Skip to main content

Algorithmic DNA Self-assembly

  • Conference paper
  • 772 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4041))

Abstract

Self-assembly is the ubiquitous process by which objects autonomously assemble into complexes. This phenomenon is common in nature and yet is poorly understood from mathematical and programming perspectives. It is believed that self-assembly technology will ultimately permit the precise fabrication of complex nanostructures. Of particular interest is DNA self-assembly. Double and triple crossover DNA molecules have been designed that can act as four-sided building blocks for DNA self-assembly. Experimental work has been done to show the effectiveness of using these building blocks to assemble DNA crystals and perform DNA computation. With these building blocks (called tiles) in mind, researchers have considered the power of the tile self-assembly model.

The tile assembly model extends the theory of Wang tilings of the plane by adding a natural mechanism for growth. Informally, the model consists of a set of four sided Wang tiles whose sides are each associated with a type of glue. The bonding strength between any two glues is determined by a glue function. A special tile in the tile set is denoted as the seed tile. Assembly takes place by starting with the seed tile and attaching copies of tiles from the tile set one by one to the growing seed whenever the total strength of attraction from the glue function meets or exceeds a fixed parameter called the temperature.

Algorithmic DNA self-assembly is both a form of nanotechnology and a model of DNA computing. As a computational model, algorithmic DNA self-assembly encodes the input of a computational problem into DNA patterns and then manipulates these patterns to produce new DNA patterns that encode the desired output of the computational problem. As a nanotechnology, algorithmic DNA self-assembly aims to design tiles with carefully chosen glue types on their four sides. Two tiles are said to be of different types if their sides have different glue types. Useful tile types are nontrivial to design but relatively easy to duplicate in large quantity. A key design challenge for algorithmic DNA self-assembly is to use only a small number of different tile types to assemble a target nanostructure.

This talk will survey recent results in algorithmic DNA self-assembly and discuss future research directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kao, MY. (2006). Algorithmic DNA Self-assembly. In: Cheng, SW., Poon, C.K. (eds) Algorithmic Aspects in Information and Management. AAIM 2006. Lecture Notes in Computer Science, vol 4041. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11775096_2

Download citation

  • DOI: https://doi.org/10.1007/11775096_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35157-3

  • Online ISBN: 978-3-540-35158-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics