
A New Sub-Pixel Map for Image Analysis

Hans Meine and Ullrich Köthe

Cognitive Systems Laboratory, University of Hamburg ,
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
{meine,koethe}@informatik.uni-hamburg.de

Abstract. Planar maps have been proposed as a powerful and easy-to-
use representation for various kinds of image analysis results, but so far
they are restricted to pixel accuracy. This leads to limitations in the rep-
resentation of complex structures (such as junctions, triangulations, and
skeletons) and discards the sub-pixel information available in grayvalue
and color images. We extend the planar map formalism to sub-pixel ac-
curacy and introduce various algorithms to create such a map, thereby
demonstrating signi�cant gains over the existing approaches.

1 Introduction

When information is extracted from an image's raw pixel data, the results must
be stored in a well-de�ned way. Still, many image analysis approaches use their
own representations (labeled images, region adjacency graphs, regular, or irreg-
ular pyramids, edgel chains, polygons, etc.). This is not only highly confusing,
but also prevents algorithms that perfectly complement each other from actually
being used together � their representation are simply incompatible. During the
last decade, several researchers have worked on powerful uni�ed representations.

The most promising approach is based on the notion of planar maps [1,2,3].
Planar maps encode the topological entities (regions, edges, vertices) of a par-
titioning of the (image) plane, their relations (neighborhood, boundary, con-
tainment, etc.) and their geometry. Basic modi�cation operations support well-
de�ned manipulations of an existing map structure. Similar concepts have been
used in computer graphics for a long time [4]. Two key problems must be solved
to enable their adaptation to image analysis: �rst, image analysis algorithms
must create valid map structures. This requires the establishment of a formal
correspondence between the initial pixel data and the map's entities. Second,
the map must be realized in an e�cient and easy-to-use way due to the huge
amount of data and the complexity of the image analysis problem in itself.

So far, these goals have only been achieved with grid-based planar maps.
Here, regions, edges and vertices correspond directly to sets of pixels and/or
inter-pixel boundaries, i.e. can be accessed and manipulated by fast array oper-
ations. The map entities can be derived from labeled images, watershed segmen-
tations, and pixel-based edge detectors (see Sect. 2.2). However, the gray values
or colors of real images contain a considerable amount of sub-pixel information.
For example, in real images step edges are always blurred by the camera's point

spread function (before sampling) and by the edge detection �lters (after sam-
pling). It is well known that the location of the ideal step can be recovered to
at least 1/10 of a pixel by careful analysis of the blurred step's shape. This
information is discarded when the representation is restricted to pixel accuracy.

Another limitation of grid-based maps is the representation of junctions. In an
inter-pixel boundary map, at most four edges at 90◦ of each other can ever meet
at a vertex. A pixel-based map can in principle represent more complex junctions,
but these junctions are no longer single Euclidean points [2]. In real images, the
corner and junction geometry is often much more complicated. This is one of
the reasons why vectorial data structures are preferred for the representation of
object geometry in computer graphics. Moreover, grid-based representations are
harder to re�ne as new information arrives, whereas vectorial representations
can be re�ned ad in�nitum.

In this paper, we extend the existing grid-based map formalism to sub-pixel
accuracy. We show that the map can still be e�ciently realized by means of
polygonal lines. Finally, we demonstrate various algorithms to create our new
representation from image data, not only covering boundary detection, but also
the creation of Delaunay triangulations and skeletons. Comparisons of our new
results with their pixel-accurate counterparts reveal a signi�cant gain.

2 A Uni�ed Representation for

Topology and Geometry

Before we discuss our new sub-pixel accurate GeoMap, let us summarize previous
e�orts for �nding a suitable representation for image segmentation purposes. Seg-
mentation methods impose the following requirements on such a structure [5,6,2]:

1. Topology Inspection Algorithms need to access topological properties like
the neighborhoods of regions and/or edges, the number of holes, etc. Thus,
a sound topological formalism is required.

2. Geometry InspectionDuring the segmentation process, photometric / geo-
metric properties of regions and / or boundaries are to be derived (e.g. mean
color, variance, size, etc.); typical subtasks include region reconstruction in
a given image, region containment queries, or inspecting image properties
along boundaries (e.g. the image gradient).

3. Modi�cations If the representation is to be useful for the segmentation
process itself, it must not be static. We need operations (e.g. merging two
regions) modifying both the topology and the geometry in a consistent way.

2.1 Topology: Combinatorial Maps

For the representation of topology in image processing, a number of graph-like
structures have been used (dating back to the RAG [7]). Nowadays, the more
powerful formalism of combinatorial maps is commonly used, since it allows to
e�ciently encode most information on the embedding of a planar graph:

−8
8

−2

3−3

4−4

6 −6

−7

7
2

−1

−5

1

5

α (−2) = 2

σ (−2) = 3

ϕ (−2) = −6

(a) combinatorial map (two
components)

(b) representation with inter-
pixel contours [8]

FaceFace Face FaceFaceFaceFaceFaceFaceFaceFace FaceFaceFaceFaceFaceFaceFace

Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face

Face

FaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFace

FaceFaceFaceFaceFaceFaceFaceFaceFaceFace

Face

Face

FaceFace

FaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFace

FaceFaceFace

Face

Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face

Face

Face Face Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face

Face

Face Face

Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face

Face Face

Face

Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face

Face

FaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFace

FaceFaceFaceFaceFaceFaceFaceFace

Face

FaceFaceFaceFaceFace

FaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFace

Face

FaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFace

FaceFaceFaceFaceFaceFace

Face

FaceFaceFaceFaceFaceFaceFace

FaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFace

Face

FaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFace

FaceFaceFaceFaceFaceFaceFaceFace

Face

FaceFaceFaceFaceFace

FaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFace

Face

Face

FaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFace

FaceFaceFaceFaceFaceFace

Face

FaceFaceFaceFaceFaceFaceFace

FaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFaceFace

Face

Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face

Face Face

Face

Face Face Face Face Face Face Face Face Face Face Face Face Face Face

FaceFaceFaceFaceFaceFaceFaceFace

FaceFaceFaceFaceFaceFace

Face

Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face

Face

Face Face Face Face Face Face Face Face Face Face Face Face FaceFace

FaceFaceFaceFaceFaceFace FaceFaceFaceFaceFaceFace

FaceFace

Edge

EdgeEdge

Edge

EdgeEdge

Edge

Edge

Edge Edge Edge

Edge Edge Edge Edge

EdgeEdge Edge Edge

Edge Edge

Edge Edge Edge Edge Edge Edge Edge Edge

Edge Edge

EdgeEdge Edge Edge Edge Edge Edge Edge Edge Edge Edge Edge EdgeEdgeEdgeEdge

Edge Edge Edge

Edge Edge Edge Edge

Edge Edge Edge Edge

Edge Edge Edge Edge

Edge

EdgeEdgeEdgeEdgeEdgeEdgeEdgeEdgeEdgeEdgeEdge

EdgeEdge

Edge

Edge Edge

Edge

Edge Edge

Edge Edge

Edge Edge

Edge Edge

Edge Edge

Edge

Edge

Edge Edge Edge

Edge Edge Edge Edge

Edge Edge Edge Edge

Edge Edge Edge

Edge

Edge Edge Edge Edge

Edge

Edge

Edge

Edge

Edge Edge Edge Edge Edge Edge

NodeNode

Node

NodeNode

3 3 3 4 4 4 3 3 1

1 3 3 3 3 3 3 3

3

3 3 3 3 3 3 4 4 4 3 3 1

1 3 3 3 3 3

3

3 3 1

1 3 3 3 3 3 3 3 3 3 3 1

1 3

3

3 3 3 1

1 3 3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 1

1 3 3 3 3 3 3 3 3 3 3 3

3

2 2 2 1

1 1

1 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 3 3 3 3 4 4 4 3 3 1

1 3 3

1

3 3 3 3 1

1 3 3 3 3 3 3 3 3 3 3 3 1

5

3 5 5 5 5 3 3 3 3 3 3 3 3 3 1

1 3

1

3 1

1 3 5 5 5 5 3 3 3 3 3 3 3 3 3 1

5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

1

5 5 5 3 3 3 3 3 3 3 3 3 1

1 1

1 1 1

3

3 3 3 3 3 3 3 3 3 1

1 3 5 5 5 5 3

5

5 5 5 3 3 3 3 3 3 3 3 3 1

1 3 5 5 5

3

3 3 3 3 1

1 3 5 5 5 5 3 3 3 3 3 3 3

3

3 3 3 3 3 3 3 1

1 3 5 5 5 5 3 3 3 3

2

2222111111

11111111221

1

111222222111111

111111

1

1

11111111111111111111

1

111111

111111111111111 1

2222211

11122222222222

2

2222222222221

122222222 1

1

11111222222221111

111

1

211

1111222

1

1 1 2 2 21 2 2 2 2

77775

25

6

25

66666

7

775

275

2775

2775

2

1

11

11

1

11

11

1

2 2 2 2

1

1

6666666666

11

11

1

3

3 2

5 3 2

5 3 3 2

5 3 3 2

5

222222444455

23

3

7 7 7 2

5 2

5 3 3 3 3 3 23

35

235

2

3

335

2335

54

6

32

Face Face Face

Face Face Face

Face Face Face

Face

Face Face Face

Face Face Face

Edge

Edge

Edge

Edge Edge

Edge

Edge

Node

1 1 1

1 1 2

1 2 2

1

1 3 3

1 3 3

1

1

1

6 6

5

5

2

(c) representation with
pixel boundaries [6,2]

Fig. 1. Examples of discrete embeddings of combinatorial maps.

De�nition 1. A combinatorial map is a triple (D,σ, α) where D is a set of
darts (half-edges), and σ, α are permutations de�ned on D such that all α orbits
have length 2 and the map is connected, i.e. there exists a σ-α-path between any
two darts:

∀d1, d2 ∈ D: ∃π ∈

 ∏
0≤i≤k

τi

∣∣∣∣∣∣ τi ∈ {σ, α} , k ∈ N

: π (d1) = d2

The dual permutation of σ is de�ned as ϕ(d) = σ−1(α(d)), where σ−1 denotes
the σ-predecessor of d.

The orbits of σ, α, and ϕ are called vertices, edges, and faces respectively, and
we use the notation σ?(d), α?(d) and ϕ?(d) for the σ-, α-, and ϕ-orbits which
contain d. The orbit σ?(d) is the start vertex of d, and ϕ?(d) is the contour of the
face to the left of d. A combinatorial map is planar, i� the number of vertices,
edges, and faces conforms to Euler's equation:

|σ|−|α|+|ϕ|=2 (where |α| denotes the number of orbits in α etc.) (1)

When one face is designated as the (in�nite) exterior face, all possible embed-
dings of a planar combinatorial map become topologically equivalent. By conven-
tion, one uses positive and negative integer labels for the darts so that α (d) = −d
for each dart labeled d. Since ϕ is determined through α and σ, a single lookup
table for the permutation σ is su�cient to represent a combinatorial map.

De�nition 1 does not yet allow to represent multiple boundaries which com-
monly arise in image segmentation (inner contours like the window in Fig. 1(a)).
This is usually solved by using one planar combinatorial map with a marked

exterior face per connected component, plus an additional inclusion relation be-
tween the maps which associates the exterior faces with their parent faces [9,10].

An alternative is to introduce auxiliary edges [11] to make the map con-
nected, which we decided against because it spoils the one-to-one correspondence
between topological edges and their geometrical counterparts (we do not want
to make up geometrical information for the auxiliary edges).

Note that it is perfectly legal that −d ∈ ϕ?(d), which means that edge α?(d)
has the same region on both its left and right side. Such edges are called bridges,
since every path between their two end-vertices must contain d or −d. In many
publications, bridges have been considered illegal [11,1], but in fact they are
required to (a) represent incomplete boundaries (e.g. arising from edge detectors
like Canny's [12], which in general does not deliver complete boundaries, or
during sketching) or for (b) representing skeletons (see Sect. 4.4 and Fig. 7).

Given a set of combinatorial maps (Di, σi, αi) with i 6= j ⇒ Di ∩Dj = ∅, it
is possible to de�ne D =

⋃
Di and compose the permutations into a single tuple

(D,σ, α) representing all components, such that e.g. d ∈ Di ⇒ α (d) = αi (d).
In the following, the orbits of σ, α, and ϕ are meant to represent all vertices,
edges, and faces respectively. Furthermore, we will occasionally use the general
term �cells� for vertices, edges, or faces, which correspond to 0-, 1-, and 2-cells
in the related context of cell complexes [13].

2.2 Pixel-accurate Approaches

Combinatorial maps can be used to represent the topology of planar subdivisions,
but they do not de�ne the geometry of a tessellation, which is crucial for image
segmentation. Thus, algorithms often employ a label image (aka. �region image�)
to store the geometry of regions. It is straight-forward to extract a consistent
topology from the inter-pixel boundaries of such an image, in which each pixel
carries the label of the region it belongs to. It has even been shown that the
same is possible for thin 8-connected pixel boundaries [14], which for example
result from watershed algorithms which leave the watersheds unlabelled.

However, from an applications' perspective it is preferable to have just one
structure to deal with, not separate ones for the geometry and the topology.
Thus, data structures have been developed [8,5,6,2] which encapsulate both the
geometrical and topological aspects and o�er means to inspect or modify the
tessellation in a consistent way. Fig. 1 illustrates two pixel-based representations:

1. Inter-pixel boundaries: In the Toger framework [15,1], a boundary plane is
used to represent the connections between inter-pixel boundaries (at pixel
corners, cf. black dots in 1(b)). This is very memory e�cient (only three
bits / pixel), but requires traversals and hash lookups to �nd the edges /
regions at arbitrary positions. Darts are represented by the vertex position
(cf. gray dots) and a direction.

2. Pixel-based boundaries: In [2,6], the internal representation of a GeoMap is
based on a cell image, where each pixel carries a label and a type (Region /
Line /Vertex). All three topological cell types are represented as connected

components of pixels carrying the corresponding type and label. All topolog-
ical information is extracted via a DartTraverser, which is represented
with a position / direction pair (cf. arrow in Fig. 1(c)). For details see [2,6].

The limited resolution of these approaches is not only a cosmetic problem but
also a�ects the topology: the vertices of inter-pixel boundaries cannot have a
degree > 4, while pixel-based vertices as de�ned in [2] can have higher degrees if
they consist of more than one pixel, which reduces the geometrical quality and
needs complicated thinning operations after modi�cations. The new representa-
tion which is presented in the following does not have that problem.

3 Representing Sub-pixel Geometry

The representations discussed in the last section serve as powerful frameworks
which ease the implementation of automatic and (semi-)interactive segmenta-
tion algorithms. However, they are limited to the pixel grid, while many edge
detectors deliver edgels (edge elements) with sub-pixel accuracy (e.g. [12,16])
which cannot be represented within these frameworks. We will now present a
new approach which overcomes this limitation.

Let us assume we have sub-pixel accurate edgel positions linked into edgel
chains (Sect. 4 will discuss some algorithms which produce these). These chains
are commonly visualized with their approximating polyline (by connecting the
points in order), and these ordered point lists serve as the main representation
of edges in our new sub-pixel GeoMap. This is illustrated in Fig. 2 (left). It
should be stressed that the polylines are only an approximation of the edges,
and that the actual run of an edge between two support points is not represented
(but could be determined on demand). This matters for algorithms analyzing
the geometry, like for instance skeletonization or curvature calculation.

3.1 Meeting Algorithm Requirements

This section explains how the requirements listed in Sect. 2 are ful�lled in our
implementation of the GeoMap framework.

Topology Inspection In our object-oriented design, each cell is represented with
a CellInfo object which carries its properties. The framework supports the enu-
meration of all vertices, edges, or faces of a map, and lookups by label. CellInfo
objects can be queried for canonical darts (anchors) whose σ, α, or ϕ-orbits
represent the cell (a face contains one anchor per contour, the �rst always be-
longing to the outer contour). The central tool to inspect the map topology is
the DartTraverser [6]. Similar to an iterator, it represents a current position �
a dart within the map. It o�ers methods to move to the successor / predecessor
in any of the three permutations, and to get the start-/end-vertices, the edge it
belongs to, or the face to the left/right. Many of the methods are only for your
convenience, but this interface has proven to make the GeoMap framework very
powerful in practice.

Face Face Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face

Face Face Face Face Face Face Face Face Face Face Face Face Face Face

Edge Edge Edge Edge Edge

Edge Edge

Edge Edge

Edge Edge

Edge Edge

Edge Edge

Edge Edge Edge Edge

Edge Edge Edge Edge

Edge Edge Edge Edge

Edge Edge Edge Edge

Edge Edge Edge

Edge Edge Edge Edge

Edge Edge

Edge Edge

Edge Edge Edge Edge Edge

Edge Edge

Edge Edge

Edge Edge

Edge Edge

Edge Edge

Node

Node

82 82 82 82 82 82 82 82 82 82 82 82 82 82

82 82 82 82 82 82 82 82 82

82 82 82 82 82 154 154 154 154 154 82 82

82 82 82 82 154 154 154 154 154 154 82 82

82 82 82 154 154 154 154 154 154 154 82 82

82 82 82 154 154 154 154 154 154 154 82 82

82 82 154 154 154 154 154 154 154 154 82 82

82 82 154 154 154 154 154 154 154 82

82 154 154 154 127 127 154 154 154 82

82 154 154 127 127 127 154 154 154 82

82 154 154 154 127 127 154 154 154 82

82 154 154 154 127 127 154 154 154 82

82 154 154 154 154 154 154 154 154 82

82 154 154 154 154 154 154 154 154 154 154 82

82 82 154 154 154 154 154 154 154 154 154 82

82 82 82 154 154 154 154 154 82

82 82 82 82 82 82 82 154 154 154 154 82

82 82 82 82 82 82 82 154 154 154 154 82

82 82 82 82 82 82 82 82 154 154 154 82

82 82 82 82 82 82 82 82 82 154 154 82

82 82 82 82 82 82 82 82 82 82 82

82 82 82 82 82 82 82 82 82 82 82 82 82 82

413 413 413 413 413

413 413

413 413

413 413

413 413

413 413

413 305 305 413

413 305 305 413

413 305 305 413

413 305 305 413

413 305 413

413 305 305 413

413 413

413 413

413 413 413 413 413

413 413

413 413

413 413

413 413

413 413

211

295

Fig. 2. Comparison of the new sub-pixel representation with approaches restricted by
the pixel grid (to integer or half-integer coordinates, respectively).

Geometry Inspection The CellInfo objects mentioned above also carry the cells'
geometrical properties (as well as application-speci�c information, cf. Sect. 3.3):
a vertex simply contains its sub-pixel position, and an edge is represented as
a polyline. The geometry of faces is represented implicitly; its anchors can be
used to get closed polygons for each contour, and standard polygon techniques
can be applied to these for reconstruction of the region, point inclusion tests, or
�nding the region containing a point. Since these operations are common, but
rather slow, we speed them up internally with an additional label image, which
Sect. 3.2 describes in more detail.

Note that it is very convenient to have the edge geometry include the vertex
positions - in spite of the slight redundancy, this simpli�es many algorithms,
since all polyline segments can be derived from the edges, without looking at the
vertices.

Modi�cations We de�ne Euler operators to allow the modi�cation of our GeoMap.
These are atomic operations which make sure that Euler's equation (here in its
form for more than one boundary component) is an invariant:

|σ|−|α|+|ϕ|−C =1 where C is the number of connected components (2)

In contrast to the relatively complex operations used in other approaches
(e.g. contraction kernels [11]), we de�ne the following minimal set of simple
operations:

merge_edges merge the two edges α∗ (d) and α∗ (σ (d)) and the vertex σ∗ (d)
(must have degree 2) into one single edge (|σ′| = |σ| − 1, |α′| = |α| − 1)

remove_bridge merge the edge α∗ (d) (which must be a bridge) into the sur-
rounding face ϕ∗ (d) (|α′| = |α| − 1, C′ = C + 1)

merge_faces merge the two faces ϕ∗ (d) and ϕ∗ (σ (d)) (must not be identical)
and their common edge α∗ (d) into one face (|α′| = |α| − 1, |ϕ′| = |ϕ| − 1)

These operations can be composed into more complex ones. For instance, the
removal of all edges between two regions1 is done with the composed operation
merge_faces_completely which uses merge_faces to remove the �rst common
edge, after which the rest of the common boundary will consist of bridges which
are handled one-by-one with remove_bridge.

Note that after the removal of edges, which reduces the degree of their end-
vertices, these vertices may become dispensable. Vertices of degree 2 can be
merged into their surrounding contour with merge_edges. However, it may be
worthwhile to purposely leave vertices of degree 2 in the structure, if their geo-
metrical counterpart marks a point of interest (e.g. a corner). Singular vertices
(degree 0) are discarded in our structure.

In theory, all the mentioned operations have their natural inverses (split_edge,
create bridge, split_face respectively). However, we currently restrict ourselves
to operations reducing the number of cells. The reasons are manifold: (a) Our
Euler Operations can all be parametrized with a single dart, and it is straight-
forward to prove their correctness. Their inverses need additional parameters for
the geometry of the new cells to be created, which poses a problem when adding
edges, since it has to be ensured that the given geometry does not violate the
topology. (b) Conventional split and merge algorithms do not split faces into
two, but use an implicit description of the split regions which is intrinsically lim-
ited to the pixel grid [9]. (c) The bottom-up approach of transforming an initial
oversegmentation into the desired result �ts well the basic idea of �rst looking
for any evidence for boundaries and then applying relevance �ltering to it.

3.2 Initializing a GeoMap

Assuming that we have already extracted boundaries from an image (examples
follow in Sect. 4), this section discusses the remaining task for initializing a com-
plete GeoMap: the determination of the boundary topology from its geometry.

The �rst problem is the initialization of the permutation σ,
which means that we must determine the local cyclic order of
edges around vertices. This may be as trivial as calculating the
angles of the �rst segments of the approximating polylines at-
tached to the vertex (see illustration). However, when trying to
do this with sub-pixel watersheds (Sect. 4.2), this leads to nu-
merical problems, since watersheds converge tangentially near a maximum, so
subgroups of tangential darts have to be followed until they eventually diverge
(see [16] for details).

Given the σ-orbits, we still have to determine the exterior faces of each con-
nected boundary component and their parent faces. The exterior faces can be
found by calculating the signed area of each contour given by the ϕ-orbits:

A =
1
2

∑
i

(xiyi+1 − yixi+1) ≤ 0 ⇒ exterior contour (3)

1 Note that merge_faces removes just one edge, whereas the common boundary might
consist of several edges (cf. Fig. 1, edges 5 and 2 between wall and background).

116 116 116 116

116 116 116 116 157

157

65 65 65 65 65

65 65 65 65 65 65 65

−1 −4 −3 −3 −3

−2

−1 −2 −1

−1

−1

−1 −1

. . .

Fig. 3. Label image as used internally to speed up
common geometric queries (degree four vertex in
the second column, negative labels indicate num-
ber of lines intersecting a pixel facet).

Fig. 4. incremental label image
initialization and face embedding
(from top left to bottom right)

If a contour contains only bridges, it is an exterior contour and A should be zero,
but may be a small positive number due to numerical problems. Thus, this case
must be checked explicitly.

As mentioned in Sect. 3.1, we make use of an internal label image to speed
up geometry queries. For point-in-region tests, we mark pixels whose unit square
is not intersected by contours with the corresponding region label. Thus, we can
immediately determine which region contains a given point if it's not near the
contour, see Fig. 3. Otherwise, the pixel is marked with a negative label, and
we must apply a (more expensive) standard point-in-polygon test on all regions
whose (cached) axis-parallel bounding box contains the point.

In order to derive the inclusion relation from the geometry, we need to check
for polygon inclusion, which corresponds to inclusion of a single point, since the
boundaries do not overlap. For e�ciency, the following algorithm will do the face
embedding in parallel to the initialization of the label image (see Fig. 4):

1. The label image is initialized with the label of the in�nite outer face.

2. We sort all contours by decreasing absolute area.

3. For each contour, beginning with the largest:

(a) If it is an exterior contour, we �nd the existing face including this hole
contour and embed it.

(b) Else, we add a new face to the map and apply polygon scan conversion
techniques to update the label image with the new region and its contour.

In order to facilitate updates of the label image, we store the number of edges
intersecting a pixel facet as negative integer (see Fig. 3). Whenever an edge
is removed (by merge_faces or remove_bridge), the labels of these pixels are
incremented and eventually assigned to the surrounding region if they become
zero.

3.3 Maintaining Consistency of Application-Speci�c Data

A bottom-up image segmentation process can be described as reducing an initial
set of candidate boundaries into the �nal tessellation. We call this reduction
process relevance �ltering . In the context of irregular pyramids, this corresponds
to the pyramid bottom containing an initial oversegmentation and a �tapering�
stack of levels on top with decreasing numbers of cells. In order to create such a
pyramid, automatic segmentation algorithms need to consider (in)homogeneity
properties of regions (boundaries) to decide upon insigni�cant boundaries.

Typical region properties used for relevance �ltering are statistics on the
regions' colors (mean, variance, . . .), area, or circumference. Boundaries are of-
ten assessed based on the local image gradient, their length, or curvature. The
GeoMap makes it very simple to calculate such information and attach it to
the CellInfo objects. During the segmentation process, this information has to
be kept up-to-date when removing (parts of) boundaries. It would be possible
to re-calculate the information after each change, but for common statistics it
is possible (and much more e�cient) to incrementally compute it from the cell
information before the change.

Our GeoMap representation thus supports to register separate pre- and
post-operation callback functions for each Euler operation in order to enable
application-speci�c statistics to be maintained in a consistent way [6,1]. This
ensures that each Euler operation is accompanied by the appropriate updat-
ing procedures. The dart which parameterizes the operation is passed to the
pre-operation callbacks, to inform them which cells will be merged. The update
functions will collect the necessary information from the old cells and wait for
the post-operation call, which attaches the updated information to the CellInfo
object of the surviving cell, which it gets passed as parameter.

This approach makes it very easy for an application to manage e.g. photo-
metric information on the regions, speci�c �ags needed to perform the segmen-
tation algorithm, or information on the boundary (like the mean gradient or
a watersheds' pass value), and it is always guaranteed that this information is
up-to-date. The GeoMap itself maintains some meta information on the cells'
geometry (lengths, areas, bounding boxes), which is also made available and
does not have to be recalculated.

Note that we internally store the partial sum of the signed area (3) for each
edge, which allows us to quickly determine the signed area of any contour. (The
removal of a bridge leads to a new contour whose area is unknown, and the
partial sums e�ciently solve the problem that the area is needed to determine
the new exterior contour if the bridge belonged to the old exterior contour.)

4 Applications

Now that we have introduced our new sub-pixel precise representation formalism,
we will show how it can be used with some image analysis algorithms.

4.1 Preliminaries: Continuous View on Input Images

A key tool to all our sub-pixel resolution experiments is that we can adaptively
sample images at any desired (sub-pixel) position. This can be done e�ciently
by means of spline interpolation.

Splines of order n possess n− 1 continuous derivatives and can be e�ciently
computed at any location x = (x, y) by convolution of discrete spline coe�cients
cij with continuous B-spline basis functions βn:

f(x, y) =
∑
i,j

cij βn(i− x) βn(j − y) (4)

The coe�cients cij depend on the order n of the spline and can be computed
from the sampling values fij by a cascade of bn/2c �rst-order recursive �lters.
Details on these computations can be found in [17,16]. We use spline interpo-
lation throughout this work for retrieving image values at sub-pixel locations,
because of their global continuity across facet borders.

A side e�ect of the spline reconstruction is that interpolated real images
(containing noise) will not have any plateaus in practice (when represented with
�oating-point accuracy). This is important for methods relying on the gradient
vanishing only at isolated points (like the contour following methods described
below). Note that it is not necessary to use convolution �lters for derivatives,
because they can be derived analytically from the spline approximation.

4.2 Sub-Pixel Watersheds

When comparing the classical watersheds-by-�ooding algorithm [18] with e.g.
Canny's edge detector [12], watersheds have the disadvantage of being limited
to the pixel grid. On the other hand, they provide closed contours, so that a
complete topology can be derived [8,14]. The advantages of both worlds can
be combined by applying a sub-pixel watershed algorithm to the interpolated
boundary indicator function [16,19]. This algorithm is based on a mathematical
de�nition of watersheds given by Maxwell [20]: watersheds are �owlines between
maxima and saddles. If the function f is di�erentiable, a unique �owline exists
at every point with non-zero gradient, and �owlines can be traced (upwards,
starting at saddle points) by numerically solving their di�erential equation

∂x(t)
∂t

= ∇f(x(t)) (5)

(e.g. with the Runge-Kutta method). This is stable near a watershed, because all
�owlines in a neighborhood converge to the same maximum (for details, see [16]).

The algorithm is signi�cantly slower than pixel-based watershed algorithms,
but gives very high resolution (as can be seen in Fig. 5). Since the �owlines con-
nect saddles and maxima, the output of the algorithm naturally forms a graph,
which can be turned into a map after determining the σ-order of edges around
each vertex (maximum). As mentioned in Sect. 3.2, the cyclic order of edges

Fig. 5. Sub-pixel watersheds. left : initial oversegmentation, right : problem of tangential
convergence; additional vertices added (yellow) vs. original vertices /maxima (dark red)

cannot be determined locally due to numerical problems because watersheds
converge tangentially near maxima, see the detailed close-up in Fig. 5. The yel-
low circles mark the locations where the watersheds diverge (as found by our
σ-sorting algorithm [16]). It is advisable to add additional vertices at these posi-
tions, since otherwise the statistics of a topological edge may contain mixed-up
information from several geometrically unrelated segments. (The exact vertex
positions may be re�ned later.)

4.3 Sub-Pixel Level-Set Contour Tracing

An alternative method for �nding an initial boundary set is not to look for ridges,
but for zero-crossings of an appropriate edge detector (e.g. the Laplacian-of-
Gaussian [21]) or of a distance function resulting from variational segmentation
in level-set approaches. More generally, this can be used to �nd any level lines
implicitly de�ned by

φ (x, y) = c ⇔ φ̃ (x, y) := φ (x, y)− c = 0

The tangent unit vector t of a level-line is always perpendicular to the gra-
dient direction: t = ∇φ⊥/ |∇φ|. Thus, the points of a level-line ful�ll the PDE

∂x(τ)
∂τ

= ±t(τ) = ±∇φ(τ)⊥

|∇φ(τ)|
(6)

with initial condition φ(x0) = 0 and∇φ(x0) 6= 0. In principle, this PDE could be
solved with standard methods (like Runge-Kutta's), but this does not take ad-
vantage of the fact that the level-line must remain at this particular level. This
constraint is used by predictor-corrector methods which signi�cantly simplify
level-line tracing. They use the tangent to extrapolate the curve towards a new
candidate point (predictor step), but these predictions need not be extremely ac-
curate because the level constraint is subsequently used to move the new point's
position onto the contour (corrector step). Compared to other methods, this
allows simpler predictors or larger steps. The basic algorithm is as follows [22]:

1. Given: a di�erentiable function φ(x) and a starting point x0 such that
φ(x0) = 0. Select an initial step size h and a bound ε0 that speci�es how
much φ(x) may deviate from the exact zero level along the line.

Fig. 6. Level-set contours of an ancient Chinese transcript (right : close-up).

2. While stopping criterion not ful�lled:

(a) Predict candidate point x̂
(0)
i+1 = h t(xi) where t(xi) = ∇φ⊥(xi)

|∇φ(xi)| if xi is

not a saddle point of φ, and t(xi) = xi−xi−1
|xi−xi−1| otherwise.

(b) While
∣∣∣φ (

x̂
(k)
i+1

)∣∣∣ > ε0:

i. Correct the candidate point by Newton iterations

x̂
(k+1)
i+1 = x̂

(k)
i+1 −

φ
(
x̂

(k)
i+1

)
∣∣∣∇φ

(
x̂

(k)
i+1

)∣∣∣2∇φ
(
x̂

(k)
i+1

)

(c) If the total correction was small, accept x̂
(k+1)
i+1 as new point xi+1, set

i := i + 1, possibly increase h, and go to 2. Else, reduce h and go to (a).

Since level-lines form closed contours, one wants to stop the algorithm when it
returns to the starting point. Detecting this is not trivial, but since we de�ne
φ(x) as a spline, there is a simple solution which also solves the problem of
detecting starting points: consider the explicit polynomial representation (4) of
a spline and the locus of points where x = i∨y = j. We get a set of horizontal and
vertical lines through the sampling points, enclosing small unit squares. Along
these lines, (4) simpli�es to two 1-dimensional polynomials of order n, and the
roots of these polynomials can easily be computed by a standard root �nder.
Each root that lies on the side of the corresponding unit square marks a point
where the zero level-line crosses. By iteratively choosing one of the crossings as
the starting point and applying the above algorithm to trace the level-line until
it leaves this square at another of the known crossings, we get connected level
contours.

Finally, we must identify the vertices in order to initialize a GeoMap with the
contours (according to Sect. 3.2). Since edges derived from zero-crossings always
form closed contours, there are two kinds of vertices: if the curve self-intersects,

(a) Constrained Delaunay
Triangulation

(b) CAT (Chordal Axis
Transform) [23]

(c) Pruned CAT Skeleton

(d) light red: contours (after relevance �ltering), white: pruned CAT skeletons

Fig. 7. GeoMaps representing contours, triangulations, and skeletons

all intersection points are vertices. Otherwise, an arbitrary point on the curve
must be selected as a vertex.

Fig. 6 shows an example of such level-set contours: again, we can combine the
advantage of high sub-pixel resolution with the advantage of common threshold-
ing, which does not need any convolution �lters and can thus be applied without
implicit smoothing if the signal-to-noise ratio is high enough. In Fig. 6, this helps
us in analyzing the cusps, which are important stroke characteristics.

4.4 Triangulation / Skeletonization

Our map is not only suitable for representing segmentation results, but it is
also an adequate representation for triangulations or for skeletons (the latter
requires the representation of bridges, see Sect. 3). Topological data structures
have a long history in the computation of Delaunay triangulations and Voronoi
diagrams (e.g. the quad-edge structure used in [24]).

The versatility of our GeoMap is illustrated in Fig. 7, which displays the
result of the following example process:

1. First, we calculate sub-pixel watersheds of the original image from the spline-
interpolated gradient magnitude.

2. (Simple relevance �ltering) We iteratively merge regions until the di�erence
between the average color of all adjacent regions is larger than a threshold
(dark red contours in Fig. 7(d)).

3. Detect letters as hole regions which are darker than their parent face.
4. Apply a constrained Delaunay triangulation (CDT) to all letters, cf. Fig. 7(a).
5. (Chordal Axis Transform) Connect the mid-points of the inner chords to new

edges, create a vertex for each inner (�join�) triangle and connect vertices and
edges to a CAT skeleton map, Fig. 7(b) (for details, see [23]).

6. (Simple pruning) Remove small branches: apply remove_bridge to edges
shorter than two pixels with an end-vertex of degree 1 (Fig. 7(c), pruned
parts in light gray).

Fig. 7(d) shows the contours from step 2 in red (note that the width of the
original letter parts is less than two pixels, the whole region of interest is 64×19)
and the pruned skeleton in white (the slight di�erence between the �5� and the
�S� remains visible in the skeletons). The sampling of the �W� obviously violated
Shannon's theorem and is hardly recognizable for a human, too.

This example is not meant to be a sophisticated, general feature extraction
method, but it nicely illustrates the power of the GeoMap as a representation
for planar graphs which o�ers convenient means to

� merge regions (step 2)
� manage statistical information on regions or edges, e.g. a regions' mean color

(steps 2 and 3) or area (step 3), or the length of edges (step 6)
� inspect the geometry and decide upon inner / outer of regions (CDT, step 4)

5 Conclusion

Uni�ed representations o�ering both topological and geometrical perspectives on
a segmentation have been shown to be powerful as well as easy-to-use. In this pa-
per, we extended the GeoMap formalism to achieve sub-pixel accuracy. We have
shown that besides advanced sub-pixel segmentation techniques, triangulation
and skeletonization can be performed equally well with our representation. Our
experiments have shown that the advantages of the general planar map formalism
still apply: our GeoMap framework allows for a signi�cantly faster development
of algorithms than without such a representation, and their formulations tend
to become more concise due to the high level of abstraction. Algorithms with
previously separate data structures can easily be compared and combined.

We are planning to release our implementation in the context of the VIGRA
library. On the application side, we are currently working on the integration of
learning methods and more sophisticated edge salience measures (e.g. based on
boundary continuity or curvature) for relevance �ltering.

References

1. Braquelaire, A.: Representing and segmenting 2d images by means of planar maps
with discrete embeddings: From model to applications. In Brun, L., Vento, M., eds.:
Graph-based Representations in Pattern Recognition, Springer (2005) 92�121

2. Meine, H., Köthe, U.: The GeoMap: A uni�ed representation for topology and
geometry. In Brun, L., Vento, M., eds.: Proc. Graph-Based Representations in
Pattern Recognition, Springer (2005) 132�141

3. Brun, L., Kropatsch, W.: Construction of combinatorial pyramids. In Hancock, E.,
Vento, M., eds.: Graph-Based Repr. in Pattern Recognition, Springer (2003) 1�12

4. Mäntylä, M.: An Introduction to Solid Modeling. Computer Science Press (1988)
5. Brun, L., Domenger, J.P., Braquelaire, J.P.: Discrete maps: a framework for region

segmentation algorithms. In: Graph-based Representations in Pattern Recognition,
Springer (1998) 83�92

6. Meine, H.: XPMap-based irregular pyramids for image segmentation. Diploma the-
sis, Dept. of CS, University of Hamburg (2003)

7. Pavlidis, T.: Structural Pattern Recognition. Springer (1977)
8. Brun, L., Domenger, J.P.: Incremental modi�cations of segmented images. Tech-

nical Report RR112696, Université Bordeaux, LABRI (1996)
9. Brun, L., Domenger, J.P.: A new split and merge algorithm with topological maps

and inter-pixel boundaries. In: Proc. WSCG'97. (1997)
10. Köthe, U.: XPMaps and topological segmentation - a uni�ed approach to �nite

topologies in the plane. In Braquelaire, A., Lachaud, J.O., Vialard, A., eds.: Conf.
on Discrete Geometry for Computer Imagery. Springer (2002) 22�33

11. Kropatsch, W.G.: Building irregulars pyramids by dual graph contraction. IEEE-
Proc. Vision, Image and Signal Processing 142 (1995) 366�374

12. Canny, J.: A computational approach to edge detection. T-PAMI 8 (1986) 679�698
13. Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision,

Graphics, and Image Processing 42 (1989) 141�161
14. Köthe, U.: Deriving topological representations from edge images. In Asano, T.,

Klette, R., Ronse, C., eds.: Geometry, Morphology, and Computational Imaging,
WS on Theoretical Foundations of Computer Vision. Springer (2003) 320�334

15. Braquelaire, J.P., Brun, L.: Image segmentation with topological maps and inter-
pixel representation. J. Visual Comm. and Image Representation 9 (1998) 62�79

16. Meine, H., Köthe, U.: Image segmentation with the exact watershed transform. In
Villanueva, J., ed.: Proc. VIIP'05, ACTA Press (2005) 400�405

17. Unser, M., Aldroubi, A., Eden, M.: B-Spline signal processing: Part I and II. IEEE
Trans. on Signal Processing 41 (1993) 821�848

18. Vincent, L., Soille, P.: Watersheds in digital spaces: an e�cient algorithm based
on immersion simulations. In: T-PAMI 13 (1991) 583�598

19. Steger, C.: Subpixel-precise extraction of watersheds. In: Proc. of 7th ICCV. Vol-
ume 2., IEEE Computer Society (1999) 884�890

20. Maxwell, J.C.: On hills and dales. Reprinted in W. D. Nivin (Ed.): The Scienti�c
Papers of James Clerk Maxwell 2 (1952) 233�240. Dover Publications.

21. Marr, D., Hildreth, E.C.: Theory of edge detection. Proceedings of the Royal So-
ciety of London B207 (1980) 187�217

22. Allgower, E.L., Georg, K.: Numerical path following. In: P.G. Ciarlet, J.L. Lions
(Eds.), Handbook of Numerical Analysis 5 (1997) 3�207. North-Holland.

23. Prasad, L.: Morphological analysis of shapes. CNLS Newsletter 139 (1997)
24. Guibas, L.J., Stol�, J.: Primitives for the manipulation of general subdivisions and

the computation of voronoi diagrams. ACM Trans. on Graphics 4 (1985) 74�123

