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Abstract. This paper advocates a general approach to formal verdicdty
constructing property-oriented models. We instantiate dpproach using tim-
ing properties, and construct a heterogeneous untimed Intodéhich time is
abstracted away, so that we can verify timing propertiesniuatimed frame-
work. The correctness of property-oriented model constrnds ensured by the
conformance of semantic and syntactic mappings.

1 Introduction

It has been noticed that a single software development rdeshmot sufficient to solve
all types of problems found in complex software systems. ifitegration of software
development methods has been proposed and investigatezriedent years, for exam-
ple, the integration of state-modeling and process langgihgs become an active area
of research ( [19, 6,1, 11]). Such blending of different tiotes can provide us more
powerful languages for specifying very complex softwargesns. Unified observation-
oriented models behind the integrated languages (like [28]) can ensure the sound-
ness of the integration of different notations, and can leel @s a reference document
for developing tool supports. However, such complete nmeodes usually very compli-
cated and thus hard to use for the verification purpose.

Properties to be verified or analysed can be divided int@ufit categories, each
kind of properties only refer to part of the whole observatizodel, such as safety prop-
erties that are not time dependent, timing properties, [dekdree properties. Recent
work [4] suggests a projection approach to the verificatibtiming properties. The
projection can be conducted in a syntax-directed mannegrevtihe soundness proof
replies on a deep projection from the whole model to the sodeh thus the whole
model should be built first, which is usually very time-comsng. Therefore, we pro-
pose to construct (small) property-oriented models fonvgriication of any particular
kind of properties. We shall guarantee that different prgperiented sub-models can
be integrated into the whole model in a later stage, wheressery. In this paper, we
elaborate this general idea using timing properties. Westtoat an untimed hetero-
geneous model, where time information is abstracted awalyhandled by a special
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Timer process. With such a property-oriented model we can veeiftam kind of tim-
ing properties using the simpler untimed model, either byleh@hecking or theorem
proving. This greatly simplifies the verification process.

We demonstrate our approach using a small languagev8ich is a subset of the
combination of CSP [7] and Z [20]. It can be regarded as a $udfgbe Circus [21]
language, or a subset of another powerful specificationdagg TCOZ [11]. We shall
focus on timing properties that can be described in prograagtanguages, rather than
specification languages, like:

— the delay between two consecutive events should at leaaties of time;
— a program awaits an event at mesinits of time before it does something else.

More general timing properties that can be described inifpation languages but
difficult in programming languages, like deadline and watiftin TCOZ, will not be
covered here.

This paper makes the following contributions:

— We propose a general approach to verification by constygtioperty-oriented
models for integrated formal languages.

— We demonstrate our approach in terms of timing propertiesbwild an untimed
model for the verification of real-time properties.

— We build a deep link between timed traces and untimed hedeemus traces (with
timer events). From that, we can generate the provablyecountimed model.

— We illustrate our approach through an alarm controller eplam

The rest of the paper is organized as follows. Section 2 dires the illustrative
example. Section 3 describes the language model. The appimaresented in detail
in Section 4, followed by related work and conclusion.

2 An lllustrative Example

In this section, we use a small example to illustrate a ngupt@ach to the verification
of timing properties for reactive systems.

2.1 The Alarm Controller

The alarm system was first used in [9]. The system is a comnamatontroller that
can be found in buildings and cars. The controller is coretetd a sensor which detects
movements or changes in the environment monitored by thealehe controller oper-
ates in two modes: when disabled, it will ignore any distadzadetected by the sensor;
when enabled, the controller will sound an alarm when theesignals a disturbance.
There are two timing requirements on the alarm controlbe first states that after
the controller is enabled, there is a period plinits of time before a disturbance can
cause the alarm to ring. The periodpermits a person to enable the alarm and then
leave without causing it to sound. The second requirematgsthat when a detected
disturbance is received, the controller will wait for aretiperiod ofts units of time



before activating the alarm. The periodleaves some time to the legal user to disable
it before it sounds.

Let us analyse the first timing requirement, that is, whercth@roller is enabled,
there is a delay of; units of time before it can receive any disturbance frometsser.
As a first attempt, we can specify this requirement in ternth@following action:

R; = enable— Wait¢q; disturb— R

Notice the evenénableindicates the alarm system is enabled, while the edettrb
denotes a disturbance detected by the sensor. At this momweignore the subsequent
behaviour after a disturbance is received and simplyRigedenote it.

The key idea of our approach is to separate timing propdrteslogical properties
by introducing a specific component, call€dner, to take care of the timing features.
Thus we can use existing untimed verification tools like niatieckers to verify that
certain time properties are met, rather than construct atoeiror verification from
scratch.

ForR;, we can transform it to the following untimed action:

R, = enable— set — reset — disturb— R
The two new eventsetandresetare used to interact with the followingmeraction:
Timer= sef — Waitt;;reset — Skip

Note that theTimercomponent is in charge of time control. It is activatedsieysignal,
and aftert; time elapses, it notifies the procd®svia signalreset

To verify R; meets the property that a disturbance can only be receitedtht
controller is enabled fot; units of time (we refer to it a;-delay propertyin what
follows), we only need to check the following untimed prdapdor R;:

Yutrg, utry, utrg - ((utr = utry = (enablé ~ utr; ™ (disturl) ~ utry A
utr, | {enabledisturb} = ()) = utr; = (setrese})

It states that there are only two timer evesgtandresetbetween anablesvent and its
consecutivalisturb event. The evergetactivates the timer, whileesetdeactivates the
timer, which indicateg,; time is passed. Together with the timer action, it ensures th
t1-delay property. Note thattr denotes the (untimed) trace, i.e. a sequence of events,
while utr;’s are segments of the trace. Formal definitions will be gimemlater section.

The soundness for the separation of timing features froritdbdeatures can be
specified in terms of the following equation:

R, = (R, |[{setreset]|Timer)\{set reset

This can be easily proved using the expansion laws for g@mposition. The right
hand side is a parallel composition of an untimed acti®j) &nd a timer actionTimer)
which communicate with each other via two internal eveetandreset(hidden from
outside). Such a parallel composition is the normal form kaladopt for verification.



2.2 The Normal Form

In this subsection, we shall deal with the complete spetifindor the alarm controller.
The complete timed specification for the alarm controllagiien as follows.

Disable = disable— Skip
Running = DisableD (disturb — Active)

Active = Disablel (alarm — Disable)
Alarm = pX e enable— (Disablet>1 Running; X

Note that eventlisableis used to disable the controller, evahrm signals the firing
of the alarm. For more flexibility, we allow the controller b@ disabled at any point
during running. We use timeout constructs (defined latereictiBn 3.2) to capture this
requirement. Takélarm as an example, once the controller is enabled, it is eitteer di
abled (and then waits fa&rnableagain), or is ready to receive any disturbance after
(Running.

As explained in last subsection, we shall transform thedispecificatiorAlarmto
a normal form composed of an untimed specification in pdraith a Timeraction.

We shall use functio to abstract away timing features from a timed action. The
complete definition for? will be given when we present the syntax of the language.
The following is the result after applying it to the above@fieation.

@(Disable) = disable— Skip
&(Running = ¢(Disable) O (disturb — &(Active))
&(Active) = sett, —
((disable— halt! — Skip O (reset — alarm — @(Disable)))
&(Alarm) = ;X e enable— sett; —
((disable— haltl — Skip O (reset — ¢(Running)); X

Note that a new timer evehaltis used to stop the timer when eveligablearrives
during the ticking of the clock. There are two timing requients in the specification,
thus we design the general timer action as follows:

Timer= uX e sefz — ((halt? — Skip O (Waitz; reset — Skip)); X

Note that when the timer isetto work, a value is passed to it (storeduijto indicate
the time duration that it should count before it generatesatsignal.
Now the timed specificatioAlarmis transformed to the following normal form:

(®(Alarm)|[{set reset halt}]|Timer)\ ({set reset halt}

The following theorem ensures the soundness of the alisinact
Theorem 1. We have

Alarm = (@(Alarm)|[{set reset halt}]| Timer)\ {set reset halt}

It is proved using parallel expansion and hiding laws.



2.3 \Verification of Timing Properties in the Untimed Model

In this subsection we shall demonstrate that timing requéngs can be verified in the
untimed framework.
There are two timing requirements for the alarm controtiamely,

— once enabled, the controller should wait at l¢asits of time before it can receive
any disturbance from the sensor.

— once a disturbance is received, the controller should wdéaestt, units of time
before it fires the alarm.

