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Abstract. This paper advocates a general approach to formal verification by
constructing property-oriented models. We instantiate the approach using tim-
ing properties, and construct a heterogeneous untimed model in which time is
abstracted away, so that we can verify timing properties in an untimed frame-
work. The correctness of property-oriented model construction is ensured by the
conformance of semantic and syntactic mappings.

1 Introduction

It has been noticed that a single software development method is not sufficient to solve
all types of problems found in complex software systems. Theintegration of software
development methods has been proposed and investigated in the recent years, for exam-
ple, the integration of state-modeling and process languages has become an active area
of research ( [19, 6, 1, 11]). Such blending of different notations can provide us more
powerful languages for specifying very complex software systems. Unified observation-
oriented models behind the integrated languages (like [14], [23]) can ensure the sound-
ness of the integration of different notations, and can be used as a reference document
for developing tool supports. However, such complete models are usually very compli-
cated and thus hard to use for the verification purpose.

Properties to be verified or analysed can be divided into different categories, each
kind of properties only refer to part of the whole observation model, such as safety prop-
erties that are not time dependent, timing properties, deadlock-free properties. Recent
work [4] suggests a projection approach to the verification of timing properties. The
projection can be conducted in a syntax-directed manner, where the soundness proof
replies on a deep projection from the whole model to the sub-model, thus the whole
model should be built first, which is usually very time-consuming. Therefore, we pro-
pose to construct (small) property-oriented models for theverification of any particular
kind of properties. We shall guarantee that different property-oriented sub-models can
be integrated into the whole model in a later stage, where necessary. In this paper, we
elaborate this general idea using timing properties. We construct an untimed hetero-
geneous model, where time information is abstracted away, and handled by a special
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Timerprocess. With such a property-oriented model we can verify certain kind of tim-
ing properties using the simpler untimed model, either by model checking or theorem
proving. This greatly simplifies the verification process.

We demonstrate our approach using a small language CZ, which is a subset of the
combination of CSP [7] and Z [20]. It can be regarded as a subset of the Circus [21]
language, or a subset of another powerful specification language TCOZ [11]. We shall
focus on timing properties that can be described in programming languages, rather than
specification languages, like:

– the delay between two consecutive events should at least bet units of time;
– a program awaits an event at mostt units of time before it does something else.

More general timing properties that can be described in specification languages but
difficult in programming languages, like deadline and waituntil in TCOZ, will not be
covered here.

This paper makes the following contributions:

– We propose a general approach to verification by constructing property-oriented
models for integrated formal languages.

– We demonstrate our approach in terms of timing properties. We build an untimed
model for the verification of real-time properties.

– We build a deep link between timed traces and untimed heterogeneous traces (with
timer events). From that, we can generate the provably-correct untimed model.

– We illustrate our approach through an alarm controller example.

The rest of the paper is organized as follows. Section 2 introduces the illustrative
example. Section 3 describes the language model. The approach is presented in detail
in Section 4, followed by related work and conclusion.

2 An Illustrative Example

In this section, we use a small example to illustrate a novel approach to the verification
of timing properties for reactive systems.

2.1 The Alarm Controller

The alarm system was first used in [9]. The system is a common alarm controller that
can be found in buildings and cars. The controller is connected to a sensor which detects
movements or changes in the environment monitored by the alarm. The controller oper-
ates in two modes: when disabled, it will ignore any disturbance detected by the sensor;
when enabled, the controller will sound an alarm when the sensor signals a disturbance.

There are two timing requirements on the alarm controller: the first states that after
the controller is enabled, there is a period oft1 units of time before a disturbance can
cause the alarm to ring. The periodt1 permits a person to enable the alarm and then
leave without causing it to sound. The second requirement states that when a detected
disturbance is received, the controller will wait for another period oft2 units of time



before activating the alarm. The periodt2 leaves some time to the legal user to disable
it before it sounds.

Let us analyse the first timing requirement, that is, when thecontroller is enabled,
there is a delay oft1 units of time before it can receive any disturbance from its sensor.
As a first attempt, we can specify this requirement in terms ofthe following action:

R1 =̂ enable→ Wait t1; disturb→ R

Notice the eventenableindicates the alarm system is enabled, while the eventdisturb
denotes a disturbance detected by the sensor. At this moment, we ignore the subsequent
behaviour after a disturbance is received and simply useR to denote it.

