simplify by eliminating the case analysis, and to do that we
must learn to accept ∞ as an answer to the question “when?”. We are not bothered
by the different grammar in the two sentences “I don't have any bananas.” and “I
have 0 bananas.”; one uses a negative verb and the other a positive verb, but we
take them to mean the same thing. Likewise we should take “It never happens.” and
“It happens at time ∞ .” to mean the same thing. Perhaps someone in the future will

2006-2-5 Retrospective and Prospective for Unifying Theories of Programming 6

show some census forms in which the case ∞ was separated off unnecessarily, and
that speaker's audience can all have a good laugh at their ancestors' unwillingness to
accept ∞ as a number.

The authors of UTP have chosen to include a boolean variable ok to distinguish
executions that take finite time from those that take infinite time. This variable
complicates the semantics to no advantage, and it infects all specifications, causing
the authors to invent “designs”, which are specifications with this variable suppressed
but still implicit. Worse than that, this variable causes duplication of work. Suppose
I want to show that a computation involving loops delivers a certain result within a
certain time bound. The next section shows that the work necessary to prove okʹ is
equivalent to finding an upper time bound, which I must repeat using a time variable
in order to prove an upper time bound.

3 What is the meaning of loops?

There are two usual ways to give meaning to loops (and recursions) in a “total
correctness” semantics: the limit of a sequence of approximations, and a least
fixpoint. To find the meaning of b*S using the limit of approximations, define

W0 = true

Wn+1 = (S; Wn) ! b " II
Then

b*S = (∀n· Wn)
where the quantification may need to continue past the naturals and through the
transfinite ordinals. As an example, we can find the semantics of

(x≠1) * (x:= x div 2)
in one integer variable x . We find

W0 = true

 W1 = (x:= x div 2; true) ! x≠1 " II
= (x=1 ⇒ xʹ=1)

W2 = (x:= x div 2; x=1 ⇒ xʹ=1) ! x≠1 " II
 = (1≤x<4 ⇒ xʹ=1)
Jumping to the general case, which we could prove by induction,

Wn = (1≤x<2n ⇒ xʹ=1)
And so

Eric Hehner 2006-2-57

 (x≠1) * (x:= x div 2)
= (∀n· 1≤x<2n ⇒ xʹ=1)
= (1≤x ⇒ xʹ=1)

A sequence of approximations introduces an integer-valued time variable in disguise:
it is the subscript n . Wn is the strongest specification of behavior that is observed
before time n , in the measure that counts iterations. If we have an integer-valued
time variable, it is unnecessary to introduce another one for the same purpose, and
we can simplify the semantics of loops.

The other usual way to define loops is as a least fixpoint.
b * S = µX· (S; X) ! b " II

This is closely analogous to defining the natural numbers ℕ as a least fixpoint.
 ℕ = µX· {0} ∪ {n+1 | n∈X}

For more familiarity, we can remove µ by replacing the definition with two axioms
called construction and induction. Loop construction

b * S = (S; b * S) ! b " II
says that a loop equals its first unrolling. Stated differently, b * S is a solution
(fixpoint) of the equation (in unknown X)

X = (S; X) ! b " II
It is analogous to natural construction

 ℕ = {0} ∪ {n+1 | n∈ ℕ}
which says that 0 is a natural number, and if n is a natural number, so is n+1 (II
is analogous to 0 , !b" is analogous to ∪ , and unrolling is analogous to adding
1). Stated differently, it says that ℕ is a fixpoint of an equation. Loop induction

(∀σ, σʹ· X = (S; X) ! b " II) ⇒ (∀σ, σʹ· X ⇒ b * S)
where σ is the state variables, says that b * S is as weak as any fixpoint, so it is the
weakest (least strong) fixpoint. It is analogous to natural induction, which can be
written in a nontraditional form (to make the analogy clearer), replacing predicate
satisfaction with set membership, as follows:

∀X· X = {0} ∪ {n+1 | n∈X} ⇒ ℕ⊆X
which says that ℕ is a subset of any fixpoint, so it is the smallest fixpoint. Once
again, if we lack an arithmetic time variable, then the loop semantics must
compensate by introducing a kind of loop-arithmetic. If we have an arithmetic time
variable, this is unnecessary, and we can simplify the semantics of loops.

