
Modal Design Algebra

Walter Guttmann1 and Bernhard Möller2

1 Abteilung Programmiermethodik und Compilerbau, Fakultät für Informatik,
Universität Ulm, D-89069 Ulm, Germany

walter.guttmann@uni-ulm.de
2 Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany

moeller@informatik.uni-augsburg.de

Abstract. We give an algebraic model of the designs of UTP based on
a variant of modal semirings, hence generalising the original relational
model. This is intended to exhibit more clearly the algebraic principles
behind UTP and to provide deeper insight into the general properties of
designs, the program and specification operators, and refinement. More-
over, we set up a formal connection with general and total correctness of
programs as discussed by a number of authors. Finally we show that the
designs form a left semiring and even a Kleene and omega algebra. This
is used to calculate closed expressions for the least and greatest fixed-
point semantics of the demonic while loop that are simpler than the ones
obtained from standard UTP theory and previous algebraic approaches.

1 Introduction

The Unifying Theories of Programming (UTP), developed in [13], model the
termination behaviour of programs using two special variables ok and ok ′ that
express whether a program has been started and has terminated, respectively.
Specifications and programs are identified with predicates relating the initial
values v of variables to their final values v′; moreover, ok and ok ′ may occur
freely in predicates. Using these variables, Hoare and He introduce a special
class of predicates that reflect an assumption/commitment style of specification.
These designs have the form

P ` Q
def⇔ ok ∧ P ⇒ ok ′ ∧ Q ,

with ok and ok ′ not occurring in P or Q. The informal meaning is: if a compu-
tation allowed by the design has started in a state that satisfies the precondition
P it will eventually terminate in a state that satisfies the postcondition Q.

In the general case, UTP allows the precondition P to involve both initial
and final values of the program variables. A subclass that is interesting for a
number of reasons is that of normal designs in which P is a condition, i.e., is only
allowed to depend on input values of variables. Originally [13] these were called
(H3) designs and characterised by a healthiness condition; the term “normal” is
due to [10]. A yet smaller subclass, the feasible or (H4) designs models programs
that cannot “recover” from nontermination.

The aims and results of the present paper are the following:

1. We model normal designs in a more general class of algebras than pure rela-
tion algebra. This is intended to exhibit more clearly the algebraic principles
behind UTP and to provide deeper insight into the general properties of
designs, the program and specification operators, and refinement.

2. We set up a formal connection between UTP and the theories of general
(e.g. [2, 3, 9, 19, 21]) and total (e.g. [1, 5, 6, 8, 20]) correctness of programs
(the latter also being known as demonic semantics).

3. We show that the designs form a left semiring and even a Kleene and omega
algebra. This is used to calculate closed expressions for the least and greatest
fixed-point semantics of the demonic while loop that are simpler than the
ones obtained from standard UTP theory and previous algebraic approaches.

To achieve this we model normal designs as pairs (a, t) where a corresponds
to a state transition relation and condition t characterises the input states from
which termination is guaranteed. The structure from which a and t are taken
is that of an idempotent semiring which is an algebraic abstraction of the basic
operations of choice and sequential composition, as detailed in the next section.

2 The Basis: Choice and Composition

A semiring is a structure (S, +, 0, ·, 1) such that

– (S, +, 0) is a commutative monoid,
– (S, ·, 1) is a monoid,
– operation · distributes over + in both arguments
– and 0 is a left and right annihilator, i.e., 0 · x = 0 = x · 0.

A semiring is idempotent if + is, i.e., if x + x = x. Then + can be interpreted as
(angelic) choice, with 0 modelling the most partial program with no transition
possibilities at all, and · as sequential composition, where 1 models the program
skip. In this case, the relation x ≤ y ⇔ x + y = y is a partial order, called the
natural order on S. It has 0 as its least element. Moreover, + and · are isotone
w.r.t. ≤ and x + y is the least upper bound or join of x and y w.r.t. ≤.

An idempotent semiring is Boolean if it also has a greatest lower-bound or
meet operation ∧, such that + and ∧ distribute over each other, and an operation

that satisfies de Morgan’s laws as well as x∧x = 0 and x + x = >, where
> = 0 is the greatest element. In other words, a Boolean semiring is a Boolean
algebra with a sequential composition operation. To save parentheses we use the
convention that ∧ binds tighter than + but less tight than · does. We use ∧
rather than u for the meet to avoid a clash of notation between semiring theory
and the theory of UTP. To disambiguate the formulas we use a larger ∧ for
meta-logical conjunction.

An important, even Boolean, semiring is REL(M) = P(M ×M), the algebra
of binary relations under union and composition over a set M , of which the
predicates of UTP form a special instance. The greatest element is > = M ×M .
Next to that, we have the Boolean semiring TRC(A) of sets of traces (i.e., finite
strings) over alphabet A under union as + and trace concatenation (i.e., fusion

2

product) as the · operation. TRC(A) is isomorphic to the path algebra described
in detail in [7]; in the present paper it will mainly be used for counterexamples
to properties that hold in REL(M) but not necessarily in general semirings.

3 Modelling Conditions

Elements of REL(M), denoted by predicates relating pre- and post-states, can be
used to describe the input/output behaviour of programs. To keep the framework
uniform one wants to encode also assertions about the program variables, i.e., to
characterise subsets N ⊆ M of states, as special predicates or relations. There
are three basic methods to do this:

1. Use predicates that do not depend on the output values of variables, corre-
sponding to right-universal relations N ×M . In a semiring with > they are
abstractly characterised as right ideals, i.e., as elements a with a ·> = a.

2. Use predicates that do not depend on the input values of variables, corre-
sponding to left-universal relations M × N . In a semiring with > they are
abstractly characterised as left ideals, i.e., as elements a with >· a = a.

3. Use sub-predicates of skip corresponding to partial identity relations of the
form {(s, s) : s ∈ N}. In an idempotent semiring they are abstractly charac-
terised as elements a with a ≤ 1.

Each of these approaches has its advantages and disadvantages. Classical
UTP uses variant 1, while variant 3 is used in test and modal semirings. Since
we are going to import some results from the first framework, we will show some
connections between variants 1 and 3 (we do not need variant 2 in the present
paper, but the treatment for it would be symmetrical).

1. A test semiring [15] is a pair (S, test(S)), where S is an idempotent semiring
and test(S) ⊆ [0, 1] is a Boolean subalgebra of the interval [0, 1] of S such
that 0, 1 ∈ test(S) and join and meet in test(S) coincide with + and · . This
fits well with the notation in switching and lattice theory and is the reason
why + is used for general choice in semiring notation. In general, test(S)
may be a proper subset of the elements below 1 in S. The negation of test p,
i.e., its complement relative to 1 in test(S), is denoted by ¬p. We have the
correspondences false ↔ 0 and true ↔ 1. In a test semiring, for p ∈ test(S)
and a ∈ S, the products p ·a and a ·p are the input and output restrictions of
a to those pre-/post-states that satisfy p. An important example is REL(M)
with the partial identities as tests.

2. A (right) pre-condition-semiring is a pair (S, cond(S)), where S is an idem-
potent semiring with a greatest element > and cond(S) ⊆ S is a Boolean
subalgebra of S with 0,> ∈ cond(S) and such that the join operation in
cond(S) coincides with + and for every element a ∈ S and every condition
t ∈ cond(S) the meet t∧ a, called the input restriction of a by t, exists and
satisfies (t + u)∧ a = (t∧ a) + (u∧ a) as well as t∧(a + b) = t∧ a + t∧ b. We
have the correspondences false ↔ 0 and true ↔ >. The negation of t, i.e.,

3

its complement relative to > in cond(S), is denoted by t. Finally, S is called
a (right) condition semiring if all elements of cond(S) are right ideals. An
example is again REL(M), with the right-universal relations as conditions.

We will use the letters a, b, c, . . . for semiring elements, p, q, r, . . . for tests
and s, t, u, . . . for conditions. It should be noted that 0 and > are always right
(and left) ideals. For 0 this follows from its left annihilation property, while for
> we get, using neutrality of 1 and isotony, > = >·1 ≤ >·> ≤ >, which, together
with antisymmetry of ≤ shows the claim.

In a pre-condition-semiring there is no reasonable definition of output re-
striction. However, as we will see below, for condition semirings there is.

Using input restriction we can define conditionals by setting, respectively,

a � p � b
def= p · a + ¬p · b , a � v � b

def= v ∧ a + v ∧ b .

Moreover, we have the following correspondence for input restriction:

Lemma 3.1. [16] In every test semiring S with greatest element >, for all p ∈
test(S) and a ∈ S the meet p ·>∧ a exists and p · a = p ·>∧ a.

By associativity of · and (p ·>) ·> = p · (>·>) = p ·> the element p ·> is
indeed a right ideal. In fact it is easy to show that the right ideals in a semiring
S with > are exactly the products a ·> for a ∈ S.

Now we look at condition semirings. We obtain the representation

t = (t∧ 1) ·> , (crep)

and t∧ a = (t∧ 1) · a, the analogue of Lemma 3.1, by specialising the

Lemma 3.2. (t∧ a) · b = t∧(a · b) for a condition t.

Proof. (≤) By isotony, (t∧ a) · b ≤ a · b and (t∧ a) · b ≤ t · b ≤ t · > = t since, as
a condition, t is a right ideal.
(≥) By Boolean algebra and the first inequality, t∧(a ·b) = t∧((t∧ a) ·b+(t∧ a) ·
b) ≤ t∧((t∧ a) · b + t∧(a · b)) = t∧((t∧ a) · b) ≤ (t∧ a) · b. ut

Corollary 3.3. In a condition semiring, t∧ 1 ≤ u∧ 1 ⇔ t ≤ u.

Proof. (⇐) follows by isotony of meet.
(⇒) t =

(crep)
(t∧ 1) ·> ≤

(assump., isot.)
(u∧ 1) ·> =

(crep)
u. ut

So cond(S) and the set CS(S) def= {t∧ 1 : t ∈ cond(S)} of condition subiden-
tities are order-isomorphic. Hence also CS(S) is a Boolean algebra with

t∧ 1 + u∧ 1 = (t + u)∧ 1 ,
(t∧ 1)∧(u∧ 1) = (t∧ 1) · (u∧ 1) ,

¬(t∧ 1) = t∧ 1 .

Altogether we have the

4

Corollary 3.4. Every condition semiring S can be made into a test semiring
by setting test(S) def= CS(S) and choosing the operations as above.

By these results, in a condition semiring we can define the output restriction
of a by t as a · (t∧ 1).

4 Domain and Modal Operators

The domain of a semiring element a is intended to characterise the set of possible
input states of a, i.e., the states from which corresponding output states may be
reached under a. Again, such sets can be modelled by tests or by conditions.

A simple equational axiomatisation for the case of test semirings has been
presented in [7]. We give a corresponding axiomatisation for the case of pre-
condition-semirings here. Both cases are compared side-by-side in [12].

The domain operation pp : S → cond(S) has the axioms

a ≤ ppa∧ a (cd1)
pp(t∧ a) ≤ t (cd2)

pp(a · (ppb∧ 1)) ≤ pp(a · b) (cd3)

Actually, (cd1) and (cd3) can be strengthened to equations (see Lemma 4.1
below). By reasoning as in [7] we obtain that (cd1) ∧ (cd2) is equivalent to

ppa ≤ t ⇔ a ≤ t∧ a ⇔ a ≤ t . (GCc)

This property has the form of a Galois connection that corresponds to the one for
test semirings with > (see [7] for details). Moreover, by shunting, (cd1) ∧ (cd2)
is equivalent to ppa ≤ t ⇔ t ∧ a ≤ 0. By the Galois connection, the domain
operation is unique if it exists. Moreover, one obtains the following consequences.

Lemma 4.1.

1. ppa ≤ 0 ⇔ a ≤ 0 , 6. a = ppa∧ a ,
2. pp(a + b) = ppa + ppb , 7. pp(t∧ a) = t∧ppa ,
3. a ≤ b ⇒ ppa ≤ ppb , 8. pp(a · b) ≤ pp(a · ppb) ,
4. ppt = t , 9. pp(a ·>) = ppa ⇔ ppb = ppb ·> ,
5. pp(ppa) = ppa , 10. pp(a · b) ≤ ppa ⇔ ppc = ppc ·> .

Of these, properties 9. and 10. again show the special importance of using con-
dition semirings rather than pre-condition-semirings. See [12] for the proofs.

By 9. and (crep), in a condition semiring the third axiom simplifies to

pp(a · ppb) ≤ pp(a · b) . (cd3)

Moreover, we have pp1 =
9.

pp(1 ·>) = pp> =
4.
>.

Now we make the connection with the relational case more explicit. Call a
semiring S with > ideal-closed, briefly id-closed, if its set RI(S) of right ideals is
a Boolean algebra. The relation semiring REL(M) is id-closed whereas the trace
semiring TRC(A) is not.

5

Lemma 4.2.

1. Consider an id-closed semiring S. Then the pair (S, RI(S)) can uniquely be
made into a domain semiring by setting ppa

def= a · >.
2. In this case we have ppa · > = a · >.

Proof. 1. We show that pp satisfies the domain axioms.
(cd1) ppa∧ a = a, since a = a · 1 ≤ a · >.
(cd2) pp(t∧ a) =

(def.)
(t∧ a) ·> =

(Lemma 3.2)
t∧ a ·> ≤ t.