The key idea of our approach is to separate timing propertiesfrom logical properties
by introducing a specific component, calledTimer, to take care of the timing features.
Thus we can use existing untimed verification tools like model checkers to verify that
certain time properties are met, rather than construct a newtool for verification from
scratch.

ForR1, we can transform it to the following untimed action:

R′
1 =̂ enable→ set! → reset? → disturb→ R

The two new eventssetandresetare used to interact with the followingTimeraction:

Timer=̂ set? → Wait t1; reset! → Skip

Note that theTimercomponent is in charge of time control. It is activated bysetsignal,
and aftert1 time elapses, it notifies the processR′

1 via signalreset.
To verify R1 meets the property that a disturbance can only be received after the

controller is enabled fort1 units of time (we refer to it ast1-delay propertyin what
follows), we only need to check the following untimed property for R′

1:

∀utr0, utr1, utr2 · ((utr = utr0 a 〈enable〉a utr1 a 〈disturb〉a utr2 ∧
utr1 ↾ {enable, disturb} = 〈〉) ⇒ utr1 = 〈set, reset〉)

It states that there are only two timer eventssetandresetbetween anenableevent and its
consecutivedisturbevent. The eventsetactivates the timer, whileresetdeactivates the
timer, which indicatest1 time is passed. Together with the timer action, it ensures the
t1-delay property. Note thatutr denotes the (untimed) trace, i.e. a sequence of events,
while utri’s are segments of the trace. Formal definitions will be givenin a later section.

The soundness for the separation of timing features from logical features can be
specified in terms of the following equation:

R1 = (R′
1|[{set, reset}]|Timer)\{set, reset}

This can be easily proved using the expansion laws for parallel composition. The right
hand side is a parallel composition of an untimed action (R′

1) and a timer action (Timer)
which communicate with each other via two internal eventssetandreset(hidden from
outside). Such a parallel composition is the normal form we shall adopt for verification.



2.2 The Normal Form

In this subsection, we shall deal with the complete specification for the alarm controller.
The complete timed specification for the alarm controller isgiven as follows.

Disable =̂ disable→ Skip
Running =̂ Disable2 (disturb→ Active)

Active =̂ Disable
t2
� (alarm→ Disable)

Alarm =̂ µX • enable→ (Disable
t1
� Running); X

Note that eventdisableis used to disable the controller, eventalarm signals the firing
of the alarm. For more flexibility, we allow the controller tobe disabled at any point
during running. We use timeout constructs (defined later in Section 3.2) to capture this
requirement. TakeAlarm as an example, once the controller is enabled, it is either dis-
abled (and then waits forenableagain), or is ready to receive any disturbance aftert1
(Running).

As explained in last subsection, we shall transform the timed specificationAlarm to
a normal form composed of an untimed specification in parallel with a Timeraction.

We shall use functionΦ to abstract away timing features from a timed action. The
complete definition forΦ will be given when we present the syntax of the language.
The following is the result after applying it to the above specification.

Φ(Disable) =̂ disable→ Skip
Φ(Running) =̂ Φ(Disable) 2 (disturb→ Φ(Active))
Φ(Active) =̂ set!t2 →

((disable→ halt! → Skip) 2 (reset? → alarm→ Φ(Disable)))
Φ(Alarm) =̂ µX • enable→ set!t1 →

((disable→ halt! → Skip) 2 (reset? → Φ(Running))); X

Note that a new timer eventhalt is used to stop the timer when eventdisablearrives
during the ticking of the clock. There are two timing requirements in the specification,
thus we design the general timer action as follows:

Timer=̂ µX • set?x→ ((halt? → Skip) 2 (Waitx; reset! → Skip)); X

Note that when the timer issetto work, a value is passed to it (stored inx) to indicate
the time duration that it should count before it generates aresetsignal.

Now the timed specificationAlarm is transformed to the following normal form:

(Φ(Alarm)|[{set, reset, halt}]|Timer)\({set, reset, halt}

The following theorem ensures the soundness of the abstraction.

Theorem 1. We have

Alarm = (Φ(Alarm)|[{set, reset, halt}]|Timer)\{set, reset, halt}

It is proved using parallel expansion and hiding laws.



2.3 Verification of Timing Properties in the Untimed Model

In this subsection we shall demonstrate that timing requirements can be verified in the
untimed framework.

There are two timing requirements for the alarm controller,namely,

– once enabled, the controller should wait at leastt1 units of time before it can receive
any disturbance from the sensor.

– once a disturbance is received, the controller should wait at leastt2 units of time
before it fires the alarm.

As timing is controlled by the timer actions in our normal form, we can abstract
away timing from the above requirements by adding in timer events that are in charge of
activating/deactivating the timers. The timing requirements are thus specified in terms
of timer events as follows:

R1(utr) =̂ ∀utr0, utr1, utr2 · (utr = utr0 a 〈enable〉a utr1 a 〈disturb〉a utr2 ∧
utr1 ↾ {enable, disturb} = 〈〉) ⇒ (utr1 = 〈set.t1, reset〉)

R2(utr) =̂ ∀utr0, utr1, utr2 · (utr = utr0 a 〈disturb〉a utr1 a 〈alarm〉a utr2 ∧
utr1 ↾ {disturb, alarm} = 〈〉) ⇒ (utr1 = 〈set.t2, reset〉)

The overall timing requirement for the alarm controller is thus as below:

Req(utr) =̂ R1(utr) ∧ R2(utr)

To verify the timed specification (Alarm) meets the timing requirements, we only
need to demonstrate that the untimed specification (Φ(Alarm)) meets the above require-
ment, that is,Φ(Alarm) ⇒ Req(utr).

Theorem 2. SupposeΦ(Alarm) and Req(utr) are given as above, we have

|[Φ(Alarm)]| ⇒ Req(utr)

where|[P]| denotes the observation-oriented semantics for program P.

Proof From the definition ofΦ(Alarm),

Φ(Alarm) = P;Φ(Alarm)

whereP =̂ enable→ set!t1 → ((disable→ halt! → Skip) 2 (reset? → Φ(Running))).
Thus the semantic predicate|[Φ(Alarm)]| is subject to

|[Φ(Alarm)]| = |[P]|; |[Φ(Alarm)]|

That is, it is the fixed point of the equationX = µX · (|[P]|; X).
Note that we also use the operator (;) to represent the concatenation of two obser-

vational predicates. The formal definition is given in [8].
Due to the following fixed point theorem ([8]):

F(S) ⊒ S implies νX · F(S) ⊒ S

and the fact that there is only one fixed point in this case, we only need to prove

|[P]|; Req(utr) ⇒ Req(utr)



It is thus straightforward as all possible traces ofP lie in the following set:

trace(P) = {〈enable, set.t1, disable〉, 〈enable, set.t1, disable, halt〉,
〈enable, set.t1, reset, disable〉, 〈enable, set.t1, reset, disturb, set.t2, disable〉,
〈enable, set.t1, reset, disturb, set.t2, disable, halt〉}
∪ {utr | utr � 〈enable, set.t1, reset, disturb, set.t2, reset, alarm, disable〉}

2

Note that the proof is much simpler and more straightforwardin comparison with
the existing proof given in [9] due to the property-orientedmodel we use.

3 The Language

This section introduces our language CZ that we use to instantiate our method. We
shall give both the untimed and timed models.

3.1 The Untimed Model

The syntax for CZ is given in Fig. 1.

Action ::= Skip| Stop| Chaos
| Communication→ Action | b&Action
| Action; Action | Action2Action | Action⊓ Action
| Action|[E]|Action | Action\E | µX • Action
| Command

Command ::= x := e | Action� b � Action
Communication::= c?[x] | c![e] | c[.e]

Fig. 1. CZ : the untimed model

Note thate represents an expression, whileb a boolean expression. The setEdenotes
channel names. The notation[u] indicates that termu is optional.

Skipis a basic action that terminates immediately.Stoprepresents an abnormal ter-
mination which simply puts a program in an ever waiting state. Chaosis the worst
action, nothing can be said about its behaviour. In aguarded action(b&Action), the
action is preceded by a predicate which has to be true for the action to take place, oth-
erwise the guarded action behaves asStop. An internal choicebetween two actions
(Action⊓Action) selects one of the two actions in a non-deterministic manner, whereas
theexternal choice(Action2Action) waits for any of the two actions to interact with the
environment. The first action that interacts with the environment (either by synchronis-
ing on an event or terminating) is the resulting action.

Thesequential compositionof two actions (Action; Action) behaves as the first ac-
tion, followed immediately by the second action upon termination of the first. An action
can be prefixed with a communication event (input or output) which will take place be-
fore the action starts. The action waits for the other actions that need to synchronise on



the channel before the communication can take place. Theparallel compositionof two
actions (Action|[cs]|Action) involves a set (cs) containing the events they need to syn-
chronise on. Ahidingoperation also takes a set of events (cs). The set is to be excluded
from the resulting observation of the action, hidden eventscan no longer be seen by
other actions.

An observation-oriented model for theCircus language based on Hoare and He’s
Unifying Theories of Programming [8] is explored in detail in [23, 21], while the unified
model for TCOZ is reported in [14]. As our language CZ is a subset of the above two
languages, we can borrow the following observation variables from them.

– ok, ok′ : Boolean. Whenok is true, it states that the program has started andok′ =
true indicates that the program has terminated or is in an intermediate stable state.

– wait,wait′ : Boolean. Whenwait is true, the program starts in an intermediate state.
Whenwait′ is true the program has not terminated; when it isfalse, it indicates a
final observation.

– state, state′ are mappings from program variable names to values. The undashed
variable represents the initial valuation of the program variables, while the dashed
one denotes the valuation at the final observation.

– utr, utr′ : seq Eventare the sequence of observations on the program’s interactions
with its environment.utr denotes the observations that occur before the program
starts, andutr′ the final observation. Each element of the sequence is an event.

– ref, ref′ : P Eventstands for the set of events the program can refuse.

A single observation is given by the combination of the abovevariables. A program
is given as predicates over the observation variables. We give the semantics for basic ac-
tions and communication events in what follows to show the use of the above semantic
variables. Readers can refer to [23, 14] for the complete setof semantic definitions.

Basic Action The semantics of the actionSkipis given as a program that can only
terminate normally and has no interaction with the environment.

|[Skip]| =̂ ok′ ∧ ¬wait′ ∧ utr′ = utr ∧ state′ = state

The actionStopis given as a predicate that waits for ever; it does not changethe
state.

|[Stop]| =̂ ok′ ∧ wait′ ∧ utr′ = utr

The assignment attributes a value to a variable in the current state. If the variable
does not exist it will be added, otherwise its value will be over written. The assignment
operation is instantaneous and does not consume time.

|[x := e]| =̂ ok′ ∧ ¬wait′ ∧ utr′ = utr ∧ state′ = state⊕ {x 7→ e}

Note that we abuse the samee in the right hand side to denote the value ofe in state.
Communication An action can engage in a communication if all the other actions

involved in the same communication are ready to do so. We model this with the help
of two predicates.wait com(c) models the waiting state of an action to communicate
on channelc. The only possible observation is that the communication channel cannot



appear in the refusal set during the observation period.term com(c.e) represents the act
of communicating a valuee over a channelc.

wait com(c) =̂ ok′ ∧ wait′ ∧ c /∈ ref′ ∧ utr′ = utr
term com(c.e) =̂ ok′ ∧ ¬wait′ ∧ utr′ = utr a 〈c〉

The semantics of the output command is given below.

|[c!e]| =̂ wait com(c) ∨ term com(c.e) ∧ state′ = state

The input command can be defined in a similar manner.

|[c?x]| =̂ wait com(c) ∨ term com(c.e) ∧ state′ = state⊕ {x 7→ e}

The semantics of the communication prefix can be given in terms of communication
and of the sequential composition. The actioncommis either an input or an output event,
or an abstract event name.

|[comm→ Action]| =̂ |[comm; Action]|

3.2 The Timed Model

The timed language TCZ extends the untimed language CZ with two new time operators
given in Fig. 2.

Action ::= · · ·
| Wait t (time delay)

| Action
t

� Action(timeout)

Fig. 2. TCZ: the timed model

The action(Wait t) will delay the system for an amount of time determined by
the positive integer expressiont before terminating normally. The timeout construct

(Action
t
� Action) takes a positive integer value as the length of the timeout. The timeout

operator acts as a time guarded choice. It behaves as either the first or the second action.
If the first action performs an observable event or terminates before the specified time
elapses, it is chosen. Otherwise, the first action will be suspended and the only possible
observations are those produced by the second action.

The semantics for the timed language is given with the same observation variables
ok, ok′,wait,wait′, stateandstate′, while the variablesutr, utr′ andref′ are replaced by
a new pair of variablesttr, ttr′ denoting communication traces in the timed model.

The variablettr records the observations of communication events that occur before
the program starts, andttr′ records the final observation. Each element of the sequence
represents an observation in one time unit. Each observation element is composed of
a tuple, where the first element of the tuple is the sequence ofevents that occur in the



time unit, and the second is the associated set of refusals atthe end of the same time
unit.

ttr, ttr′ : seq(seq Event× P Event)

We maintain an auxiliary variableutr that represents a sequence of events that have
occurred since the last observation. In this observation weare interested in recording
only the events without time.

utr : seq Event
utr = flat(ttr′) − flat(ttr)

whereflat : seq(seq Event× P Event) → seq Event
flat(〈〉) = 〈〉
flat(〈el, ref〉a S) = ela flat(S)

We show the use of these new variables in the definition of the (Waitd) action. The
only possible behaviour for this action is to wait for the specified number of units of
time to pass before terminating immediately.

|[Waitd]|time =̂ ((ok′ ∧ wait′ ∧ (#ttr′ − #ttr) < d)
∨(ok′ ∧ ¬wait′ ∧ (#ttr′ − #ttr) = d)) ∧ utr = 〈〉

The timeout action can be defined in terms of external choice as in [17]. The fol-
lowing is a direct definition.

|[P t
� Q]|time =̂ (P∧ utr = 〈〉 ∧ #ttr′−#ttr ≤ t)∨

(∃k : #ttr < k ≤ #ttr+t, ∃t̃tr • π1(ttr′(k)) 6= 〈〉 ∧ ttr � t̃tr ∧ #t̃tr−#ttr = k∧
(∀i : #ttr < i < #ttr+k • π1(ttr′(i)) = 〈〉 ∧ t̃tr(i) = ttr′(i)) ∧ P[t̃tr/ttr]) ∨
(∃t̃tr • ttr � t̃tr ∧ #t̃tr − #ttr = t∧
(∀i : #ttr < i < #ttr+t • π1(ttr′(i)) = 〈〉 ∧ t̃tr(i) = ttr′(i)) ∧ Q[t̃tr/ttr])

Note that ifP is ready to react to the environment exactly when it has waited for
time t, the timeout process choosesP or Q non-deterministically.

Given the semantic model for a TCZ program, we can use the linking function given
in [17] to abstract away time information, and thus obtain the corresponding untimed
model. This abstraction is useful when we are interested in the verification of time-
independent safety properties. In this paper, we shall not elaborate on this aspect but
focus more on timing properties.

4 The Approach

This section is devoted to the general approach that we propose to the verification of
real-time systems. The verification framework is given in Fig. 3.

Fig. 3 shows us two different approaches. The first one is a topdown approach
where we start with a timed program and we are interested in checking if the timed
program satisfies the time requirements. The second approach is a bottom up method
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Fig. 3. The Property-Oriented Models for Verification

where we start with an untimed program and add time information where requested.
The need for the second one is due to the fact that system development is usually done
in stages, in the early stages of development the system designer concentrates on the be-
haviourial/logical properties of the system, while leaving timing requirement to a later
stage. Another aspect is that in some cases it is necessary toidentify the hardware used
in the implementation to have a clear understanding of the time delays and timeouts
that can occur in the system and the points in which they may occur. In the rest of this
section we present our approach in detail.

4.1 The Validation Approach

This approach is concerned with the validation of the time requirements of the system
using the untimed model. Fig. 3 illustrates the steps for using the framework. The steps
to carry out the validation of the time requirements are summarised as follows.

– We start with a specification of our system in the timed model using the timed
version of the language. The system designer gives a complete description of the
system. All the operators of the language can be used at this stage including parallel
composition The timed semantic model of the language is usedin this step.

– If we need to verify untimed safety properties, we can use an abstraction function
(e.g. the one given in [17]) to obtain an untimed version of the original specification.
Such an untimed program can be used to validate the behaviourrequirements and
safety requirements that are not time dependent. We do not elaborate this aspect in
this paper.

– With the help of the normal form functionΦ, we obtain a version of the program
that has the same semantics as the original program but contains internal timer
events. In this step the expansion laws should be used as wellto remove all the
parallel compositions.

– Time requirements can be expressed in the untimed model withtimer events. We
can use this untimed model to prove the design meets the time requirements. This
can be done using theorem provers or existing (untimed) model checkers.



4.2 The Normal Form

Usually timed programs are implemented with timers, this can be either the system
clock or a dedicated timer. Following the same criteria we give a normal form for the
time operators. The implementation of the time operators isgiven as a timer and an
untimed program that is synchronised with the timer on dedicated events.

As mentioned above, the eventsset, halt, and resetare timer events, used by the
program to synchronise with and control a timer. The following is the timer program:

Timer=̂ µX • set?x→ ((halt? → Skip)2(Waitx; (reset! → Skip))); X

The timer is initiated with the eventsetwhich serves as a trigger. The behaviour of the
timer is as follows: after set by its environment, it waits for the setsignal to set the
timer again if an interrupt eventhalt arrives before the timeout, or it emits a signalreset
and starts to wait for anothersetafter it has counted for the designated period of time
(stored inx) set by the environment. The eventresetis similar to other events used in
the language, whereas the eventssetandhalt have special properties. We shall explore
these differences further in the next subsection.

Given the definition for a timer action, we aim to generate a functionΦ that takes
as input a timed program and returns the corresponding untimed program with timer
events. That is, for any sequential programP, the functionΦ should satisfy the following
equation:

(†) P = Φ(P) par Timer

Given actionsX andY, such thatαX∩ αY = {set, reset, halt},

X par Y =̂ (X |[{set, reset, halt}]| Y)\{set, reset, halt}

Note that in the action(X par Y), X behaves as a master action, whileY acts as a slave
action. The overall action terminates if and only if the master actionX terminates.

As timers are not allowed to be shared by parallel actions, several timer actions are
needed in the equation(†) in case thatP is a parallel action.

We shall first give a mappingψ to abstract away time information from timed traces,
while adding timer events properly. This can be regarded as adeep semantic link be-
tween a timed process and a heterogeneous communicating process. We only need to
define the mappingψ onmaximal traces.

Definition 1. A timed trace ttr0 from a prefix-closed trace set ismaximal, if for any
trace ttr1 that satisfies#ttr0 = #ttr1, and∀i : 1..#ttr0 · π1(ttr0(i)) = π1(ttr1(i)), we
have∀i : 1..#ttr0 · π2(ttr0(i)) ⊇ π2(ttr1(i)).

Definition 2. Given a set of timed traces TTR, and a single prefixs, we define a set of
timed traces “after”s as follows:

TTR/s =̂ {ttr | (sa ttr) ∈ TTR}
Given a trace ttr, we use pref(ttr) to denote the prefix-closed set of traces made out

of all prefixes of ttr. We extend it to a set of traces TTR as

pref(TTR) =̂
⋃

{pref(ttr) | ttr ∈ TTR}



Given two set of traces TTR1, and TTR2, the concatenation of them is given as

TTR1
a TTR2 =̂ {ttr1

a ttr2 | ttri ∈ TTRi, for i = 1, 2}
Definition 3 (Semantic Mapping).LetA denote the maximal set of events of interest,
andA∗ denote the sequence closure overA. Given a set of maximal traces TTR, the
corresponding set of heterogeneous tracesψ(TTR) is defined as follows:

– TTR= {〈(〈√〉,X)〉}.
ψ(TTR) =̂ {〈√〉}.

– ∃ttr ∈ TTR· ∀i : 1≤i≤#ttr · π1(ttr(i)) = A∗ ∧ π2(ttr(i)) = A.
ψ(TTR) =̂ A∗.

– ∀ttr ∈ TTR· ∀i : 1≤i≤#ttr · π1(ttr(i)) = 〈〉 ∧ π2(ttr(i)) = A.
ψ(TTR) =̂ {〈〉}.

– TTR= pref(ttr), where ttr= 〈(〈〉,A), .., (〈〉,A)〉, and#ttr = n.
ψ(TTR) =̂ pref(〈set.n, reset〉).

– pref(ttr) ⊆ TTR, where ttr= 〈(〈〉,A−C), .., (〈〉,A−C), (〈〉,A−C−B), (〈〉,A−B)〉,
#ttr = n+1, and B and C are finite sets of events, C= {c1, .., ck}.
Let ttri = 〈(〈〉,A−C), .., (〈〉,A−C)〉a 〈(si,Xi)〉, where head(si) = ci ∈ C, for
i = 1, .., k.
ψ(TTR) =̂ pref(〈set.n, reset〉) ∪ {〈set.n, reset〉a s | s ∈ ψ(TTR/ttr)} ∪⋃k

i=1( pref(〈set.n, ci, halt〉)
∪{〈set.n, ci, halt〉a tail(si)

a s | s ∈ ψ(TTR/ttri)})
– For other cases,ψ(TTR) =̂ ∪ {flat(ttr) | ttr ∈ TTR}.

We assume that any sequential action can be written in the guarded normal form
2

n
i=1(ci → Pi). We constructΦ as follows.

Definition 4 (Syntactic Mapping).

Φ(Skip) =̂ Skip
Φ(Chaos) =̂ Chaos
Φ(Stop) =̂ Stop

Φ(x := e) =̂ x := e
Φ(b&P) =̂ b&Φ(P)

Φ(P � b� Q) =̂ Φ(P) � b� Φ(Q)
Φ(Wait t) =̂ set!t→ reset? → Skip

Φ(2k
i=1(ci → Pi)) =̂ 21≤i≤k(ci → Φ(Pi))

Φ(P2Q) =̂ Φ(P)2Φ(Q)
Φ(P⊓ Q) =̂ Φ(P) ⊓ Φ(Q)
Φ(P; Q) =̂ Φ(P);Φ(Q)
Φ(P\E) =̂ Φ(P)\E

Φ((2n
i=1(ci→Pi))

t
� Q) =̂ set!t→((2n

i=1(ci→halt!→Φ(Pi))) 2 (reset?→Φ(Q)))
Φ(µX • 2

n
i=1(ci → Pi(X))) =̂ µX • 2

n
i=1(ci → Φ(Pi(X)))

Theorem 3. The syntactic mappingΦ conforms with the semantic mappingψ. That is,
given any program P fromTCZ, we have

ψ(|[P]|time) = |[Φ(P)]|
The proof is straightforward by a structural induction onP.

Theorem 4. The syntactic mappingΦ is a homomorphic solution to the equation (†).



4.3 Algebraic Laws

The set of processes generated by functionΦ are called asheterogeneous communicat-
ing processes(HCP). It can be regarded as an extension of Communicating Sequential
Processes (CSP) (if we ignore state features). It enriched CSP with timer events, thus
is also subject to the healthiness conditions for CSP (Chapter 8 of [8]). However, as
timer events have the same behaviour in both synchronous andasynchronous models, it
satisfies some additional healthiness conditions. These additional properties will yield a
subset of CSP processes. Therefore, although heterogeneous communicating processes
are an extension of CSP, they can be simulated by a subset of CSP.

We shall present the additional properties in what follows.

HC1 |[P]| ∧ utr a 〈set1, set2〉 � utr′ = |[P]| ∧ utr a 〈set2, set1〉 � utr′

It states that, if a heterogeneous communicating process sets two timers consecutively,
then it can set them in any order.

Similarly, we have the following healthiness conditions.

HC2 |[P]| ∧ utr a 〈set1, halt2〉 � utr′ = |[P]| ∧ utr a 〈halt2, set1〉 � utr′

HC3 |[P]| ∧ utr a 〈halt1, halt2〉 � utr′ = |[P]| ∧ utr a 〈halt2, halt1〉 � utr′

The following condition indicates that no heterogeneous communicating process can
refuse both eventshalt andresetsimultaneously when the timer is activated.

HC4 |[P]| ∧ utr′ = utr0 a 〈set〉a utr1 ∧ utr1↾{halt, reset}=〈〉 ⇒ {halt, reset} * ref′

In what follows, we give some expansion laws to transform a parallel action into a
sequential one. Take note that timer events play different roles from normal events.

In the following laws, we assumeP andQ are already in guarded normal forms:
P = 2

n
i=1(ci → Pi), Q = 2

m
k=1(dk → Qk), where for alli, k, ci 6= dk, andci, dk

are not timer events. Letcs = (αP∩ αQ)\{set, halt, reset}.
The following one is the standard expansion law where no timer events are involved.

Law 1 P|[cs]|Q =

{2i,k:ci=dk∈cs(ci → (Pi|[cs]|Qk))
22i:ci /∈cs(ci → (Pi|[cs]|Q))
22k:dk /∈cs(dk → (P|[cs]|Qk))

If timer events are involved, we should use the following expansion laws.

Law 2 (set1→P)|[cs]|(set2→Q) =
(set1→set2→(P|[cs]|Q)) ⊓ (set2→set1→(P|[cs]|Q))

Note that the two output eventsset1 andset2 can occur in any order, which is re-
flected by the internal choice. So do the twohalt events or a mix of them, as illustrated
by the following two laws.

Law 3 (set1→P)|[cs]|(halt2→Q) =
(set1→halt2→(P|[cs]|Q)) ⊓ (halt2→set1→(P|[cs]|Q))



Law 4 (halt1→P)|[cs]|(halt2→Q) =
(halt1→halt2→(P|[cs]|Q)) ⊓ (halt2→halt1→(P|[cs]|Q))

The eventssetandhalt from the master process have higher priority than thereset
event emitted by the slave process. This is reflected in the following two laws:

Law 5 (set1 → P)|[cs]|(reset2 → Q) = set1 → (P|[cs]|(reset2 → Q))

Law 6 (halt1 → P)|[cs]|(reset2 → Q) = halt1 → (P|[cs]|(reset2 → Q))

Law 7 (reset1 → P)|[cs]|(reset2 → Q) =
(reset1 → (P|[cs]|(reset2 → Q))) 2 (reset2 → ((reset1 → P)|[cs]|Q))

Take note that different fromLaw 2, external choice is used here as the two in-
put eventsreset1 andreset2 have to wait for the corresponding output events from the
environment (Timer processes).

5 Related Work and Conclusion

The two mostly related integrated formal specification languages are TCOZ [11] and
Circus [21]. Circus is a combination of CSP and Z. It also includes specification state-
ments found in Morgan’s refinement calculus [13] and Dijkstra’s language of guarded
commands [3].Circushas a well-defined syntax and a formal semantics [23, 21] based
on Hoare and He’s unifying theories of programming [8]. Casestudies using the lan-
guage are explored in [22] to show its power of expressiveness. A development method
for Circususing refinement is described in [15]. A timed model forCircuswas provided
in [17]. Our untimed model CZ is a subset ofCircus.

TCOZ is a blending of Object-Z [5, 18] and Timed CSP [16, 2], aiming at specifi-
cation for complex real-time systems. The semantic link between the two formalisms
Timed CSP and Object-Z is reported in [12]. TCOZ was enrichedwith sensors/actuators
in [10]. A unified observation model for TCOZ is presented in [14]. Recent work
[4] proposed a projection from TCOZ specifications to Timed Automata Patterns for
model-checking timing properties using UPPAAL. Their syntactical mapping is proved
sound under bisimulation. In our paper, we propose to verifytiming properties in un-
timed framework by constructing a property-oriented untimed model, which, we be-
lieve, should be much simpler than doing it within the timed model.

Instead of using the same complex model as both semantic and reasoning models,
we advocate the construction of small property-oriented models, that are separated from
the whole semantic model, for verification of particular kinds of properties. In our in-
stantiation in terms of timing properties, the approach does make analysis and reasoning
about certain timing properties simpler and easier. A deep semantic link has been built
between the timed model and the untimed model in the observation level, which ensures
that it is safe to use a smaller property-oriented model for verification.
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