Programming from specifications by means of refinement replaces the question
“what does this program mean?” with the question “does this program refine that
specification?” [4]. All a programmer needs to know about the meaning of program

2006-2-5 Retrospective and Prospective for Unifying Theories of Programming 8

P is: for what specifications S is S⇐P a theorem? What a programmer needs to
know about II is

σʹ=σ ⇐ II
In UTP (as in my work), II is defined by strengthening that refinement to equality,
but for programming, all we need is the implication. The same comment applies to
assignment, conditional, and sequential composition.

I am content to form loops by recursive refinement (as in my 1976 paper [14]).
For example, if the specification (in one integer variable x) is x≥1 ⇒ xʹ=1 , I can
refine it as follows:

(x≥1 ⇒ xʹ=1) ⇐ II ! x=1 " (x:= x div 2; x≥1 ⇒ xʹ=1)
With this refinement, we can now execute the specification x≥1 ⇒ xʹ=1 by
executing what refines it, and when specification x≥1 ⇒ xʹ=1 is encountered again,
it is again executed by executing what refines it. That's a loop. Knowing what II ,
assignment, conditional, and sequential composition refine is sufficient for proof of
this refinement; we do not need any further theory for loops.

If we are interested in execution time, we include a time variable. Let's make it
integer-valued, and count iterations. We can prove

(x≥1 ⇒ tʹ ≤ t + log x) ⇐ II ! x=1 " (x:= x div 2; t:= t+1; tʹ ≤ t + log x)
which says that for positive x , the execution time is bounded above by log x . We
can also prove

(x<1 ⇒ tʹ=∞) ⇐ II ! x=1 " (x:= x div 2; t:= t+1; x<1 ⇒ tʹ=∞)
which says that for nonpositive x , the execution time is infinite. And for free we get
the conjunction of all that we proved previously: execution satisfies

(x≥1 ⇒ xʹ=1) ∧ (x≥1 ⇒ tʹ ≤ t + log x) ∧ (x<1 ⇒ tʹ=∞)
It is extremely useful to be able to prove partial properties separately, and specifically
to be able to prove results and timing separately, and then to combine them for free.

Although I am content to form loops without any loop syntax and without any
theory that pertains to loops, apparently some people feel the need for loop syntax
and theory. So UTP provides the syntax b*P . All we need to say about it is that

S ⇐ b*P
is syntactic sugar for

S ⇐ (P; S) ! b " II
We do not attribute any meaning to b*P , but only to the refinement S ⇐ b*P .
We do not need a limit of a sequence of approximations. We do not need least
fixpoints. If we want to know about time (including termination), we add a time
variable, but we don't have to complicate the semantics of loops.

Eric Hehner 2006-2-59

My example recursive refinement has the form of a * loop, but recursive
refinement works for any loop structure, including loops with intermediate exits and
deep exits, and for general recursion, not just tail recursion (see [5]).

4 What can we prove about loops?

The two traditional ways of defining loop semantics (limit of a sequence of
approximations, least fixpoint) for “total correctness” are too complicated to be used
in proofs, and in practice they never are used. Instead, those who use formal
methods split the problem into a “partial correctness” proof and a termination
argument. “Partial correctness” of

(x≥1 ⇒ xʹ=1) ⇐ (x≠1) * (x:= x div 2; x≥1 ⇒ xʹ=1)
is exactly

(x≥1 ⇒ xʹ=1) ⇐ (x:= x div 2; x≥1 ⇒ xʹ=1) ! x≠1 " II
For termination they use a “variant” or “bound function” or “well-founded set”. In
this example, they show that for x>1 , x is decreased but not below 0 by the body
x:= x div 2 of the loop. The variant is again time in disguise; they are showing that
the execution time is bounded by x in the measure that counts iterations. Then they
throw away the bound, retaining only the one bit of information that there is a bound,
and hence termination. In the example, this corresponds to a proof of

(x≥1 ⇒ tʹ≤t+x) ⇐ (x:= x div 2; t:= t+1; x≥1 ⇒ tʹ≤t+x) ! x≠1 " II
This linear time bound is rather loose; for about the same effort we prove a
logarithmic time bound. And in exactly the same way, we prove nontermination
when x<1 . More generally, we can prove useful lower time bounds; we are not
limited to the existence of an upper bound, which is what “total correctness”
provides.

A “total correctness” semantics makes the proof of invariance properties
difficult, or even impossible. For example, we cannot prove

xʹ≥x ⇐ b * (xʹ≥x)
which says, quite reasonably, that if the body of a loop doesn't decrease x , then the
loop doesn't decrease x . The problem is that the semantics does not allow us to
separate such invariance properties from the question of termination. If, in place of
the above, we write

xʹ≥x ⇐ (xʹ≥x; t:= t+1; xʹ≥x) ! b " II
as I advocate, then the proof of the invariance property is easy.

2006-2-5 Retrospective and Prospective for Unifying Theories of Programming 10

5 What can we prove about infinite loops?

What can we prove about an infinite loop? According to the least fixpoint semantics,
nothing. According to that semantics, true*P is equivalent to true , which is
completely arbitrary behavior. It does not imply ¬okʹ ; the behavior may be
nonterminating, or terminating. If we add a time variable, we cannot prove tʹ=t+∞ .
If the body of the loop includes communications (interactions), we cannot prove they
happen. My way, to prove S , we must prove

S ⇐ (P; t:= t+1; S) ! true " II
or more simply

S ⇐ (P; t:= t+1; S)
(which is what I would write in the first place). Taking II as body for the moment,
we cannot prove tʹ≤t+n for finite n ; that would require proving

tʹ≤t+n ⇐ tʹ≤t+1+n
which is not so. But we can prove tʹ>t+n . We can also prove tʹ=t+∞ ; that requires
proving

tʹ=t+∞ ⇐ tʹ=t+1+∞
and since, in my algebra, ∞ absorbs finite additions (∞ is a fixpoint of tick), that
refinement is a theorem. If the body of the loop includes communications, we can
prove that they do indeed happen.

A specification S is implementable (in UTP terminology, “healthy”) if and only
if for all initial states (including time) there is a final state (including time) that
satisfies the specification with nondecreasing time (and non-undoable
communications, but I'll omit that for now):

∀σ· ∃σʹ· S ∧ tʹ≥t
Refinement by a program is proof of implementability. For recursive refinement, we
need to know separately that the specification is implementable. Although

false ⇐ (P; t:= t+1; false)
is a theorem, we reject false because it is unimplementable; we have not
implemented a miracle.

Disturbingly, we can prove both of the implementable specifications xʹ=2 and
xʹ=3 . Both

xʹ=2 ⇐ (t:= t+1; xʹ=2)
xʹ=3 ⇐ (t:= t+1; xʹ=3)

are theorems. There is no inconsistency here. My theory of programming is sound
in the following sense: if S is an implementable specification, and F is a program
(possibly with call sites), and we can prove the refinement S ⇐ F(S) , then no

Eric Hehner 2006-2-511

observation of the corresponding computation will ever contradict S . The point is
that observations are made at finite times, whereas the results xʹ=2 and xʹ=3
happen at time ∞ (never). For exactly the same reason, we can prove both

¬okʹ ⇐ (t:= t+1; ¬okʹ)
okʹ ⇐ (t:= t+1; okʹ)

If this is at first disturbing, consider it the price to pay for the ability to prove results
and timing separately, and combine them for free.

Perhaps more disturbingly, we can also prove
t<∞ ⇒ tʹ<∞ ⇐ (t:= t+1; t<∞ ⇒ tʹ<∞)

which seems to say that if the computation starts at a finite time, it will end at a finite
time. But without a time bound, the specification offers no opportunity for complaint
that the computation is taking too long. The theory should allow, and does allow, any
computation whose observation does not contradict the specification.

The theory is incomplete in the following sense. Even if S is an implementable
specification, and observations of the computation(s) corresponding to S ⇐ F(S)
never (in finite time) contradict S , the refinement might not be provable. But in that
case, there is another implementable specification R such that the refinements
S ⇐ R and R ⇐ F(R) are both provable. In that weaker sense, the theory is
complete. There cannot be a theory of programming that is both sound and complete
in the stronger sense.

6 the Problem with Halting

The halting function (predicate) is defined to tell whether a program's execution
terminates. I will make two simplifications to the standard formulation, neither of
which changes anything essential. We need to encode programs as data so we can
apply the halting function to something that represents a program. In the standard
formulation, programs are numbered, so we can apply the halting function to a
number representing a program. Instead, I use a more transparent encoding: a
program is represented by its text (character string). (That is how a program is
presented to a compiler or interpreter.) The other simplification is to eliminate all
mention of initial state (input). One way to do that is to define the halting function
applied to program text p as saying whether “ p halts from all initial states” or “ p
fails to halt on some initial state”. Another way to do it is to pick some initial state as
the one where execution of any program always starts; if you want some other initial
state, just start the program with some initializing assignments to create the state you

2006-2-5 Retrospective and Prospective for Unifying Theories of Programming 12

want. Define predicate H: 𝕋→𝔹 , where 𝕋 is the text data type and 𝔹 is the
boolean data type, so that

H(“II”) = true
H(“true*II”) = false

and so on. Define text P as follows:
P = “(true*II) ! H(P) " II”

If we assume H is a functional program, then P represents a program. Now we
ask: what is the result of H(P) ? If the execution of P terminates, then H(P) is
true , and P represents a program that is equivalent to true*II , so execution of P
does not terminate. And if the execution of P does not terminate, then H(P) is
false , and P represents a program that is equivalent to II , and so execution of P
does terminate. Conclusion: H cannot be a program; it's an incomputable function.
That's the orthodox argument, and the orthodox conclusion, first made by Turing, and
now found in many textbooks.

In UTP, programs are a special case of specification, so let me generalize H to
apply to all specification texts, not just to program texts. In particular,

H(“okʹ ”) = true
H(“¬okʹ ”) = false

And this time, we don't make any assumption that H is a functional program
(computable function). Define specification text S as follows:

S = “¬okʹ ! H(S) " okʹ ”
Now we ask: what is the result of H(S) ? If S specifies terminating behavior, then
H(S) is true , and so S specifies nonterminating behavior. And if S specifies
nonterminating behavior, then H(S) is false , and so S specifies terminating
behavior. What do you conclude from that?

This argument about specifications has exactly the same form as the orthodox
argument about programs. Both arrive at a self contradiction. We look for a way out
by looking for an assumption that was wrong. In the argument about programs, the
assumption was made that H is a program, so we withdrew that assumption. But
from the argument about specifications, we see that the problem is still there, even
without that assumption.

My conclusion is that we cannot consistently say the sentence “ H tells us, for
all specification texts s , whether s specifies terminating behavior.”. The
inconsistency is not immediately apparent, but the above argument shows us that it's
there. This is similar to saying that the sentence “The barber, who is a man, shaves
all and only the men in his town who do not shave themselves.” is not obviously self-
contradictory, but a short proof or argument shows it to be so. And from the first

Eric Hehner 2006-2-513

version of the story about H applied to program codes, I do not conclude that H is
a perfectly well defined but incomputable function; I conclude there also that there is
an inconsistency in the definition of H .

Let me try to make the inconsistency in the definition of H more apparent.
Within S , H(S) and okʹ have the same rôle. So S represents

¬okʹ ! okʹ " okʹ
which says, as directly as possible, that if execution terminates, then it doesn't
terminate, and if it doesn't terminate then it does. There is nothing wrong with
having a primed variable between the conditional triangles; for example, the
specification

xʹ=2 ! even(xʹ) " xʹ=3
says quite reasonably that if the final value of x is even, then it should be 2 , and if
odd it should be 3 ; it is equivalent to xʹ=2 ∨ xʹ=3 . However, the specification
¬okʹ ! okʹ " okʹ is equivalent to false (independent of the interpretation of okʹ),
so it is unimplementable (unhealthy). We are asking H to tell us the termination
status of an unimplementable specification.

Returning to the “program” example
P = “(true*II) ! H(P) " II”

is P an implementable specification? If we assume it is, then it might seem
reasonable to ask H about its termination status (without any assumption that H is
computable), and we are led into the same contradiction as before. If we assume it
isn't and don't ask H about its termination status, we lose the very specification we
were using to demonstrate that H is incomputable.

The problem with H doesn't stop there. If we could define H consistently on
just the implementable specifications, then we could consistently extend its definition
to all specifications by, for example, saying H(s)=false for all unimplementable
specifications s . If P is unimplementable, then P is equivalent to II , which is
implementable. There is no way out.

The situation is exactly the same as for an interpreter of boolean expressions
(also known as a prover). Suppose we try to define I: 𝕋→𝔹 so that, when we apply
I to a text representing a boolean expression, we get the result of evaluating the
boolean expression. Now define

Q = “false ! I(Q) " true”
or instead, to simplify, define

Q = “¬I(Q)”
Applying I to Q yields inconsistency. This is exactly Gödel's incompleteness
theorem: Q is saying that Q is not a theorem. Either we leave I incompletely

2006-2-5 Retrospective and Prospective for Unifying Theories of Programming 14

defined (specifically, it does not interpret Q), or we suffer inconsistency. (I note
with some irony that an interpreter is a meaning function, which I began this paper
by eliminating!)

Wait a minute: there is a way out. Interpreter I is a program, and H is just a
simplification of I : I tells us the result of evaluating, and H just tells us whether
there is a result. So H really is a program. Applying H to P and to S results in
an infinite loop (as does application of I to Q). We could say that H does deliver
a result for P and for S , and I does deliver a result for Q , but only at time ∞ .
The “incomputable” function H is nothing but a program whose execution, for some
input, is nonterminating. Such programs are common, and some of them are useful.
This way out is a great mathematical simplification.

7 the Problem with Vacuum Cleaners

Here's a “proof” that a vacuum cleaner is unbuildable. If you could build one, then
you could use it to clean out its own bag. But that's a self contradiction (making the
bag empty makes the bag full, and vice versa), so a vacuum cleaner is unbuildable.

The “proof” that a vacuum cleaner is unbuildable is like the “proof” that the
halting function is incomputable in the following ways. It accepts without question
that a vacuum cleaner is at least a meaningful, consistent concept, just as the standard
incomputability proof accepts without question that a halting function is at least a
meaningful, consistent concept. Then the vacuum cleaner is applied to itself, just as
the halting function is applied to itself. And, most importantly, time is not considered
in the argument: in each case, there is no static solution, so we have inconsistency.
To restore consistency, we seem to have three options.

The first option, à la Turing, is to remain steadfast in the belief that the vacuum
cleaner and halting function are at least meaningful (consistent) concepts, but to label
them as “unbuildable” and “incomputable” respectively. That withdraws an
assumption made in the argument, but it was an irrelevant assumption. If you could
just specify (never mind build) a vacuum cleaner, you arrive at the same
contradiction. If you could just specify (never mind compute) the halting function,
you arrive at the same contradiction. This option is not a way out. Neither
“unbuildability” nor “incomputability” serve the purpose for which they were
invented: to restore consistency.

The second option, à la Gödel, is to say that the definition of a vacuum cleaner,
and the definition of the halting function, are inconsistent unless we leave them

Eric Hehner 2006-2-515

incomplete, and we do not apply them to the example that gives rise to the
contradiction.

The third option is to add a time variable. Then we can ask what really does
happen (over time) if we apply them to the troublesome examples. A vacuum cleaner
really is buildable, and the halting function really is programmable. What really
happens if someone uses a vacuum cleaner to clean out its own bag is that they create
an infinite loop, blowing dirt forever around a circular hose. But that's not an
inconsistency. Indeed, there are physical systems built intentionally as infinite loops;
for example, pumping electrons around a circuit, doing useful work as they go.
Likewise, applying the halting function to its troublesome example is an infinite
computation, not a self contradiction.

A simpler, but maybe less visual, example, is the problem of the NOT gate. If
we could build one, then we could use it in a closed circuit that includes just one
NOT gate, and nothing else. If we ignore time, we find an inconsistency: assuming
either final state of the circuit leads to a contradiction. The inconsistency is not
eliminated by labeling NOT gates “unbuildable” or “incomputable”. The problem is
eliminated if we outlaw this particular use (and all similar uses) of the NOT gate.
But the best solution is to admit that a NOT gate takes time; we look at the circuit's
behavior over time, and we do not worry about what its final state might be. It is a
useful circuit called an oscillator. (A practical oscillator is more complicated, but at
its heart there is a NOT gate in a loop.)

8 What is a time bound?

I have argued that a claim of termination should be accompanied by a time bound.
Now I ask: what is acceptable as a time bound?

Finding the execution time of any program can always be done by transforming
the program into a function that expresses the execution time. To illustrate how, let
us again look at the example

(n≠1) * (n:= n div 2)
in natural variable n . The first step in expressing the execution time is, not
surprisingly, to get rid of the loop notation in favor of recursive refinement.

nʹ=1 ⇐ II ! n=1 " (n:= n div 2; nʹ=1)
The next step is to add a time variable, and choose a timing policy. We express the
execution time as f(n) , where function f must satisfy

tʹ=t+f(n) ⇐ II ! n=1 " (n:= n div 2; t:= t+1; tʹ=t+f(n))

2006-2-5 Retrospective and Prospective for Unifying Theories of Programming 16

which can be simplified to
f(n) = 0 ! n=1 " (1 + f (n div 2))

From this recursive definition of f , we see
f(1) = 0
f(2) = 1 + f(1) = 1
f(3) = 1 + f(1) = 1
f(4) = 1 + f(2) = 2

and so on. We also see
f(0) = 1 + f(0)

which has no finite solution, but according to my axioms for numbers [5], it has
solution ∞ (because ∞ absorbs finite additions). This is exactly the right answer
for how long the computation takes when n is 0 . It would have been a duplication
of effort to worry first about termination before calculating execution time.

Now consider this famous program whose execution time is considered to be
unknown:

(n≠1) * ((n:= n/2) ! even(n) " (n:= 3×n + 1))
where n is a natural variable. It is not even known whether the execution time is
finite for all n>0 . Following the same steps as before, we find

f(n) = 0 ! n=1 " ((1 + f (n/2)) ! even(n) " (1 + f (3×n + 1)))
or, more readably,

f(n) = if n=1 then 0
else if even(n) then 1 + f (n/2)
else 1 + f (3×n + 1)

Thus we have an exact definition of the execution time. So why is the execution time
considered to be unknown?

If the execution time of some program is n2 , we consider that the execution
time of that program is known. Why is n2 accepted as a time bound, and f(n) as
defined above not accepted? The reason is not that f is defined recursively; the
square function is defined in terms of multiplication, and multiplication is defined
recursively. The reason cannot be that n2 is well behaved (finite, monotonic, and
smooth), while f jumps around wildly and might sometimes be infinite-valued;
every jump and change of value in f is there to fit the original program's execution
time perfectly, and we shouldn't disqualify f because it is a perfect bound. One
might propose the length of time it takes to compute the time bound as a reason to
reject f . Since it takes exactly as long to compute the time bound f(n) as to run the
program, we might as well just run the original program and look at our watch and

Eric Hehner 2006-2-517

say that's the time bound. But log log n is accepted as a time bound even though it
takes longer than log log n to compute log log n .

Could the reason be that function f is unfamiliar? that it has not been well
studied and we don't know much about it? If it were as well studied and familiar as
square, would we accept it as a time bound?

Consider the linear search program to find the first occurrence of a given item x
in a given list L , and report its position as the final value of variable h . Suppose
that L is infinitely long, and we are told that there is at least one occurrence of x in
the list. We can prove that the execution time (counting iterations) is hʹ .

tʹ=t+hʹ ⇐ h:= 0; tʹ=t+hʹ–h
 tʹ=t+hʹ–h ⇐ II ! Lh=x " (h:= h+1; t:= t+1; tʹ=t+hʹ–h)
Is this acceptable as a time bound? It gives us no indication of how long to wait for a
result. On the other hand, there is nothing more to say about the execution time. The
defect is in the given information: that x occurs somewhere, with no indication
where.

9 Conclusion

When I began programming, I put my program, punched onto a deck of cards, in the
“in” basket; hours later, the computer operator fed it into the computer, and put the
output in the “out” basket, where I retrieved it. Computing involved an initial input
and a final output, with no possibility of interaction. A “total correctness” theory is
based on this out-of-date paradigm: without interaction, termination is essential.
With the addition of interactive communication, nonterminating computations can be
useful, so a semantics that does not insist on termination is useful. Furthermore, for
some programs, for some inputs, we might well want to guarantee nontermination,
which a “total correctness” formalism does not do. The operating system, even when
I began programming, was an interacting, nonterminating computation. These days,
every program I use terminates its execution when I click on “quit”. Of course, each
response to me must be a terminating computation; more than that, each response
must come within the limit of my patience.

Throughout this paper, I have used annoying quotation marks around “total
correctness” in order to provide some protection against the appeal of the phrase. It
sounds like something very desirable, but it's a bad deal. It requires a complicated
semantics of loops (either limit of a sequence of approximations, or least fixpoint)
that is not easily used in proofs. To prove termination, you must do all the work of

2006-2-5 Retrospective and Prospective for Unifying Theories of Programming 18

finding time bounds, but without the reward. And you must prove termination before
you can conclude anything about results or time bounds. And when you have proven
termination, you have proven something worthless, because no observation of a
computation can falsify it (nontermination is unobservable). It is time to retire the
concept of “total correctness”, and to terminate our obsession with termination.

10 References

0 R.-J.R.Back, J.vonWright: Refinement Calculus: a Systematic Introduction,
Springer, 1998

1 P.Caspi, N.Halbwachs, D.Pilaud, J.A.Plaice: LUSTRE: a Declarative Language
for Programming Synchronous Systems, 14th ACM Symposium on Principles of
Programming Languages p.178-189, 1987

2 E.W.Dijkstra: a Discipline of Programming, Prentice-Hall, 1976
3 I.J.Hayes: Reasoning about Real-Time Repetitions, Terminating and

Nonterminating, Science of Computer Programming v.43 n.2-3 p.161-192, 2002
4 E.C.R.Hehner, A.M.Gravell: Refinement Semantics and Loop Rules, FM'99

World Congress on Formal Methods, Toulouse, LNCS 1709 p.1497-1510, 1999
5 E.C.R.Hehner: a Practical Theory of Programming, first edition Springer 1993,

current edition www.cs.utoronto.ca/~hehner/aPToP
6 E.C.R.Hehner: Probabilistic Predicative Programming, Mathematics of Program

Construction, Stirling Scotland, 2004 July 12-14, and Springer LNCS v.3125
p.169-185, 2004

7 E.C.R.Hehner: Specifications, Programs, and Total Correctness, Science of
Computer Programming, v.34 p.191-205, 1999

8 E.C.R.Hehner: Termination is Timing, International Conference on Mathematics
of Program Construction, Enschede, The Netherlands, 1989 June (opening
address, invited); chapter in van de Snepscheut(ed.): Mathematics of Program
Construction, Springer LNCS v.375 p.36-47, 1989

9 E.C.R.Hehner: Real-Time Programming, Information Processing Letters v.30
p.51-56, 1989 January 16

10 E.C.R.Hehner, A.J.Malton: Termination Conventions and Comparative
Semantics, Acta Informatica v.25 n.1 p.1-14, 1988 January

11 E.C.R.Hehner: Predicative Programming, Communications ACM v.27 n.2
p.134-151, 1984 February

Eric Hehner 2006-2-519

12 E.C.R.Hehner: the Logic of Programming, Prentice-Hall International Series in
Computer Science (ed. C.A.R.Hoare), London, 1984

13 E.C.R.Hehner, C.A.R.Hoare: a More Complete Model of Communicating
Processes, University of Toronto Technical Report CSRG-134, 1981 September,
and Theoretical Computer Science v.26 p.105-120, 1983 September

14 E.C.R.Hehner: do considered od: a Contribution to the Programming Calculus,
University of Toronto Technical Report CSRG-75, 1976 November, and Acta
Informatica v.11 p.287-304, 1979

15 C.A.R.Hoare, J.He: Unifying Theories of Programming, Prentice-Hall
International Series in Computer Science (ed. C.A.R.Hoare), London, 1998

16 C.A.R.Hoare: “an Axiomatic Basis for Computer Programming”,
Communications ACM v.12 n.10 p.576-580, 583, 1969 October

17 C.A.R.Hoare: “Proof of Correctness of Data Representations”, Acta Informatica
v.1 n.4 p.271-282, 1972

18 C.C.Morgan, A.K.McIver, K.Seidel, J.W.Sanders: “Probabilistic Predicate
Transformers”, ACM Transactions on Programming Languages and Systems
v.18 n.3 p.325-353, 1996 May