As timing is controlled by the timer actions in our normalrfgrwe can abstract
away timing from the above requirements by adding in timenésthat are in charge of
activating/deactivating the timers. The timing requirenseare thus specified in terms
of timer events as follows:

Ry (utr) = Yutrg, utry, utrg - (utr = utrp ~ (enable ~ utr; ~ (disturb) ~ utry A
utr; | {enabledisturb} = ()) = (utr; = (sett;, rese})

R (utr) = Vutrg, utry, utrs - (utr = utrp ™ (disturb) ™ utry ~ (alarm) ~ utry A
utry [ {disturb alarm} = ()) = (utr; = (setty, rese})

The overall timing requirement for the alarm controllertiss as below:
Redutr) = Ry (utr) A Re(utr)

To verify the timed specificationAlarm) meets the timing requirements, we only
need to demonstrate that the untimed specificatigAlarm)) meets the above require-
ment, that is@(Alarm) = Redutr).

Theorem 2. Suppos@(Alarm) and Redutr) are given as above, we have
[@(Alarm)] = Redutr)
where|P] denotes the observation-oriented semantics for program P.
Proof From the definition of?(Alarm),
&(Alarm) = P; #(Alarm)

whereP = enable— sett; — ((disable— haltl — Skip O (reset — $(Running)).
Thus the semantic predicd@(Alarm)] is subject to

[@(Alarm)] = [P]; [@(Alarm)]

That s, it is the fixed point of the equatidh= X - ([P]; X).

Note that we also use the operator (;) to represent the cematidn of two obser-
vational predicates. The formal definition is given in [8].

Due to the following fixed point theorem ([8]):

F(S) 3 Simplies vX-F(S) 3OS
and the fact that there is only one fixed point in this case, mkg meed to prove

[P]; Requtr) = Redutr)



It is thus straightforward as all possible trace$die in the following set:

trace(P) = {(enablesett,, disablé, (enablesett;, disable halt),
(enablesett;, resetdisablé, (enablesett;, reset disturh setts, disable,
(enablesett;, reset disturb, sett,, disable halt) }
U {utr | utr < (enablesett;, resetdisturb sett,, reset alarm, disable }

a
Note that the proof is much simpler and more straightforwardomparison with
the existing proof given in [9] due to the property-orienteddel we use.

3 The Language

This section introduces our language @at we use to instantiate our method. We
shall give both the untimed and timed models.

3.1 The Untimed Model
The syntax for @ is givenin Fig. 1.

Action ::= Skip| Stop| Chaos
| Communication— Action | b&Action
| Actiory Action | ActiondJAction | Actionr Action
| Action|[E]|Action | Action\E | uX e Action
| Command
Command n=x:=e | Action<b > Action
Communication:= c?[z] | cl[e] | cl.€]

Fig. 1. Cz : the untimed model

Note thatk represents an expression, while boolean expression. The gatenotes
channel names. The notati@r] indicates that terma is optional.

Skipis a basic action that terminates immediat&lipprepresents an abnormal ter-
mination which simply puts a program in an ever waiting st&hkaosis the worst
action, nothing can be said about its behaviour. lguarded action(b&Action), the
action is preceded by a predicate which has to be true fordtienato take place, oth-
erwise the guarded action behavesSasp An internal choicebetween two actions
(Actionr1 Action) selects one of the two actions in a hon-deterministic mgnvigereas
theexternal choic€ActiondAction) waits for any of the two actions to interact with the
environment. The first action that interacts with the enwinent (either by synchronis-
ing on an event or terminating) is the resulting action.

The sequential compositioof two actions Action Action) behaves as the first ac-
tion, followed immediately by the second action upon temtion of the first. An action
can be prefixed with a communication event (input or outpticty will take place be-
fore the action starts. The action waits for the other astibiat need to synchronise on



the channel before the communication can take place pahedlel compositiorof two
actions Action[cg|Action) involves a setds) containing the events they need to syn-
chronise on. Aiding operation also takes a set of evert§.(The set is to be excluded
from the resulting observation of the action, hidden eveats no longer be seen by
other actions.

An observation-oriented model for tit&rcus language based on Hoare and He'’s
Unifying Theories of Programming [8] is explored in detai[23, 21], while the unified
model for TCOZ is reported in [14]. As our language & a subset of the above two
languages, we can borrow the following observation vagsfilom them.

— ok, oK : Boolean. Whenokis true, it states that the program has started akd=
true indicates that the program has terminated or is in an intdiae stable state.

— wait, wait’ : Boolean. Whenwaitis true, the program starts in an intermediate state.
Whenwait' is true the program has not terminated; when ifatse it indicates a
final observation.

— state staté are mappings from program variable names to values. Thesheda
variable represents the initial valuation of the programaldes, while the dashed
one denotes the valuation at the final observation.

— utr, utr’ : seq Eventare the sequence of observations on the program’s intenacti
with its environmentutr denotes the observations that occur before the program
starts, anditr’ the final observation. Each element of the sequence is an.even

— ref, ref : P Eventstands for the set of events the program can refuse.

A single observation is given by the combination of the ab@aréables. A program
is given as predicates over the observation variables. Veetlgé semantics for basic ac-
tions and communication events in what follows to show treeafghe above semantic
variables. Readers can refer to [23, 14] for the completefssgmantic definitions.

Basic Action The semantics of the acti@kipis given as a program that can only
terminate normally and has no interaction with the envirentn

[Skig = oK A —wait’ A utr’ = utr A staté = state

The actionStopis given as a predicate that waits for ever; it does not chénge
state.

[Stod = oK A wait’ A utr’ = utr

The assignment attributes a value to a variable in the custate. If the variable
does not exist it will be added, otherwise its value will beowritten. The assignment
operation is instantaneous and does not consume time.

[z := €] = oK A —wait’ A utr’ = utr A staté = state® {z — e}

Note that we abuse the sam@é the right hand side to denote the value=dih state
Communication An action can engage in a communication if all the other astio

involved in the same communication are ready to do so. We hibdewith the help

of two predicateswait.comc¢) models the waiting state of an action to communicate

on channet. The only possible observation is that the communicati@naolel cannot



appear in the refusal set during the observation petésth.con{c.e) represents the act
of communicating a value over a channet.

wait com(c) = oK A wait' A ¢ ¢ ref Autr’ = utr
termcomc.e) = oK A —wait’ A utr’ = utr ™ (c)

The semantics of the output command is given below.

[cle] = wait.com(c) Vv term.com(c.e) A staté = state

The input command can be defined in a similar manner.

[c?z] = wait.com(c) Vv term.con(c.e) A staté = stated {z — ¢}

The semantics of the communication prefix can be given ingeftommunication
and of the sequential composition. The acttommis either an input or an output event,
or an abstract event name.

[comm— Action| = [comm Action|

3.2 The Timed Model

The timed language TLextends the untimed language @ith two new time operators
givenin Fig. 2.

Action::= - --
| Waitt (time delay

t
| Actionp> Action (timeoud)

Fig. 2. TCz: the timed model

The action(Wait ¢) will delay the system for an amount of time determined by
the positive integer expressigrbefore terminating normally. The timeout construct

(Actioné Action) takes a positive integer value as the length of the timedé timeout
operator acts as a time guarded choice. It behaves as éithfénst or the second action.
If the first action performs an observable event or termmbtfore the specified time
elapses, it is chosen. Otherwise, the first action will b@snded and the only possible
observations are those produced by the second action.

The semantics for the timed language is given with the samerghtion variables
ok, oK , wait, wait', stateandstaté, while the variablesitr, utr’ andref’ are replaced by
a new pair of variable#ir, ttr’ denoting communication traces in the timed model.

The variablétr records the observations of communication events thatrdfore
the program starts, arttt’ records the final observation. Each element of the sequence
represents an observation in one time unit. Each obsernvat@ment is composed of
a tuple, where the first element of the tuple is the sequenegasfts that occur in the



time unit, and the second is the associated set of refus#ie &nd of the same time
unit.

ttr, ttr’ : seq(seq Eventx P Even)

We maintain an auxiliary variabletr that represents a sequence of events that have
occurred since the last observation. In this observatiomarednterested in recording
only the events without time.

utr : seq Event
utr = flat(ttr’) — flat(ttr)

whereflat : seq(seq Eventx P Eveny — seq Event

flat(()) = ()
flat((el,refy ~ S) = el flat(9)

We show the use of these new variables in the definition of\ttft(l) action. The
only possible behaviour for this action is to wait for the cfied number of units of
time to pass before terminating immediately.

[Wait d]ime = ((OK A wait’ A (#ttr’ — #ttr) < d)
V(oK A =wait’ A (#ttr’ — #ttr) = d)) Autr = ()

The timeout action can be defined in terms of external chaide §17]. The fol-
lowing is a direct definition.

[P Qlime = (P A Utr = () A #ttr’ — #ttr < £)V

(Fk = #ttr < k < #ttr4-¢, 3thr @ 7y (ttr/ (k) # () Attr < thr A gty — #ttr = kA
(Vi s #ttr < i < gttr+k oy (ttr'()) = () Atlr (i) = ttr'(4)) A Ptir /ttr]) v
(Fter o ttr < tir A #tfr — pttr = tA

(Vi @ #ttr < i < gttr+t oy (ttr'(4)) = () Atir(i) = ttr' (i) A Q[ttr /ttr])

Note that if P is ready to react to the environment exactly when it has \@die
time ¢, the timeout process choode®r Q non-deterministically.

Given the semantic model for a T@rogram, we can use the linking function given
in [17] to abstract away time information, and thus obtai@ tlorresponding untimed
model. This abstraction is useful when we are interestethénverification of time-
independent safety properties. In this paper, we shall latwogate on this aspect but
focus more on timing properties.

4 The Approach

This section is devoted to the general approach that we peofwthe verification of
real-time systems. The verification framework is given ig. .

Fig. 3 shows us two different approaches. The first one is adtapn approach
where we start with a timed program and we are interested éckihg if the timed
program satisfies the time requirements. The second apgpieacbottom up method
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Fig. 3. The Property-Oriented Models for Verification

where we start with an untimed program and add time infomnatthere requested.
The need for the second one is due to the fact that systemageweht is usually done
in stages, in the early stages of development the systemrdasioncentrates on the be-
haviourial/logical properties of the system, while leaytiming requirement to a later
stage. Another aspect is that in some cases it is necessdpntify the hardware used
in the implementation to have a clear understanding of the tilelays and timeouts
that can occur in the system and the points in which they mayroin the rest of this
section we present our approach in detail.

4.1 The Validation Approach

This approach is concerned with the validation of the timguements of the system
using the untimed model. Fig. 3 illustrates the steps fargitie framework. The steps
to carry out the validation of the time requirements are saniged as follows.

— We start with a specification of our system in the timed modséhg the timed
version of the language. The system designer gives a coengdestcription of the
system. All the operators of the language can be used atégjs B1cluding parallel
composition The timed semantic model of the language is imstits step.

— If we need to verify untimed safety properties, we can usebatraction function
(e.g.the one givenin [17]) to obtain an untimed version efdafriginal specification.
Such an untimed program can be used to validate the behagiquirements and
safety requirements that are not time dependent. We do alobelte this aspect in
this paper.

— With the help of the normal form functio®, we obtain a version of the program
that has the same semantics as the original program buticsritdernal timer
events. In this step the expansion laws should be used agowedmove all the
parallel compositions.

— Time requirements can be expressed in the untimed modeltiwidr events. We
can use this untimed model to prove the design meets the émeérements. This
can be done using theorem provers or existing (untimed) hubaekers.



4.2 The Normal Form

Usually timed programs are implemented with timers, this ba either the system
clock or a dedicated timer. Following the same criteria wee@ normal form for the
time operators. The implementation of the time operatogivien as a timer and an
untimed program that is synchronised with the timer on dadit events.

As mentioned above, the eversst halt, andresetare timer events, used by the
program to synchronise with and control a timer. The follogvis the timer program:

Timer= puX e sef’z — ((halt? — SkipO(Waitz; (reset — Skip)); X

The timer is initiated with the evesetwhich serves as a trigger. The behaviour of the
timer is as follows: after set by its environment, it waits fbe setsignal to set the
timer again if an interrupt evehalt arrives before the timeout, or it emits a sigreget
and starts to wait for anothsetafter it has counted for the designated period of time
(stored inx) set by the environment. The evaasetis similar to other events used in
the language, whereas the evesgsandhalt have special properties. We shall explore
these differences further in the next subsection.

Given the definition for a timer action, we aim to generaterecfion @ that takes
as input a timed program and returns the corresponding edtipnogram with timer
events. Thatis, for any sequential progf@nthe functiond should satisfy the following
equation:

) P = &(P) par Timer
Given actionsX andY, such thateX N oY = {set reset halt},
Xpar Y= (X |[{setresethalt}]| Y)\{set reset halt}

Note that in the actiofX par Y), X behaves as a master action, whilacts as a slave
action. The overall action terminates if and only if the mneastctionX terminates.

As timers are not allowed to be shared by parallel actiongraétimer actions are
needed in the equatiqn) in case thaP is a parallel action.

We shall first give a mapping to abstract away time information from timed traces,
while adding timer events properly. This can be regarded desep semantic link be-
tween a timed process and a heterogeneous communicatiogsgrdVe only need to
define the mapping on maximal traces

Definition 1. A timed trace ttg from a prefix-closed trace set maximal if for any
trace ttr; that satisfiesettrg = #ttry, andVi : 1..#ttrg - w1 (ttro(¢)) = w1 (ttr1(2)), we
havev: : 1..#ttrg - mo (ttl’o(i)) D) Wg(ttrl(i)).

Definition 2. Given a set of timed traces TTR, and a single prefixe define a set of
timed traces “after”s as follows:

TTR/s = {ttr | (s " ttr) € TTR}

Given a trace ttr, we use prefr) to denote the prefix-closed set of traces made out
of all prefixes of ttr. We extend it to a set of traces TTR as

prefTTR = | J{prefittr) | tir € TTR}



Given two set of traces TTRand TTR, the concatenation of them is given as
TTR " TTR, = {ttr; " ttro | tir; € TTR, fori = 1,2}

Definition 3 (Semantic Mapping).Let.4 denote the maximal set of events of interest,
and A* denote the sequence closure overGiven a set of maximal traces TTR, the
corresponding set of heterogeneous tragé$TR) is defined as follows:

~ TTR= {{({(\), X))}
P(TTR = {(V)}.
— Jttr € TTR- Vi : 1<i<sttr -y (ttr (i) = A* A mo(ttr(i)) = A.
Y(TTR = A*.
— Vitr € TTR- Vi : 1<i<sttr - my (ttr(¢)) = () A ma(ttr(i)) = A.
O(TTR) = {()}.
— TTR= pref{ttr), where ttr= {({), A), .., ({},.A)), andxttr = n.
Y(TTR) = pref((setn, rese}).
— pref(ttr) C TTR, where tte= {({), A—C), .., ({},. A—C), ({), A—C—B), ({), A—B)),
#ttr = n+1, and B and C are finite sets of events=J ¢y, .., cx }.
Let tir; = (((), A-C), .., ((), A—C)) ™ ((s4, %)), where heats;) = ¢; € C, for
i=1,.. k.
P(TTR) = pref((setn, rese}) U {(setn,rese} ~ s | s € Y(TTR/ttr)} U
Ule( pref((setn, ¢;, halt))
U{(setn, ¢;, halt) " tail(s;) ~ s | s € (TTR/ttr;)})
— For other casesy(TTR) = U {flat(ttr) | ttr € TTR}.

We assume that any sequential action can be written in thedgdanormal form
0 ,(c; — P;). We constructb as follows.

Definition 4 (Syntactic Mapping).

&(Skip = Skip
¢(Chaog = Chaos

$(Stop = Stop
b(x:=e) = z:=c¢

B(b&P) = b&d(P)

PP<ab>Q) = O(P)<b>P(Q)
&(Waitt) = sett — reset — Skip
P(Oi (G — Pi)) = Dicick(Ci — &(Py))

2(POQ) = 2(P)0P(Q)
2(PT1Q) = 2(P)M&(Q)

2(P;Q) = 9(P);9(Q)

®(P\E) = ®(P)\E

(O, (c;—Py)) > Q) sett—((0O7_, (c;—halt—®(P;))) O (resef—®(Q)))

1 1

P(pX e L (c; — Pi(X))) = pXe O (c; — &(Pi(X)))
Theorem 3. The syntactic mapping conforms with the semantic mappitigThat is,
given any program P frorh Cz, we have

Y([Plime) = [2(P)]
The proof is straightforward by a structural inductionfn
Theorem 4. The syntactic mapping is a homomorphic solution to the equatio).(



4.3 Algebraic Laws

The set of processes generated by funcfiare called aketerogeneous communicat-
ing processe$HCP). It can be regarded as an extension of Communicatiqgesial
Processes (CSP) (if we ignore state features). It enricl®&fl @ith timer events, thus
is also subject to the healthiness conditions for CSP (@hnabf [8]). However, as
timer events have the same behaviour in both synchronoussgmt¢hronous models, it
satisfies some additional healthiness conditions. Thedié@ubl properties will yield a
subset of CSP processes. Therefore, although heterogecemununicating processes
are an extension of CSP, they can be simulated by a subsefof CS

We shall present the additional properties in what follows.

HC1 [P] A utr™ (set,set) <utr’ = [P] A utr™ (set,set) < utr
It states that, if a heterogeneous communicating procéssvee timers consecutively,

then it can set them in any order.
Similarly, we have the following healthiness conditions.

HC2 [P] A utr™ (set,halty) < utr’ = [P] A utr™ (halt,set) < utr’
HC3 [P] A utr™ (halty, halty) <utr’ = [P] A utr™ (halty, hal) < utr’

The following condition indicates that no heterogeneousmanicating process can
refuse both eventsalt andresetsimultaneously when the timer is activated.

HC4 [P] A utr’ = utry ™ (seb ~utr; A utry [{halt,rese}=() = {halt,rese} Z ref

In what follows, we give some expansion laws to transformralpel action into a
sequential one. Take note that timer events play differ@esrfrom normal events.

In the following laws, we assumié andQ are already in guarded normal forms:
P=0",(c —P),Q = 0O, (dy — Qp), where for all;, &, c; # dy, andc;, d
are not timer events. Les = (aP N aQ)\{set halt, reset.

The following one is the standard expansion law where nortevwents are involved.

O ke =drecs(Ci — (Pi][cS|Qy))
Law 1 P|lcd|Q = {DDi:cigcs(Ci — (Pil[cd]|Q))
DDk:dkgcs(dk — (P[[cs|Qy))

If timer events are involved, we should use the followingaxgon laws.

Law 2 (set —P)|[cd|(set—Q) =
(set —set — (P[[cg]Q)) M (set —set — (P|[cs|Q))

Note that the two output evenset andset can occur in any order, which is re-
flected by the internal choice. So do the thalt events or a mix of them, as illustrated
by the following two laws.

Law 3 (set —P)|[cd|(halt = Q) =
(set —halt, — (P[[c|Q)) 1 (halt; — set — (P|[cg|Q))



Law 4 (halt; — P)|[cg|(halt, = Q) =
(halt; — halt, — (P|[cd|Q)) M (halt; — halt; — (P|[cS|Q))

The eventsetandhalt from the master process have higher priority thanréset
event emitted by the slave process. This is reflected in thenfimg two laws:

Law 5 (set — P)|[cd|(reset — Q) = set — (P|[cg|(reset — Q))
Law 6 (halt; — P)|[cd|(reset — Q) = halt; — (P|[cg|(reset — Q))

Law 7 (resef — P)|[cd|(reset — Q) =
(resef — (P|[cq]|(reset — Q))) O (reset — ((reset — P)|[cg|Q))

Take note that different frorhaw 2, external choice is used here as the two in-
put eventgeset andreset have to wait for the corresponding output events from the
environment (Timer processes).

5 Related Work and Conclusion

The two mostly related integrated formal specification laages are TCOZ [11] and
Circus[21]. Circusis a combination of CSP and Z. It also includes specificatiates
ments found in Morgan'’s refinement calculus [13] and Diji'stfanguage of guarded
commands [3]Circushas a well-defined syntax and a formal semantics [23, 21]base
on Hoare and He’s unifying theories of programming [8]. Csisalies using the lan-
guage are explored in [22] to show its power of expressiveregevelopment method
for Circususing refinementis described in [15]. A timed model@rcuswas provided
in [17]. Our untimed model €is a subset o€ircus

TCOZ is a blending of Object-Z [5, 18] and Timed CSP [16, 2iniaig at specifi-
cation for complex real-time systems. The semantic linkveen the two formalisms
Timed CSP and Object-Z is reported in [12]. TCOZ was enrichi¢idl sensors/actuators
in [10]. A unified observation model for TCOZ is presented 4] Recent work
[4] proposed a projection from TCOZ specifications to Timag@mata Patterns for
model-checking timing properties using UPPAAL. Their @aiical mapping is proved
sound under bisimulation. In our paper, we propose to véirifyng properties in un-
timed framework by constructing a property-oriented uetinmodel, which, we be-
lieve, should be much simpler than doing it within the timeaddal.

Instead of using the same complex model as both semanticcaisdming models,
we advocate the construction of small property-orientedets) that are separated from
the whole semantic model, for verification of particulardsrof properties. In our in-
stantiation in terms of timing properties, the approachsdoneke analysis and reasoning
about certain timing properties simpler and easier. A deepasitic link has been built
between the timed model and the untimed model in the obsemat/el, which ensures
that it is safe to use a smaller property-oriented model évification.
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