(cd3) pp(a · ppb) =
(def., assoc.)

a · b ·> ·> = a · b ·> =
(def.)

pp(a · b).

2. ppa · > = a · > · > = a · >. ut

Based on domain we can define forward modal operators by

〈〈a〉〉t def= pp(a · t) , [[a]]t def= 〈〈a〉〉t .

Thus 〈〈a〉〉t and [[a]]t characterise those states for which some and all a-successor
states satisfy t, respectively; [[a]]t is the abstract counterpart of the wlp operator
[19]. The special case corresponding to REL(M) is immediate from Lemma 4.2:

Corollary 4.3. Over an id-closed semiring 〈〈a〉〉t = a · t and [[a]]t = a · t.

From the general definitions it straightforward to prove the following prop-
erties.

〈〈a〉〉0 =0 , [[a]]>=> ,
〈〈0〉〉t =0 , [[0]]t => ,

〈〈a〉〉(t + u) = 〈〈a〉〉t + 〈〈a〉〉u , [[a]](t∧u) = [[a]]t∧ [[a]]u ,
〈〈a + b〉〉t = 〈〈a〉〉t + 〈〈b〉〉t , [[a + b]]t = [[a]]t∧ [[b]]t ,
〈〈t∧ a〉〉u = t∧〈〈a〉〉u , [[t∧ a]]u = t + [[a]]u ,

〈〈1〉〉t = t , [[1]]t = t ,
〈〈a · b〉〉t = 〈〈a〉〉〈〈b〉〉t , [[a · b]]t = [[a]][[b]]t .

Hence 〈〈a〉〉 and [[a]] are isotone. Moreover, the diamond is isotone and the box is
antitone in its first argument, respectively.

Because of the importance of modal operators, we call a test or condition
semiring with domain modal.

5 Designs, Commands and Correctness

To stay in line with the treatment in [13], we now restrict ourselves to modelling
sets of states by conditions rather than tests. Assume a modal condition semiring
S. As mentioned in the introduction, then the set of commands [19, 18] over S

is COM(S) def= S × cond(S). In a command (a, t) the element a ∈ S describes
the state transition behaviour and t ∈ cond(S) characterises the states with
guaranteed termination; all states characterised by t have the “result” of looping
besides any proper states that may be reached from them under a. The command

6

(a, t) is synonymous both for the normal designs t ` a of [13] and the normal
prescriptions t `̀ a of Dunne [10]. The difference is reflected in the refinement
relations on commands that will be detailed below. The following definitions and
properties are adaptations of the corresponding ones in [18].

In the command view the weakest (liberal) precondition can be defined as

wlp.(a, t).u def= [[a]]u , wp.(a, t).u def= t∧ wlp.(a, t).u .

This implies Nelson’s pairing condition for commands k:

wp.k.u = wp.k.>∧ wlp.k.u .

An important auxiliary concept is the guard of a command:

grd.(a, t) def= wp.(a, t).0 = t + ppa .

It characterises the set of states that, if non-diverging, allow a transition under
a. A command is called total if its guard equals top. The above formula links
Parnas’s condition [21] on termination constraints with totality:

grd.(a, t) = > ⇔ t ≤ ppa .

We will shortly see that this condition characterises exactly the feasible nor-
mal designs. Nelson remarks that totality of command k is also equivalent to
Dijkstra’s law wp.k.0 = 0 of the excluded miracle.

The basic non-iterative commands are defined as

fail
def= (0,>) , skip

def= (1,>) , loop
def= (0, 0) ,

(a, t) dc(b, u) def= (a + b, t∧u) , (a, t) ; (b, u) def= (a · b, t∧ [[a]]u) .

Here t∧ [[a]]u characterises those states for which a is guaranteed to terminate
and which under a only lead to guaranteed termination states of b.

The commands form a left semiring, i.e., satisfy all semiring laws except for
the right annihilation law for the zero element fail.

Theorem 5.1. The structure COM(S) def= (COM(S), dc, fail, ;, skip) is an idem-
potent left semiring. The associated natural order on COM(S) is

(a, t) ≤ (b, u) ⇔ a ≤ b ∧ t ≥ u .

The proof, which is a mere transliteration of the corresponding one in [18] for
the test semiring case, can be found in [12]. It is essential that semiring S be a
semiring and not only a left semiring. The natural order between commands is
used in [10]. Its drawback is that it cannot be used as the approximation order
for fixpoint semantics; for details see again [18].

By standard order theory, if S is a complete lattice with cond(S) as a complete
sublattice then COM(S) is again a complete lattice with, for arbitrary I,

t {(ai, pi) : i ∈ I} = (t {ai : i ∈ I},u {ai : i ∈ I}).

7

Likewise, chaos
def= (>, 0) is the greatest element of COM(S), whereas havoc

def=
(>,>) represents the most nondeterministic everywhere terminating program.

As in [13] we say that command k is (H4) or feasible iff k ; loop = loop. One
calculates, using [[a]]0 = ppa and semiring properties,

(a, t) ; loop = (a · 0, t∧ [[a]]0) = (0, t∧ ppa) .

Corollary 5.2. Command (a, t) is feasible iff t ≤ ppa.

Therefore loop, skip, havoc and chaos are feasible, whereas fail is not. More-
over, dc and ; preserve feasibility.

6 Refinement

Let us now look more closely at the natural order induced on the commands by
the left semiring structure. By antitony of box we obtain for commands k, l

k ≤ l ⇒ wlp.k ≥ wlp.l ∧ wp.k ≥ wp.l ,

where on the right hand side ≥ is the pointwise order between condition trans-
formers. The second conjunct is the converse of the usual refinement relation.
For it we calculate

wp.(a, t).v ≥ wp.(b, u).v
⇔ {[definition]}

t∧ [[a]]v ≥ u∧ [[b]]v
⇔ {[universal property of meet]}

t ≥ u∧ [[b]]v ∧ [[a]]v ≥ u∧ [[b]]v
⇔ {[shunting in right conjunct]}

t ≥ u∧ [[b]]v ∧ 〈〈b〉〉v ≥ u∧〈〈a〉〉v
⇔ {[diamond law]}

t ≥ u∧ [[b]]v ∧ 〈〈b〉〉v ≥ 〈〈u∧ a〉〉v
⇐ {[isotony]}

t ≥ u ∧ b ≥ u∧ a .

We use the latter formula as the refinement relation between commands:

(a, t) v (b, u) def⇔ u ≤ t ∧ u∧ a ≤ b .

Due to our generalised setting we only have k v l ⇒ wp.k ≥ wp.l. Equiv-
alence holds if the underlying modal condition semiring S is extensional, i.e, if
〈〈a〉〉 ≤ 〈〈b〉〉 ⇒ a ≤ b (the converse implication holds by isotony). For instance,
REL(M) is extensional, whereas TRC(A) is not.

Unlike≤ the relationv is only a preorder with associated equivalence relation

k ≡ l
def⇔ k v l ∧ l v k .

8

Componentwise, this works out as (a, t) ≡ (b, u) ⇔ t = u ∧ t∧ a ≤ b ∧ t∧ b ≤
a , which further simplifies to

(a, t) ≡ (b, u) ⇔ t = u ∧ t∧ a = t∧ b . (eqc)

This agrees with the behaviour of designs described in [13]. For instance,

(t∧ a, t) ≡ (a, t) ≡ (t + a, t) .

Our relations between commands are put into perspective by

Lemma 6.1.

1. k ≤ l ⇒ k v l ⇒ wp.k ≥ wp.l.
2. k v l ⇔ k dc l ≡ l.

Proof. 1. (a, t) ≤ (b, u) ⇔ u ≤ t ∧ a ≤ b ⇒ u ≤ t ∧ u∧ a ≤ b ⇔ (a, t) v
(b, u).
The second implication has been shown above.

2. By (eqc) and lattice algebra, (a, t) dc(b, u) ≡ (b, u) ⇔ (a+b, t∧u) ≡ (b, u) ⇔
t∧u = u ∧ u∧(a + b) = u∧ b ⇔ u ≤ t ∧ u∧ a + u∧ b = u∧ b ⇔
u ≤ t ∧ u∧ a ≤ u∧ b ⇔ u ≤ t ∧ u∧ a ≤ b ⇔ (a, t) v (b, u). ut

This lemma explains our choice for the direction of the v relation; in many
texts on refinement it is used the other way around.

For calculations to work smoothly the following property is important:

Lemma 6.2.

1. The operations dc and ; on commands are v-isotone.
2. The equivalence ≡ is a congruence w.r.t. dc and ;.

Proof.

1. Assume (a, t) v (b, u), i.e., u ≤ t ∧ u∧ a ≤ b.
For dc we obtain from the definitions and the universal property of meet

(a, t) dc(c, v) v (b, u) dc(c, v) ⇔
u∧ v ≤ t∧ v ∧ u∧ v ∧ a ≤ b + c ∧ u∧ v ∧ c ≤ b + c ,

and by isotony all three conjuncts are implied by the assumption. Commu-
tativity of dc shows v-isotony in its second argument.
For the first argument of ; we obtain from the definitions and the universal
property of meet

(a, t) ; (c, v) v (b, u) ; (c, v) ⇔
u∧ [[b]]v ≤ t ∧ u∧ [[b]]v ≤ [[a]]v ∧ u∧ [[b]]v ∧ a · c ≤ b · c .

The first conjunct is implied by the assumption u ≤ t. The second one
transforms by shunting into [[b]]v ≤ u + [[a]]v = [[u∧ a]]v, which follows from

9

the assumption u∧ a ≤ b and antitony of box. The third one transforms by
Lemma 3.2 into [[b]]v ∧(u∧ a) · c ≤ b · c, which follows again from u∧ a ≤ b
and isotony of composition.
For the second argument of ; we obtain from the definitions

(c, v) ; (a, t) v (c, v) ; (b, u) ⇔ v ∧ [[c]]u ≤ v ∧ [[c]]t ∧ v ∧ [[c]]u∧ c · a ≤ c · b .

The first conjunct is implied by the assumption u ≤ t and isotony of [[c]].
The second one follows by shunting from c · a ≤ c · b + pp(c · u) which follows
from the assumption a ≤ b + u and isotony of composition and domain.

2. Immediate from 1. ut
Finally we look at the lattice structure of commands under v. Note that join

and meet can also be defined for preorders; they enjoy all the usual properties
except that they are unique only up to the associated equivalence relation.

Lemma 6.3.

1. The join of commands (a, t) and (b, u) w.r.t. v is

(a, t) t (b, u) = (a + b, t∧u) = (a, t) dc(b, u) .

2. If the meet a∧ b exists then so does the meet of (a, t) and (b, u) w.r.t. v, viz.

(a, t)∧(b, u) = (a∧ b + t∧ b + u∧ a + t∧u, t + u) .

Proof.

1. We use indirect equality. For all (c, v) we have
(a, t) v (c, v) ∧ (b, u) v (c, v)

⇔ {[definition]}
v ≤ t ∧ v ∧ a ≤ c ∧ v ≤ u ∧ v ∧ b ≤ c

⇔ {[lattice algebra]}
v ≤ t∧u ∧ v ∧ a + v ∧ b ≤ c

⇔ {[distributivity]}
v ≤ t∧u ∧ v ∧(a + b) ≤ c

⇔ {[definition]}
(a + b, t∧u) v (c, v) .

2. (c, v) v (a, t) ∧ (c, v) v (b, u)
⇔ {[definition]}

t ≤ v ∧ t∧ c ≤ a ∧ u ≤ v ∧ u∧ c ≤ b

⇔ {[lattice algebra, shunting]}
t + u ≤ v ∧ c ≤ t + a ∧ c ≤ u + b

⇔ {[lattice algebra]}
t + u ≤ v ∧ c ≤ (t + a)∧(u + b) ,

so that (a, t)∧(b, u) = ((t + a)∧(u + b), t + u). The form of the expression
given in the statement of the lemma results by Boolean algebra. ut
In the remainder we will work with the quotient set C(S) = COM(S)/≡ most

of the time, but still abbreviate the classes [(a, t)]≡ by their representatives (a, t).

10

7 Conditionals

To round off the picture, we define a number of conditional commands in terms
of the basic ones:

t → k
def= (t∧ 1,>) ; k , k � t � l

def= (t → k) dc(t → l) ,

assert t
def= skip � t � loop , assume t

def= skip � t � chaos .

In particular, these commands are again v-isotone so that ≡ is a congruence
w.r.t. them as well. Componentwise, the first two definitions work out to

t → (b, u) = (t∧ b, t + u) ,
(b, u) � t � (c, v) = (b � t � c, u � t � v) .

For the latter one calculates by Boolean algebra

(t + u)∧(t + v) = t∧ v + t∧u + u∧ v = t∧ v + t∧u + t∧u∧ v + t∧u∧ v
= t∧u + t∧ v = u � t � v .

Let us prove two laws for the two-sided conditional. As an abbreviation, let
p

def= (t∧ 1,>), q def= (t∧ 1,>) and observe that p dc q = skip. Then, first,

k � t � k =
(defs.)

p ; k dc q ; k =
(dist.)

(p dc q) ; k =
(above)

skip ; k =
(neut.)

k .

Second,

(k� t� l) ;m =
(defs.)

(p ;k dc q ; l) ;m =
(dist.)

p ;k ;m dc q ; l ;m =
(defs.)

(k ;m)� t� (l ;m) .

From these two laws it follows that k � t � l preserves feasibility, whereas t → k
does this only in the uninteresting case t = >. Therefore also assert t and assume t
are feasible.

Finally, we prove a more specialised property that we will need later on.

Lemma 7.1. (a, t) ; (b, u) � z � (c,>) = (z ∧ a, t � z �>) ; (b, u) dc(z ∧ c,>).

Proof. ((a, t) ; (b, u)) � z � (c,>)
= {[command composition]}

(a · b, t∧ [[a]]u) � z � (c,>)
= {[command conditional]}

(a · b � z � c, t∧ [[a]]u � z �>)
= {[definition of conditional]}

(z ∧(a · b) + z ∧ c, z ∧ t∧ [[a]]u + z)
= {[Lemma 3.2 and Boolean algebra]}

((z ∧ a) · b + z ∧ c, (z ∧ t + z)∧([[a]]u + z))
= {[definition of conditional and box property]}

((z ∧ a) · b + z ∧ c, (t � z �>)∧ [[z ∧ a]]u)

11

= {[command disjunction]}
((z ∧ a) · b, (t � z �>)∧ [[z ∧ a]]u) dc(z ∧ c,>)

= {[command composition]}
(z ∧ a, t � z �>) ; (b, u) dc(z ∧ c,>).

ut

8 Feasible Normal Designs and Demonic Semantics

We have already seen that command (a, t) is feasible if and only if t ≤ ppa and thus
define the set of feasible commands as F(S) = {(a, t)|(a, t) ∈ C(S) ∧ t ≤ ppa}.
The aim of the present section is to establish a correspondence between feasible
commands and elements of the underlying semiring S. It will be used to define
the demonic operators on S and is an abstract version of the mappings Id and
Hd on relations defined in [11], and given by

E : F(S) → S , D : S → F(S) ,

E((a, t)) def= t∧ a , D(a) def= (a, ppa) .

We will abbreviate E((a, t)) to E(a, t). This function, which would make sense
even for arbitrary pairs, describes the demonic view of (a, t) that discards all
input states of a for which both termination and nontermination may occur,
i.e., all those characterised by t∧ppa. For the resulting semiring element, no extra
termination information is needed; this is reflected in the definition of D.

Lemma 8.1. E and D are inverse to each other, in one case up to ≡.

Proof. By Lemma 4.1(7), feasibility, and refinement ordering,

D(E(a, t)) = D(t∧ a) = (t∧ a, pp(t∧ a)) = (t∧ a, t∧ppa) = (t∧ a, t) ≡ (a, t).

Conversely, by (cd1) we have E(D(a)) = E(a, ppa) = ppa∧ a = a. ut

We will give a demonic ordering and demonic operations on S for modelling
total correctness. In contrast to [8], where such an ordering and operations are
introduced by new definitions, we can derive these using the correspondence
from Lemma 8.1. The demonic refinement ordering is

a v b
def= D(a) v D(b) ⇔ (a, ppa) v (b, ppb) ⇔ ppb ≤ ppa ∧ ppb∧ a ≤ b.

By (eqc) and (cd1) v is antisymmetric, i.e., a partial order. Thus, by Lemma 8.1,
the mappings E and D are order isomorphisms between (F(S),v) and (S,v).
Since chaos is the greatest element of COM(S), and therefore also of F(S), the
v-greatest element of S is E(chaos) = E(>, 0) = 0. In general, however, there
is no v-smallest element, since the corresponding least element fail of COM(S)
is not feasible.

12

The demonic composition is

a 2 b
def= E(D(a) ; D(b)) = E((a, ppa) ; (b, ppb)) = E(a · b, ppa∧ [[a]]ppb)
= ppa∧ [[a]]ppb∧ a · b = [[a]]ppb∧ a · b,

since a · b ≤ pp(a · b) ≤ ppa by (cd1) and Lemma 4.1(10). The unit skip of COM(S)
is feasible, thus E(skip) = E(1,>) = 1 is also the unit of demonic composition.

The demonic choice (which coincides with the v-join) is

a t b
def= E(D(a) dcD(b)) = E((a, ppa) dc(b, ppb)) = E(a + b, ppa∧ppb)
= ppa∧ppb∧(a + b).

The demonic meet, whenever it exists, is, by Lemma 6.3.2,

a u b
def= E(D(a)∧D(b)) = E((a, ppa)∧(b, ppb))
= E(a∧ b + ppa∧ b + ppb∧ a, ppa + ppb)
= (ppa + ppb)∧(a∧ b + ppa∧ b + ppb∧ a)
= a∧ b + ppa∧ b + ppb∧ a,

since a∧ b+ ppa∧ b+ ppb∧ a ≤ a+ b+a = a+ b ≤ ppa+ ppb by (cd1). The necessary
and sufficient condition for its existence is the feasibility of D(a)∧D(b), hence,

D(a)∧D(b) ∈ F(S)
⇔ {[above calculation, feasibility]}

ppa + ppb ≤ pp(a∧ b + ppa∧ b + ppb∧ a)
⇔ {[Lemma 4.1(2,7)]}

ppa + ppb ≤ pp(a∧ b) + ppa∧ppb + ppb∧ppa
⇔ {[shunting and de Morgan]}

(ppa + ppb)∧(ppa + ppb)∧(ppb + ppa) ≤ pp(a∧ b)
⇔ {[Boolean algebra]}

ppa∧ppb ≤ pp(a∧ b),

which is equivalent to pp(a∧ b) = ppa∧ppb.
Finally, the demonic conditional is

E(D(a) � t � D(b)) = E((a, ppa) � t � (b, ppb)) = E(a � t � b, ppa � t � ppb)
= (ppa � t � ppb)∧(a � t � b) = (ppa∧ a) � t � (ppb∧ b)
= a � t � b

by Boolean algebra and (cd1). Hence we do not introduce a new notation for it.
The solutions to demonic recursions are also derived according to the order

isomorphism and the following general lemma.

Lemma 8.2. 1. Let (A,≤) and (B,v) be partial orders, h : A → B an order
isomorphism, f : A → A, and g : B → B such that h ◦ f = g ◦ h.
Then f is order preserving if and only if g is order preserving.

13

2. Furthermore, let f be order preserving and f◦ a fixed point of f .
Then h(f◦) is a fixed point of g.

3. Furthermore, let f⊥ be the least fixed point of f , and f> the greatest.
Then h(f⊥) is the least fixed point of g, and h(f>) the greatest.

Proof. 1. Assume x ≤ y. Then

f(x) ≤ f(y) ⇔ h(f(x)) v h(f(y)) ⇔ g(h(x)) v g(h(y)) ,

which, together with surjectivity of h shows the claim.
2. g(h(f◦)) = h(f(f◦)) = h(f◦).
3. h(f⊥) and h(f>) are fixed points of g by 2. Let g◦ be a fixed point of g.

Swapping the partial orders, 2. states that h−1(g◦) is a fixed point of f .
Hence, f⊥ ≤ h−1(g◦) ≤ f>. By order isomorphism, h(f⊥) v g◦ v h(f>).

ut

Corollary 8.3. Let f : S → S be v-preserving. Then the least fixed point of f
with respect to v is µv(f) = E(µv(D ◦ f ◦ E)). Analogously, the greatest fixed
point is νv(f) = E(νv(D ◦ f ◦ E)).

9 The Kleene Algebra of Commands

A Kleene algebra is a structure (K, ∗) such that K is an idempotent semiring
and the star ∗ satisfies the unfold and induction laws

1 + a · a∗ ≤ a∗ 1 + a∗ · a ≤ a∗

b + a · c ≤ c ⇒ a∗ · b ≤ c b + c · a ≤ c ⇒ b · a∗ ≤ c

for a, b, c ∈ K [14]. Hence a∗ ·b is the least fixed point of the mapping λx.a ·x+b.
The following Lemma proves a generalisation to condition semirings of the

left induction law from Kleene algebra.

Lemma 9.1. v ∧(b + c · a) ≤ c ⇒ v ∧ b · a∗ ≤ c.

Proof. By Boolean algebra and Lemma 3.2, v ∧(b + c · a) = v ∧ b + v ∧(c · a) =
v ∧ b+(v ∧ c)·a = v ∧ b+(v ∧(c+v))·a = v ∧ b+v ∧((c+v)·a) = v ∧(b+(c+v)·a).
Hence, by the above calculation, shunting, Kleene star induction and shunting
again,

v ∧(b + c · a) ≤ c ⇔ v ∧(b + (c + v) · a) ≤ c ⇔ b + (c + v) · a ≤ c + v
⇔ b · a∗ ≤ c + v ⇔ v ∧ b · a∗ ≤ c .

ut

Lemma 9.2. 1. v ≤ [[a]]v ⇔ a · v ≤ v.
2. v ≤ t∧ [[a]]v ⇒ v ≤ [[a∗]]t.

Proof. 1. By the definition of box, Boolean algebra, and (GCc),

v ≤ [[a]]v ⇔ v ≤ pp(a · v) ⇔ pp(a · v) ≤ v ⇔ a · v ≤ v.

14

2. v ≤ t∧ [[a]]v
⇔ {[Boolean algebra]}

v ≤ t ∧ v ≤ [[a]]v
⇔ {[Boolean algebra and 1.]}

t ≤ v ∧ a · v ≤ v

⇔ {[Boolean algebra]}
t + a · v ≤ v

⇒ {[Kleene star induction]}
a∗ · t ≤ v

⇔ {[(GCc)]}
pp(a∗ · t) ≤ v

⇔ {[Boolean algebra and definition of box]}
v ≤ pp(a∗ · t) = [[a∗]]t.

ut

We will now lift the Kleene star from the underlying semiring S to the quo-
tient command semiring C(S). This is needed to calculate the least fixed point
of loops. Since the right annihilation law fails to hold in C(S) the resulting
structure is called a weak Kleene algebra [18].

Theorem 9.3. (a, t)∗ = (a∗, [[a∗]]t).

Proof. By uniqueness of star it suffices to show the star axioms for (a∗, [[a∗]]t).

1. By command operations, properties of box, and the Kleene unfold axiom,

skip dc(a, t) ; (a∗, [[a∗]]t) = (1,>) dc(a · a∗, t∧ [[a]][[a∗]]t)
= (1 + a · a∗, [[1]]t∧ [[a · a∗]]t) = (a∗, [[1 + a · a∗]]t) = (a∗, [[a∗]]t).

2. For similar reasons,

skip dc(a∗, [[a∗]]t) ; (a, t) = (1,>) dc(a∗ · a, [[a∗]]t∧ [[a∗]]t)
= (1 + a∗ · a, [[a∗]]t) = (a∗, [[a∗]]t).

3. By command operations and ordering,

(b, u) dc(a, t) ; (c, v) v (c, v) ⇔ (b, u) dc(a · c, t∧ [[a]]v) v (c, v)
⇔ (b + a · c, u∧ t∧ [[a]]v) v (c, v)
⇔ v ≤ t∧u∧ [[a]]v ∧ v ∧(b + a · c) ≤ c.

By Lemma 9.2.1, a · v ≤ v, hence b + a · (c + v) = b + a · c + a · v ≤ c + v. By
Kleene star induction, a∗ ·b ≤ c+v, thus v ∧ a∗ ·b ≤ c by shunting. Moreover,
v ≤ [[a∗]](t∧u) by Lemma 9.2.2.
By command operations, properties of box, and the last two facts,

(a∗, [[a∗]]t) ; (b, u) = (a∗ · b, [[a∗]]t∧ [[a∗]]u) = (a∗ · b, [[a∗]](t∧u)) v (c, v).

15

4. By command operations and ordering,

(b, u) dc(c, v) ; (a, t) v (c, v) ⇔ (b, u) dc(c · a, v ∧ [[c]]t) v (c, v)
⇔ (b + c · a, u∧ v ∧ [[c]]t) v (c, v)
⇔ v ≤ u ∧ v ≤ [[c]]t ∧ v ∧(b + c · a) ≤ c.

By Lemma 9.1, v ∧ b · a∗ ≤ c. Moreover, v ≤ [[c]]t ≤ [[v ∧ b · a∗]]t = v + [[b · a∗]]t
by box properties. By v ≤ u and shunting, v ≤ u∧ [[b · a∗]]t.
Together, by command operations, and properties of box,

(b, u) ; (a∗, [[a∗]]t) = (b · a∗, u∧ [[b]][[a∗]]t) = (b · a∗, u∧ [[b · a∗]]t) v (c, v).
ut

10 The Omega Algebra of Commands

A weak omega algebra is a structure (K, ω) such that K is a weak Kleene algebra
and the omega ω satisfies the unfold and co-induction laws

aω = a · aω

c ≤ a · c + b ⇒ c ≤ aω + a∗ · b

for a, b, c ∈ K [16]. It follows that aω + a∗ · b is the greatest fixed point of the
mapping λx.a · x + b.

In contrast to this definition, an omega algebra requires K to be a Kleene
algebra but weakens the unfold axiom to aω ≤ a · aω [4]. The reverse inequality
need not hold in absence of the right annihilation law [16].

For the greatest fixed point of loops, we will now lift the omega operator
from the underlying semiring S to the quotient command semiring C(S). To
calculate the weak omega operator we need the analogue of the convergence
algebra defined in [18]. The convergence operation 4 : S → cond(S) satisfies
the unfold and co-induction laws

[[a]](4a) ≤ 4a

t∧ [[a]]u ≤ u ⇒ 4a∧ [[a∗]]t ≤ u

The condition 4a characterises the states from which no infinite transition paths
emerge. The following lemma states a few properties of convergence.

Lemma 10.1. 1. 4a∧ [[a∗]]t is the least (pre-)fixed point of λu.t∧ [[a]]u.
In particular, 4a is the least (pre-)fixed point of [[a]].

2. ppa ≤ 4a ≤ ppaω and hence 4a∧ aω = 0.
3. 4 is antitone.
4. [[a∗]](4a) = [[a · a∗]](4a) = [[a]](4a) = 4a.

Proof. 1. By box properties, and the Kleene star and convergence unfold laws,
t∧ [[a]](4a∧ [[a∗]]t) = t∧ [[a]](4a)∧ [[a]][[a∗]]t ≤ 4a∧ [[1 + a · a∗]]t = 4a∧ [[a∗]]t.
Hence, by the co-induction axiom, 4a∧ [[a∗]]t is the least pre-fixed point of
λu.t∧ [[a]]u. Then, it is also the least fixed point [8].
Choose t = > for the special case, using [[a∗]]> = >.

16

2. By condition semiring properties, the definition of box, and the unfold law,

ppa = pp(a · >) ≤ pp(a ·4a) = [[a]](4a) = 4a.

By definition of box, Lemma 4.1(8), and the omega axioms,

[[a]]ppaω = pp(a · ppaω) ≤ pp(a · aω) = ppaω.

Hence, ppaω is a fixed point of [[a]], and 4a ≤ ppaω by 1.
3. By antitony of box and 1, a ≤ b ⇒ [[b]] ≤ [[a]] ⇒ 4b ≤ 4a.
4. By box properties and 1, [[1]](4a) = 4a = [[a]](4a). Moreover, by star and

box properties,

[[a]][[a∗]](4a) = [[a · a∗]](4a) = [[a∗ · a]](4a) = [[a∗]][[a]](4a) = [[a∗]](4a) ,

so that [[a∗]](4a) is a fixed point of [[a]]. The remaining inequalities follow by
antitony of the box operator. ut

In the special case of REL(M), 4a = aω can be proved by Corollary 4.3.

Theorem 10.2. (a, t)ω = (aω,4a∧ [[a∗]]t) ≡ (0,4a∧ [[a∗]]t).

Proof. We prove that (aω,4a∧ [[a∗]]t) satisfies the weak omega axioms. The
claimed ≡-relation then follows by Lemma 10.1.2.

1. By command operations, the fixed-point property of aω and Lemma 10.1.1,

(a, t) ; (aω,4a∧ [[a∗]]t) = (a · aω, t∧ [[a]](4a∧ [[a∗]]t)) = (aω,4a∧ [[a∗]]t) .

2. Assume

(c, v) v (a, t) ; (c, v) dc(b, u) = (a · c, t∧ [[a]]v) dc(b, u) = (a · c + b, t∧ [[a]]v ∧u),

which is equivalent to w ≤ v ∧ w ∧ c ≤ a · c + b, where w
def= t∧u∧ [[a]]v.

We have to show

(c, v) v (aω,4a∧ [[a∗]]t) dc(a∗, [[a∗]]t) ; (b, u)
= (aω + a∗ · b,4a∧ [[a∗]]t∧ [[a∗]]t∧ [[a∗]]u)
= (aω + a∗ · b,4a∧ [[a∗]](t∧u)) ,

which by definitions and shunting is equivalent to x ≤ v ∧ c ≤ aω+a∗ ·b+x,
where x

def= 4a∧ [[a∗]](t∧u).
The first conjunct follows from the first assumption by convergence co-
induction. For the second one transforms the second assumption by shunting
into c ≤ a · c + b + w. By omega co-induction c ≤ aω + a∗ · b + a∗ · w, so we
are done if we can show a∗ · w ≤ x.
We have a∗ · w ≤ pp(a∗ · w) = [[a∗]]w, so that it suffices to show [[a∗]]w ≤ x,
equivalently x ≤ [[a∗]]w. Now, by box and star properties,

x ≤ [[a∗]]w ⇔ x ≤ [[a∗]](t∧u)∧ [[a∗]][[a]]v
⇔ x ≤ [[a∗]](t∧u) ∧ x ≤ [[a∗]]v .

17

The first conjunct holds by definition of x. For the second one, since x ≤ v
as shown above, it suffices by isotony of [[a∗]] to show x ≤ [[a∗]]x. Now, by
disjunctivity of [[a∗]], Lemma 10.1.4 and star properties,

[[a∗]]x = [[a∗]](4a∧ [[a∗]](t∧u)) = [[a∗]](4a)∧ [[a∗]][[a∗]](t∧u)
= 4a∧ [[a∗]][[a∗]](t∧u) = 4a∧ [[a∗]](t∧u) = x .

ut

11 The Demonic While Loop

The Kleene and omega algebraic properties of commands finally enable the cal-
culation of the least and greatest fixed points of the function that describes the
demonic while loop.

Theorem 11.1.

1. µv(λx.a 2 x � t � 1) = [[(t∧ a)∗]](t + ppa)∧(t∧ a)∗ · (t∧ 1).
2. νv(λx.a 2 x � t � 1) = 4(t∧ a)∧µv(λx.a 2 x � t � 1).

Proof. We calculate the fixed points according to Corollary 8.3.

1. For the least fixed point,

µv(λx.a 2 x � t � 1)
= {[Corollary 8.3]}

E(µv(λ(b, u).D(a 2 E(b, u) � t � 1)))
= {[demonic conditional: D(a � t � b) = D(a) � t � D(b)]}

E(µv(λ(b, u).D(a 2 E(b, u)) � t � D(1)))
= {[demonic composition: D(a 2 b) = D(a) ; D(b)]}

E(µv(λ(b, u).D(a) ; D(E(b, u)) � t � D(E(skip))))
= {[Lemma 8.1]}

E(µv(λ(b, u).(a, ppa) ; (b, u) � t � (1,>)))
= {[Lemma 7.1]}

E(µv(λ(b, u).(t∧ a, ppa � t �>) ; (b, u) dc(t∧ 1,>)))
= {[definition of conditional and Boolean algebra]}

E(µv(λ(b, u).(t∧ a, t + ppa) ; (b, u) dc(t∧ 1,>)))
= {[a∗ · b is the least fixed point of (λx.a · x + b)]}

E((t∧ a, t + ppa)∗ ; (t∧ 1,>))
= {[Theorem 9.3]}

E(((t∧ a)∗, [[(t∧ a)∗]](t + ppa)) ; (t∧ 1,>))
= {[command composition]}

E((t∧ a)∗ · (t∧ 1), [[(t∧ a)∗]](t + ppa)∧ [[(t∧ a)∗]]>)
= {[box properties and definition of E]}

[[(t∧ a)∗]](t + ppa)∧(t∧ a)∗ · (t∧ 1).

18

2. For the greatest fixed point,

νv(λx.a 2 x � t � 1)
= {[calculation as in 1.]}

E(νv(λ(b, u).(t∧ a, t + ppa) ; (b, u) dc(t∧ 1,>)))
= {[a∗ · b + aω is the greatest fixed point of (λx.a · x + b)]}

E((t∧ a, t + ppa)∗ ; (t∧ 1,>) dc(t∧ a, t + ppa)ω)
= {[Theorem 10.2 and calculation as in 1.]}

E(((t∧ a)∗ · (t∧ 1), [[(t∧ a)∗]](t + ppa)) dc
(0,4(t∧ a)∧ [[(t∧ a)∗]](t + ppa)))

= {[command disjunction]}
E((t∧ a)∗ · (t∧ 1),4(t∧ a)∧ [[(t∧ a)∗]](t + ppa))

= {[1.]}
4(t∧ a)∧µv(λx.a 2 x � t � 1).

ut

12 Conclusion

The treatment has shown that almost all of the standard theory of normal designs
carries over to the general case. One can even prove a generalisation of the fixed
point theorem 3.1.6 of [13] that allows an alternative derivation of the omega
operator for commands. It should be noted that the operations of complement
and meet are not required for all semiring elements but only on the conditions.

By defining refinement as in Section 6 we committed ourselves to total cor-
rectness. The branch of general correctness, exemplified by the normal pre-
scriptions of [10], can be explored by taking the natural order of commands
given in Theorem 5.1 instead. Since then, however, the connection starting with
Lemma 8.1 no longer holds, the loop semantics cannot be calculated in the same
way. An alternative treatment using the Egli-Milner order is given in [18]. The
treatment of conditions as right ideals has been an interesting exercise but is not
as smooth as using tests, not least because of its lack of symmetry.

Finally, we would like to mention that the command semiring can actually be
made into a modal semiring itself, so that the general soundness and complete-
ness proof for the associated Hoare logic can directly be applied to commands
(see [17] for details).

It is to be hoped that the generalised results will be of use for handling trace
semantics and other semantical models by taking algebras like TRC(A) and their
properties into account, thus dealing with healthiness conditions such as (R1)–
(R3) of UTP in a purely algebraic fashion. The presented method could also serve
as a model for the extension by parameters that describe further observations
as proposed in [13].

Acknowledgement: We are grateful to P. Höfner, Kim Solin and the anony-
mous referees for helpful discussions and remarks.

19

References
1. R. C. Backhouse, J. van der Woude: Demonic operators and monotype factors.

Mathematical Structures in Computer Science 3, 417–433 (1993)
2. R. Berghammer, H. Zierer: Relational algebraic semantics of deterministic and

non-deterministic programs. Theoretical Computer Science 43, 123–147 (1986)
3. M. Broy, R. Gnatz, M. Wirsing: Semantics of nondeterministic and non-continuous

constructs. In F.L. Bauer, M. Broy (eds.): Program construction. Lecture Notes in
Computer Science 69. Springer 1979, 553–592

4. E. Cohen: Separation and reduction. In R. Backhouse, J. Oliveira (eds.): Math-
ematics of Program Construction. Lecture Notes in Computer Science 1837,
Springer 2000, 45–59

5. J. Desharnais, N. Belkhiter, S.B.M. Sghaier, F. Tchier, A. Jaoua, A. Mili, and
N. Zaguia: Embedding a demonic semilattice in a relation algebra. Theoretical
Computer Science 149, 333–360 (1995)

6. J. Desharnais, A. Mili, T.T. Nguyen: Refinement and demonic semantics. In
C. Brink, W. Kahl, G. Schmidt (eds): Relational methods in computer science,
Chapter 11. Springer 1997, 166–183

7. J. Desharnais, B. Möller, G. Struth: Kleene algebra with domain. ACM TOCL (to
appear)

8. J. Desharnais, B. Möller, F. Tchier: Kleene under a modal demonic star. Journal on
Logic and Algebraic Programming, Special Issue on Relation Algebra and Kleene
Algebra, 2006 (to appear)

9. H. Doornbos: A relational model of programs without the restriction to Egli-Milner-
monotone constructs. In E.-R. Olderog (ed.): Programming concepts, methods and
calculi. North-Holland 1994, 363–382

10. S. Dunne: Recasting Hoare and He’s unifying theory of programs in the context of
general correctness. In Butterfield, A., Strong, G., Pahl, C., eds.: 5th Irish Work-
shop on Formal Methods. EWiC, The British Computer Society, 2001

11. W. Guttmann: Non-termination in Unifying Theories of Programming. In Düntsch,
I., Winter, M., eds.: 8th International Conference on Relational Methods in Com-
puter Science (RelMiCS 8/AKA 3), Computer Science Department, Brock Univer-
sity, St. Catharines, Ontario, Canada 2005, 87–94

12. W. Guttmann, B. Möller: Modal design algebra. Institut für Informatik, Univer-
sität Augsburg, Report 2005-15

13. C.A.R. Hoare, J. He: Unifying theories of programming. Prentice Hall 1998
14. D. Kozen: A completeness theorem for Kleene algebras and the algebra of regular

events. Information and Computation 110, 366–390 (1994)
15. D. Kozen: Kleene algebra with tests. ACM TOPLAS 19:427–443 (1997)
16. B. Möller: Lazy Kleene algebra. In D. Kozen (ed.): Mathematics of Program Con-

struction. Lecture Notes in Computer Science 3125. Springer 2004, 252–273
17. B. Möller, G. Struth: Modal Kleene algebra and partial correctness. In C. Rattray,

S. Maharaj, C. Shankland (eds.): Algebraic methodology and software technology.
Lecture Notes in Computer Science 3116. Springer 2004, 379–393

18. B. Möller, G. Struth: wp is wlp. Institut für Informatik, Universität Augsburg,
Report 2004-14

19. G. Nelson: A generalization of Dijkstra’s calculus. ACM TOPLAS 11, 517–561
(1989)

20. T.T. Nguyen: A relational model of nondeterministic programs. International J.
Foundations Comp. Sci. 2, 101–131 (1991)

21. D. Parnas: A generalized control structure and its formal definition. Commun.
ACM 26, 572–581 (1983)

20

