
Design By Contract
Deontic Design Language for Multiagent Systems

Christophe Garion1 and Leendert van der Torre2

1 SUPAERO
10 avenuéEdouard Belin

31055 Toulouse
France

garion@supaero.fr
2 University of Luxembourg

Luxembourg
leendert@vandertorre.com

Abstract. Design by contract is a well known theory that views software con-
struction as based on contracts between clients (callers) and suppliers (routines),
relying on mutual obligations and benefits made explicit by assertions. However,
there is a gap between this theory and software engineering concepts and tools.
For example, dealing with contract violations is realized by exception handlers,
whereas it has been observed in the area of deontic logic in computer science that
violations and exceptions are distinct concepts that should not be confused. To
bridge this gap, we propose a software design language based on temporal deon-
tic logic. Moreover, we show how preferences over the possible outcomes of a
supplier can be added. We also discuss the relation between the normative stance
toward systems implicit in the design by contract approach and the intentional or
BDI stance popular in agent theory.

1 Introduction

Design by contract [1–3] is a well known software design methodology that views soft-
ware construction as based on contracts between clients (callers) and suppliers (rou-
tines), relying on mutual obligations and benefits made explicit by assertions. It has
been developed in the context of object oriented programming, it is the basis of the pro-
gramming language Eiffel, and it is well suited to design component-based and agent
systems. However, there is still a gap between this methodology and formal tools sup-
porting it. For example, dealing with contract violations is realized by exception han-
dlers, whereas it is well known in the area of deontic logic in computer science [4, 5]
that violations and exceptions are distinct concepts that should not be confused. Formal
tool support for design by contract is therefore a promising new application of deontic
logic in computer science [6]. In this paper we study how extensions of deontic logic
can be used as a design language to support design by contract. We address the follow-
ing four research questions.

1. Which kind of deontic logic can be used as a design language to support design by
contract?

2. How can we add preferences over possible outcomes of a routine?
3. What kind of properties can be formalized by such a design logic?
4. How does this approach based on deontic logic compare to the BDI approach, dom-

inant in agent oriented software engineering?

The motivation of our work is the formal support for agent based systems. Recently
several agent languages and architectures have been proposed which are based on obli-
gations and other normative concepts instead (or in addition to) knowledge and goals
(KBS), or beliefs, desires and intentions (BDI). In artificial intelligence the best known
of these normative approaches is probably the IMPACT system developed by Subrah-
manian and colleagues [7]. In this approach, wrappers built around legacy systems are
based on obligations. We are interested in particular in designing component based
agent systems such as agents based on the BOID architecture [8]. Notice that this paper
does not address pure logical aspect. We do not define a specific logic for reasoning
about such notions, but we use existing formalisms to model design by contract and
preferences about possible outcomes of a routine.

The layout of this paper is as follows. In Section 2 we discuss design by contract, the
deontic design language and contract violations. In Section 3 we introduce preferences
over outcomes. In section 4 we compare this approach based on deontic logic to the
KBS/BDI approach.

2 Design by contract

We explain design by contract by an example program in the Eiffel programming lan-
guage. The explanation of design by contract as well as the example have been taken
from [9]. For further details on design by contract, see [1–3].

2.1 Conditional obligations

Design By Contractviews software construction as based on contracts between clients
(callers) and suppliers (routines), relying on mutual obligations and benefits made ex-
plicit by assertions. These assertions play a central part in the Eiffel method for building
reliable object-oriented software. They serve to make explicit the assumptions on which
programmers rely when they write software elements that they believe are correct. In
particular, writing assertions amounts to spelling out the terms of thecontractwhich
governs the relationship between a routine and its callers. The precondition binds the
callers; the postcondition binds the routine.

The Eiffel class in the left column of Figure 1 illustrates assertions (ignore for now
the right column). An account has a balance (an integer) and an owner (a person). The
only routines –is . . . do . . . end sequences – accessible from the outside are increas-
ing the balance (deposit) and decreasing the balance (withdraw). Assertions play the
following roles in this example.

Routine preconditions express the requirements that clients must satisfy when they
call a routine. For example the designer ofACCOUNTmay wish to permit a with-
drawal operation only if it keeps the account’s balance at or above the minimum.
Preconditions are introduced by the keywordrequire.

class ACCOUNT
feature

balance: INTEGER
owner: PERSON
min_balance: INTEGER is 1000
deposit(sum:INTEGER) is

require
sum >= 0 -- Ocr(sum >= 0)

do
add(sum)

ensure balance = old balance + sum -- Orc(balance = old balance + sum)
end

withdraw(sum:integer) is
require

sum >= 0 -- Ocr(sum >= 0)
sum <= balance - min_balance -- Ocr(sum <= balance - min_balance)

do
add(-sum)

ensure
balance = old balance - sum -- Orc(balance = old balance - sum)

end
feature [NONE]

add(sum:INTEGER) is
do

balance:=balance+sum
end

invariant
balance >= min_balance -- Or(balance >= min_balance)

end -- class ACCOUNT

Fig. 1.ClassACCOUNT

Routine postconditions, introduced by the keywordensure, express conditions that
the routine (the supplier) guarantees on return, if the precondition was satisfied on
entry.

A class invariant must be satisfied by every instance of the class whenever the instance
is externally accessible: after creation, and after any call to an exported routine of
the class. The invariant appears in a clause introduce by the keywordinvariant ,
and represents a general consistency constraint imposed on all routines of the class.

2.2 Deontic design language

We are interested in a deontic design language to support specification and verifica-
tion based on design by contract. The deontic design language is therefore a kind of
specification and verification language.

Syntactically, assertions are boolean expressions. To formalize the assertions in
our design language, we use a deontic logic based on directed obligations, as used
in electronic commerce and in artificial intelligence and law [10–13]. A modal formula
Oa,b(φ) for a, b in the set of objects (or components, or agents) is read as “objecta is
obliged toward objectb to see to it thatφ holds”. We writec andr for the caller and
for the routine, such that the assertions in the program can be expressed as the logical
formulae given in the right column in Figure 1. Summarizing:

Requireφ = Oc,r(φ): callerc is obliged toward routiner to see toφ.
Ensureφ = Or,c(φ): routiner is obliged toward callerc to see toφ.
Invariantφ = Or(φ): routiner is obliged to see toφ.

To use the obligations above in a deontic design language, we have to add temporal
information. First, we have to formalize “old expression” as it occurs for example in
line 12 of classACCOUNT . This expression is only valid in a routine postcondition,
and denotes the value the expression has on routine entry. Consequently, we have to
distinguish between expressions true at entry of the routine and at exit of it. More gen-
erally, we have to reason how the assertions change over time. For example, the require
obligation only holds on entrance, theensureobligation holds on exit, and the invariant
obligation holds as long as the object exists. The obligations only hold conditionally.
For example, if the preconditions do not hold, than the routine is not obliged to see to
it that the ensure expression holds. Finally, the conditional obligations come into force
once the object is created, and cease to exist when the object is destructed.

We therefore combine the logic of directed obligations with linear time logic (LTL),
well known in specification and verification [14]. There are many alternative temporal
logics which we could use as well. For example, in [15] deontic logic is extended with
computational tree logic in BDIOCTL, and in [16] it is extended with alternating time
logic (ATL). Semantics and proof theory are straightforward, see for example [15].

Definition 1 (Syntax OLTL). Given a finite setA of objects (or components, or agents)
and a countable setP of primitive proposition names. The admissible formulae of OLTL

are recursively defined by:

1 Each primitive proposition inP is a formula.
2 If α andβ are formulae, then so areα ∧ β and¬α.
3 If α is a formula anda, b ∈ A, thenOa,b(α) is a formula as well.
4 If α andβ are formulae, thenXα andαUβ are formulae as well.

We assume the following standard abbreviations:
disjunction α ∨ β ≡def ¬(¬α ∧ ¬β)
implication α → β ≡def ¬α ∨ β
globallyα 3(α) ≡def >Uα
futureα 2(α) ≡def ¬3(¬α)
permission Pa,b(α) ≡def ¬Oa,b(¬α)
prohibition Fa,b(α) ≡def ¬Pa,b(α)
obligation Oa(α) ≡def Oa,a(α)

We now illustrate how to use the logic to reason about assertions. We assume the
following propositions: create(c) holds when objectc is created, destruct(c) holds when
objectc is destructed, call(c1,c2,f) holds when objectc1 calls routinef in objectc2.
We assume that if a routine in an object is called, there is an earlier moment in time at
which the object is created. However, since our operators only consider the future, this
property cannot be formalized. We assume that propositions can deal with integers, a
well known issue in specification and verification, see [14] for further details. Finally,
we assume that the time steps of the temporal model are calls to routines. The first
routine and the invariant in the class account in Figure 1 can now be formalized as:

call(c1,c2,deposit(sum:INTEGER))→ Oc1,c2 (sum≥ 0)
(call(c1,c2,deposit(sum:INTEGER))∧(sum>= 0)∧ (balance = b))→XOc2,c1 (balance = b + sum)
create(c)→ (Oc(balance≥ min balance) U destruct(c))

These formulas can be read as follows. If there is a call ofc1 to c2 to deposit a sum,
thenc1 is obliged towardsc2 that this sum is not negative. If there is such a call, the
sum is not negative and the balance isb, then there is an obligation ofc2 towardsc1 that
the new balance isb increased with the deposited sum. Once an object is created and
until it is destructed, it is obligatory that the balance is at least the minimal balance.

2.3 Contract violations

Whenever there is a contract, the risk exists that someone will break it. This is where
exceptions come in the design by contract theory. Exceptions – contract violations –
may arise from several causes. One is an assertion violation, if run-time assertion mon-
itoring is selected. Another is a signal triggered by the hardware or operating system
to indicate an abnormal condition such as arithmetic overflow, or an attempt to create a
new object when there is not enough memory available. Unless a routine has been spec-
ified to handle exceptions, it willfail if an exception arises during its execution. This in
turn provides one more source of exceptions: a routine that fails triggers an exception
in its caller.

A routine may, however, handle an exception through arescueclause. An example
using the exception mechanism is the routineattemptdepositthat tries to addsumto
balance:

attempt_deposit(sum:INTEGER) is
local

failures: INTEGER
require

sum >= 0; -- Ocr(sum >= 0)
do

if failures < 50 then
add(sum);
successful := True

else
successful := False

rescue
failures := failures + 1;
retry

ensure
balance = old balance + sum -- Orc(balance = old balance + sum)

end

The actual addition is performed by an external, low-level routineadd; once started,
however,addmay abruptly fail, triggering an exception. Routineattemptdeposittries
the deposit at most 50 times; before returning to its caller, it sets a boolean attribute
successfulto True or False depending on the outcome. This example illustrates the
simplicity of the mechanism: therescueclause never attempts to achieve the routine’s
original intent; this is the sole responsibility of the body (thedo clause). The only role
of therescueclause is to clean up the objects involved, and then either to fail or to retry.

The principle is thata routine must either succeed or fail: it either fulfills its con-
tract, or not; in the latter case it must notify its caller by triggering an exception. The

optionalrescueclause attempts to “patch things up” by bringing the current object to
a stable state (one satisfying the class invariant). Then it can terminate in either of two
ways: either therescueclause may execute aretry instruction, which causes the routine
to restart its execution from the beginning, attempting again to fulfil its contract, usually
through another strategy (this assumes that the instructions of therescueclause, before
the retry, have attempted to correct the cause of the exception), either therescueclause
does not end with aretry and the routine fails; it returns to its caller, immediately trig-
gering an exception (the caller’srescueclause will be executed according to the same
rules).

In our design language, the exception can be formalized as a violation, and the ex-
ception handler gives rise to a so-called contrary-to-duty obligation, a kind of obligation
comes in force only in sub-ideal situations. The formalization of contrary-to-duty obli-
gations has been the subject of many debates in deontic logic due to its role in many of
the notorious deontic paradoxes such as the Chisholm and Forrester paradox; we do not
go into the details here.

For example, there is a violation if the postcondition does not hold, i.e., we do not
have balance = old balance + sum. In case of violation, a retry means that the obligation
persists until the next time moment. We extend the language with the propositionretry.
Now, the fact that a retry implies that the postcondition holds again for the next moment
can be characterized as follows:Oc1,c2(φ) ∧ ¬φ ∧ retry → XOc1,c2(φ). This formula
can be read as follows. Ifc1 is obliged towardsc2 thatφ, φ is not the case and retry is
true, then in the next state there is again such an obligation forc1 towardsc2.

3 Contracts for agents

In this section we adapt the design by contract theory to deal with the autonomy of
agents, and we extend the deontic design language with preferences.

3.1 Preferences over outcomes

In this paper we are in particular interested in contracts with agent routines [17]. We
assume as usual that the distinction between agents and components or objects is that
agents are autonomous. In this paper we interpret this autonomy in the sense that agent
routines can select among various outputs satisfying the caller’s condition. We illus-
trate our notion of autonomy by adapting the classAccount , which is often used to
illustrate design by contract and other object-oriented techniques, such that a call to a
routine may result in several outcomes. An account now consists of a set of bank notes,
and when depositing we have to specify not only the amount but also how the amount is
distributed over the notes. Moreover, when withdrawing money, the routine can choose
how to return it. For example, when returning euro 100 the routine can either return one
euro 100 note, two euro 50 notes, five euro 20 notes, etc.

Considering now such an autonomous routine, both routine and caller have prefer-
ences over outcomes. The routine specifies which outcomes it tries to achieve, and the
caller has preferences over outcomes too, and uses them to evaluate whether the routine
has satisfactorily fulfilled the contract. In some cases the preferences of both caller and

routine coincide. For example, concerning the level of precision, both caller and routine
may prefer more precise outcomes over less precise ones. However, this is not always
the case. For example, a routine may prefer fast global results over slow detailed results.

In the running example, it may seem unnatural to define preferences over outcomes
– it is therefore also not a good example to illustrate the use of autonomy for agents.
However, many examples discussed in the agent literature can naturally be described
in this way. That is, the autonomy of agents can often be described by their ability to
decide for themselves which answer to return from a set of alternatives. For example,
an agent component for hotel search in a web-based booking application has to choose
among a huge set of answers. This agent component can be specified by a contract as
defined in section 2. The preconditions may be the location of the hotel, the arrival and
departure dates of the customer. An informal postcondition for the hotel search compo-
nent can be “the component will produce a set of hotels satisfying the precondition”.
However, among this set of hotels, the caller of the routine may choose only the cheap-
est hotels. Or the agent component may prefer not to have all the hotels satisfying the
preconditions, but to obtain the result in less than one second to economize resources.
When these criteria are taken into account in the agent component’s preconditions, then
the component would not longer be autonomous. However, this is clearly not how it
works in practice. The reason that such web services are autonomous is that the number
of possible answers is very large, and it is changing all the time. Obliging the caller to
foresee all possible answers is unrealistic.

We do not want to claim that all kinds of autonomy – or all kinds of agents - can be
modelled using preferences over outcomes. For example, another kind of autonomy is
the ability of agents to violate norms. It is not clear how to specify this kind of autonomy
using preferences over outcomes. However, this kind of norm autonomy can already be
specified in the deontic design language introduced in the previous section, because
agents can violate the obligations.

3.2 Quality of outcomes

In the design by contract theory, such preferences have not been incorporated yet. The
reason is that this theory has been developed for passive objects and components. How-
ever, such preferences have been studied in cases where the routines are more au-
tonomous, such as service level architectures, agent theory and artificial intelligence.
We therefore propose to extend the contracts between caller and routine such that the
contract specifies the preferences of the routine as well as the preferences of the caller.

In our deontic design language, we have to combine the deontic notion of obligation
with conditional preferences studied in practical reasoning and decision theory. We
use a preference order on the possible answers given by the component. For instance,
consider thewithdraw routine of theAccount class. Suppose that the routine can
return euro 100 notes, euro 50 notes and euro 20 notes. The routine may prefer to
deliver as many euro 100 notes as possible, thereafter as many euro 20 notes as possible
and finally as many euro 50 notes as possible. Using 20, 50 and 100 as propositional
variables with the obvious meaning, the preference order over outcomes for the routine
will be (these outcomes are mutually exclusive): 100∧¬50∧¬20<r ¬100∧¬50∧20<r

¬100∧50∧¬20.

Those preferences are givenceteris paribus[18], i.e., the routine prefers delivering
as many euro 100 notes as possible to delivering as many euro 50 notes as possible
all else being equal. Notice that the previous preference order over outcomes can be
conditional. The conditions are some properties of the input of the component, as prop-
erties of the outcomes are used in the preference order. For instance, the routine may
use this order only if the sum to be withdrawn is more than 200 euros. In the contrary
case, the routine may prefer to deliver as many euro 50 notes as possible. Like in the
CP-net formalism [19], the preference specification of thewithdraw routine can now
be represented bya conditional preference table:

200+ 100∧¬50∧¬20<r ¬100∧¬50∧20<r ¬100∧50∧¬20
¬ 200+¬100∧50∧¬ 20<r ¬100∧¬50∧20<r 100∧¬50∧¬20

The caller of the routine may also specify some preference order over the outcomes.
For instance, a user of thewithdraw routine may specify that he/she prefers to have
as many euro 20 notes as possible, then to have as many euro 50 notes as possible and
finally to have as many euro 100 notes as possible:¬100∧¬50∧ 20 <c¬100∧50∧¬20
<c 100∧¬50∧¬20.

In a preference specification, the caller of the routine may use an “aspiration level”
to specify under which level the answer of the component is no more acceptable. For in-
stance, let us resume the previous preference specification for the caller ofwithdraw .
The caller may want to precise that in this specification, he/she will consider that the
quality is not satisfactory if thewithdraw routine delivers as many euro 100 notes
as possible. This specification does not interfere with the primary preference specifica-
tion and the caller may be able to change the acceptability level. For instance, he/she
may now want to consider only¬100∧¬50∧ 20 as a satisfactory quality. We will use a
marker�c in the caller preference specification to indicate where the least acceptable
outcome is for the caller. This can be viewed as aquality specification for the caller
of the routine. As previously, we can use conditional preference tables to represent the
caller preferences. A complete preference specification of routinewithdraw is:

200+ 100∧¬50∧¬20<r ¬100∧¬50∧20<r ¬100∧50∧¬20
¬ 200+¬100∧50∧¬ 20<r ¬100∧¬50∧20<r 100∧¬50∧¬20

> ¬100∧¬50∧ 20<c¬100∧50∧¬20�c 100∧¬50∧¬20

3.3 Deontic design language

We now extend the syntax of OLTL to OPLTL which takes into account the preference
specification. The crucial question here is how time and preferences interact. Can we
reason about the change of preferences in time (external dynamics), or can we reason
about preferences among propositions at distinct moments in time (internal dynamics)?
It is tempting to define temporal preference logics along these lines, but they seem to be
too complex to be used in practice. We therefore encode in our logic preferences sep-
arately from the temporal reasoning over obligations. The preferences specify desired
behavior, but the preferences themselves cannot change. This may seem very limited at
first sight, though it should be observed that it is in line with standard models in decision
theory, where typically a utility function is assumed to be fixed over time.

The preference relations<a,b are indexed by two objects. The first one represents
the object asking for a specification and the second one represents the object on which
the preference specification is made. For instance<withdraw,withdraw represents a prefer-
ence specification on thewithdraw routine emitted by the routine itself.<c,withdraw

represents a preference specification on thewithdraw routine emitted by another
agent or routineC.

Definition 2 (Syntax OPLTL). Given a finite setA of objects (or components, or agents)
and a countable setP of primitive proposition names. The admissible formulae of
OPLTL are recursively defined by:

1 If Φ is a formula of OLTL, thenΦ is a formula of OPLTL.
2 If α, β1, . . . βm are propositional formulae anda, b ∈ A, then the following formula

is a formula of OPLTL.
α : β1 <a,b . . . <a,b βi �a,b βj <a,b . . . <a,b βm

The semantics of the OLTL part of OPLTL is straightforward, see for instance [15].
The preference specification semantics is given by CP-net semantics, see [19]. Notice
that, as shown in [19], we can use indifference between outcomes in the preference
specification without losing interesting properties of CP-nets.

3.4 Contract violations

Now, as a routine contract can provide a level of acceptability in the preference speci-
fication expressed by the caller of a routine, we have to define what happens if this ac-
ceptability level is not verified by the routine’s outcome. For instance, if thewithdraw
routine specified in the previous section delivers as many euro 100 notes as possible, the
user specification is violated. We must integrate the acceptability notion into the con-
tract we defined previously. Let us consider a routiner, its preconditionsOcr(φ) and
a preference specification<c,r and its associated quality level represented byβ1 <c,r

. . . βj �c,r . . . <c,r βm. There are two possibilities:

– either the violation of the acceptability level is unacceptable for the caller and in this
case we can express it as a postcondition for the component. This will be called as
astrong acceptability level. We can integrate the acceptability level in the contract
by specifyingφ→ XOrc(β1 ∨ . . . ∨ βj).

– either the violation of the acceptability level is acceptable for the caller. For in-
stance, a caller may consider that what is important for him/her is that the com-
ponent produces an outcome verifying the postcondition. The quality specification
he/she produces is a bonus for his/her use of the application. In this case, we can-
not express the acceptability level as a postcondition, because the violation of the
postcondition will induce strong consequences on the component. We denote such
acceptability level specification asweak acceptability specification. It can be in-
tegrated in the contract by the following formula:φ → X(¬(β1 ∨ . . . ∨ βj) →
unsatisfied(c)). The meaning ofunsatisfiedis the following: if the quality is not
enough for the caller, then he/she has a right which he/she can execute or leave.

In the case of a strong acceptability specification, there are still good reasons to dif-
ferentiate the satisfactory quality and “classical” postconditions. The acceptability spec-
ification can evolve: the user can change his/her mind, there is not only one user, . . . , so
the acceptability specification is not a real postcondition which will be verified by all
“executions” of the component.

In a real-world application, several components are combined in order to build the
whole application. Those components will have contracts as preference specification.
We can use the CP-net formalism to represent the information flow among components
and to represent the quality specification of a component as preference relations condi-
tioned by the outcome of the previous component. For instance, consider a web-based
booking system. This system is composed of two components: a componentCp which
searches plane tickets and a componentCh which searches hotel rooms. A user of the
system can specify that he/she wants first to find a plane ticket before finding an ho-
tel. For instance, the first component may prefer fast travels.Ch may then prefer cheap
hotels if the outcomes ofCp are fast travels (because they are more expensive), and
comfortable hotels if the travel is not fast (because the traveller may want to have rest).
A CP-net graph formalising this specification is:

Plane

fast <Cp,Cp ¬fast
¬fast

fast

conf <

¬conf <Ch,Ch

Ch,Ch ¬conf

 conf

Room

Using the CP-net machinery, we can deduce that the preference specification for the
global component is: fast∧¬conf <Cp+Ch,Cp+Ch fast∧conf <Cp+Ch,Cp+Ch ¬fast∧
conf<Cp+Ch,Cp+Ch ¬fast∧¬conf. An important subject for further research is how to
formally derive global acceptability level from each component’s acceptability level, or
the implication of using a cyclic graph representing the components “communications”.
Some references about cyclic CP-nets are given in [19].

4 The normative stance

In this section we compare the normative stance, a phrase due to Jan Broersen [20] and
implicit in design by contract, with the intentional or BDI stance popular in agent ori-
ented software engineering. The following table summarizes the comparison between
the intentional stance and the normative stance:

Stance intentional stance normative stance
Concepts BDI OP, rights, responsibility

from folk psychology ethics, law, sociology
Computer human = angry, selfish, . . . God, master/slave, servant

Class of systems decision making decision making
Realization specification and verification components

Implementation programming objects, operation
specification BDICTL temporal deontic logic

First, the intentional stance is rooted in the philosophical work of Dennett, whereas
such grounding does not seem to exist for the normative stance (though there are can-
didates, such as [21]). The concepts from the intentional stance come from folk psy-
chology. The normative stance borrows concepts from ethics, law or sociology. Other
examples of this normative stance we mentioned in the introduction are the IMPACT
system [7] and the BOID architecture [8].

Second, the success of the intentional stance is that people like to talk about their
computer as a human which has beliefs and desires, which may be selfish, or which can
become angry. The implicit assumption of design by contract is that designers find it
useful to understand software construction in terms of contracts, or, more generally, in
terms of obligations. The success of design by contract may be explained by the fact
that “social contract” is well established in social sciences [22]. We may call this the
normative stance towards computer systems. The success is due to the fact that humans
either consider the computer as their master, which has to be obeyed, or as their slave,
which has to obey orders.

Third, the intentional stance has been advocated for agent systems, which are for
example autonomous and proactive. It has been used as a high level specification lan-
guage, as well as low level programming language. We believe the normative stance can
be used in a wider setting. In the examples we used it also for low level objects. How-
ever, it is particularly useful if we use a higher abstraction level in terms of components
or agents.

5 Concluding remarks

In this paper we study how extensions of deontic logic can support design. We propose
a deontic design language, that is a kind of specification language whose primary op-
erator is an “obligation” operator (see Section 4). First, we ask which kind of deontic
logic can be used as a design language to support design by contract We show how
directed modal operators are capable of formalizing contracts between clients (callers)
and suppliers (routines), relying on mutual obligations and benefits made explicit by
assertions. These formalisms have been developed and studied in electronic commerce
and artificial intelligence and law. Moreover, we show how temporal operators can be
used to formalize dynamic behavior such as contract violations.

Second, we introduce preferences over outcomes of a routine. This is a necessary
extensions of the design by contract approach when the components is autonomous in
the sense that it can return several outputs, such as autonomous agents or autonomous
services. We illustrate how the preferences can be used to specify the desired quality
of a contract. We show how the preferences can be specified with ceteris paribus or
CP nets. In further research we study qualities of service level contracts that refer to
multiple routine calls, such as average response times.

Third, we ask what kind of properties should be formalized by such a design logic.
This is summarized in the following table:

social contract assertions directed obligations
violation exception violations

repair exception handling contrary-to-duty reasoning
contract form interface ?

testing and debugging ? ?

In this paper, we do not consider contract forms and contracts for testing and debug-
ging. The contract form of a class, also called its “short form”, serves as its interface
documentation. It is obtained from the full text by removing all non-exported features
and all implementation information such asdo clauses of routines, but keeping inter-
face information and in particular assertions. The use of these elements in our deontic
design language, for example tocombineassertions, is subject of further research.

Fourth, we ask how this approach based on deontic logic compares to the BDI ap-
proach, dominant in agent based software engineering. Whereas the BDI approach is
based on an attribution of mental attitudes to computer systems, design by contract is
based on an attribution of deontic attitudes to systems. We suggest that the normative
stance has a wider scope of applicability than the intentional stance, though this has to
be verified in practice. In further research we study the relation with commitments in
Shoham’s Agent Oriented Programming (AOP) [17], and with rely/guarantee reasoning
[23].

The formalism developed here may seem too “formal” to be used in real applica-
tions. It would be interesting to develop practical tools taking our approach into account,
in order to offer a support for deontic software engineering. We may for instance extend
CP-nets tools.

Another topic for further research is the introduction of other elements of contracts
in our formalism. Contracts typically consist not only of regulative norms (obligations),
but also of constitutive norms (counts-as conditionals) [24]. How to introduce them in
design by contract, and in particular in our deontic design language OPLTL ?

References

1. Meyer, B.: Design by contract. In Mandrioli, D., Meyer, B., eds.: Advances in Object-
Oriented Software Engineering. Prentice-Hall, New York, London (1991) 1–50

2. Meyer, B.: Applying design by contract. IEEE COMPUTER25(10)(1992) 40–51
3. Meyer, B.: Systematic concurrent object-oriented programming. Communication of the

ACM 36(9)(1993) 56–80
4. Meyer, J., Wieringa, R.: Deontic Logic in Computer Science: Normative System Specifica-

tion. John Wiley and Sons (1993)
5. von Wright, G.: Deontic logic. Mind60 (1951) 1–15
6. Wieringa, R., Meyer, J.: Applications of deontic logic in computer science: A concise

overview. In: Deontic Logic in Computer Science. John Wiley & Sons, Chichester, Eng-
land (1993) 17–40

7. Eiter, T., Subrahmanian, V., Pick, G.: Heterogeneous active agents, I: Semantics. Artificial
Intelligence108(1999) 179–255

8. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the BOID archi-
tecture. Cognitive Science Quarterly2(3-4)(2002) 428–447

9. Meyer, B.: Invitation to Eiffel. Technical Report TR-EI-67/IV, Interactive Software Engi-
neering (1987)

10. Dignum, F.: Autonomous agents with norms. Artificial Intelligence and Law7(1) (1999)
69–79

11. Krogh, C., Herrestad, H.: Hohfeld in cyberspace and other applications of normative reason-
ing in agent technology. Artificial Intelligence and Law7(1) (1999) 81–96

12. Singh, M.P.: An ontology for commitments in multiagent systems: toward a unification of
normative concepts. Artificial Intelligence and Law7 (1999) 97–113

13. Tan, Y., Thoen, W.: Modeling directed obligations and permissions in trade contracts. In:
Proceedings of the Thirty-First Annual Hawaian International Conference on System Sci-
ences. (1998)

14. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Springer-
Verlag, Heidelberg, Germany (1992)

15. Broersen, J., Dastani, M., van der Torre, L.: BDIOCTL: Properties of obligation in agent
specification languages. In: Proceedings of IJCAI’03. (2003) 1389–1390

16. Jamroga, W., van der Hoek, W., Wooldridge, M.: On obligations and abilities. In: Deontic
logic in computer science. Volume 3065 of LNAI. (2004) 165–181

17. Shoham, Y.: Agent-oriented programming. Artificial Intelligence60 (1993) 51–92
18. Boutilier, C., Brafman, R., Hoos, H., Poole, D.: Reasoning with conditional ceteris paribus

preference statement. In Laskey, K., Prade, H., eds.: Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence, Morgan Kaufmann (1999) 71–80

19. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H., Poole, D.: CP-nets: a tool for rep-
resenting and reasoning with conditionalceteris paribuspreference statements. Journal of
Artificial Intelligence Research (JAIR)21 (2005) 135–191

20. Broersen, J.: Modal Action Logics for Reasoning about Reactive Systems. PhD thesis, Vrije
Universiteit Amsterdam (2003)

21. Brandom, R.: Making it explicit. Harvard University Press, Cambridge, MA (1994)
22. Rousseau, J.: The social contract. (1762) http://www.constitution.org/jjr/socon.htm.
23. Stark, E.W.: A proof technique for rely/guarantee properties. In: Foundations of Software

Technology and Theoretical Computer Science. Volume 206 of Lecture Notes in Computer
Science. (1985) 369–391

24. Boella, G., van der Torre, L.: Contracts as legal institutions in organizations of autonomous
agents. In: Proceedings of the Third International Joint Conference on Autonomous Agents
and Multi Agent Systems (AAMAS’04). (2004) 948–955

