Skip to main content

The Approximability of the Exemplar Breakpoint Distance Problem

  • Conference paper
Algorithmic Aspects in Information and Management (AAIM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4041))

Included in the following conference series:

Abstract

In this paper we present the first set of approximation and inapproximability results for the Exemplar Breakpoint Distance Problem. Our inapproximability results hold for the simplest case between only two genomes \({\cal G}\) and \({\cal H}\), each containing only one sequence of genes (possibly with repetitions).

– For the general Exemplar Breakpoint Distance Problem, we prove that the problem does not admit any approximation unless P=NP; in fact, this result holds even when a gene appears in \({\cal G}\) (\({\cal H}\)) at most three times.

– Even on a weaker definition of approximation (which we call weak approximation), we show that the problem does not admit a weak approximation with a factor m 1 − − ε, where m is the maximum length of \({\cal G}\) and \({\cal H}\).

– We present a factor-2(1 + logn) approximation for an interesting special case, namely, one of the two genomes is a k-span genome (i.e., all genes in the same gene family are within a distance k = O(logn)), where n is the number of gene families in \({\cal G}\) and \({\cal H}\).

This research is supported by Louisiana Board of Regents under contract number LEQSF(2004-07)-RD-A-35 and MSU-Bozeman’s Short-term Professional Development Leave Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bafna, V., Pevzner, P.: Sorting by reversals: Genome rearrangements in plant organelles and evolutionary history of X chromosome. Mol. Bio. Evol. 12, 239–246 (1995)

    Google Scholar 

  2. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families, pp. 207–212. Kluwer Acad. Pub., Dordrecht (2000)

    Google Scholar 

  3. Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial genomes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 22–31. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Bereg, S., Zhu, B.: RNA multiple structural alignment with longest common subsequences. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 32–41. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4, 233–235 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. The MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  9. Dur, I., Safra, S.: The importance of being biased. In: Proc. 34th ACM Symp. on Theory Comput. (STOC 2002), pp. 33–42 (2002)

    Google Scholar 

  10. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  11. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gascuel, O. (ed.): Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford (2004)

    Google Scholar 

  13. Johnson, D.: Approximation algorithms for combinatorial problems. J. Comput. System Sci. 9, 256–278 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13, 383–390 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  15. Marron, M., Swenson, K., Moret, B.: Genomic distances under deletions and insertions. Theoretical Computer Science 325(3), 347–360 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Makaroff, C., Palmer, J.: Mitochondrial DNA rearrangements and transcriptional alternatives in the male sterile cytoplasm of Ogura radish. Mol. Cell. Biol. 8, 1474–1480 (1988)

    Google Scholar 

  17. Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar breakpoint distance. Bioinformatics 21(10), 2171–2176 (2005)

    Article  Google Scholar 

  18. Palmer, J., Herbon, L.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evolut. 27, 87–97 (1988)

    Article  Google Scholar 

  19. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and sub-constant error-probability PCP characterization of NP. In: Proc. 29th ACM Symp. on Theory Comput. (STOC 1997), pp. 475–484 (1997)

    Google Scholar 

  20. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 16(11), 909–917 (1999)

    Article  Google Scholar 

  21. Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of drosophila pseudoobscura, and their use in the study of the history of the species. Proc. Nat. Acad. Sci. USA 22, 448–450 (1936)

    Article  Google Scholar 

  22. Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic time. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 1–13. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. J. Theoretical Biology 99, 1–7 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Z., Fu, B., Zhu, B. (2006). The Approximability of the Exemplar Breakpoint Distance Problem. In: Cheng, SW., Poon, C.K. (eds) Algorithmic Aspects in Information and Management. AAIM 2006. Lecture Notes in Computer Science, vol 4041. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11775096_27

Download citation

  • DOI: https://doi.org/10.1007/11775096_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35157-3

  • Online ISBN: 978-3-540-35158-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics