
Verifying Norm Compliancy of Protocols?

Huib Aldewereld, Javier Vázquez-Salceda, Frank Dignum, and John-Jules Ch.
Meyer

Institute of Information and Computing Sciences
Utrecht University

{huib, javier, dignum, jj}@cs.uu.nl

Abstract. There is a wide agreement on the use of norms in order
to specify the expected behaviour of agents in open MAS. However, in
highly regulated domains, where norms dictate what can and cannot be
done, it can be hard to determine whether a desired goal can actually be
achieved without violating the norms. To help the agents in this process,
agents can make use of predefined (knowledge-based) protocols, which
are designed to help reach a goal without violating any of the norms. But
how can we guarantee that these protocols are actually norm-compliant?
Can these protocols really realise results without violating the norms? In
this paper we introduce a formal method, based on program verification,
for checking the norm compliance of (knowledge-based) protocols.

1 Introduction

Agents in open multiagent systems are sometimes as diverse as humans, as het-
erogeneous agents may behave in different ways in trying to complete their speci-
fied tasks. As some of this behaviour might not be desired, one needs mechanisms
to constrain the behaviour of the agents joining the system by defining what is
right and wrong. By doing so one can guarantee a safe and regulated environment
for the agents to work in.

An Electronic Institution (eInstitution) is such an environment, where the
expected behaviour of the agents joining the institution is described by means
of an explicit specification of norms [9] [24]. As in human institutions, norms
in eInstitutions are stated in such a form that allows them to regulate a wide
range of situations over time without the need for modification. To achieve this
stability, the formulation of norms abstracts from a variety of concrete aspects
[11] [24]; i.e., norms are expressed in terms of concepts that are kept vague and
ambiguous on purpose [13].

Because of their abstract nature, norms tend to be hard to understand and,
as in real life, adhering to the norms that regulate the institution of which you
are a part can be, at the least, a bit challenging. It is not unlikely that in highly
regulated systems agents (and humans alike) might become overly cautious,

? The research was supported by the Netherlands Organisation for Scientific Research
(NWO) under project number 634.000.017

46

trying not to violate any of the norms and thereby seriously reducing their
efficiency and even influence the outcome and success of their goals, i.e., desired
results, that are possible to achieve, might not be achieved anymore because the
agent believes that performing the actions leading to the desired result could
be violating the norms. In order to help agents act in such an environment and
increase their efficiency as well as their chance of success one can specify norm-
compliant protocols for the tasks that are to be accomplished in the institution.

A norm-compliant protocol is a guideline that makes sure that, when fol-
lowed, one does not violate any of the norms, and as such it provides a quick
and efficient manner to do the tasks one is assigned, since one does not need
to review the norms and check norm compliance whenever one is planning to
perform an action. In order to guarantee this the protocol should be checked for
norm compliance, which means that one should check that no norms are violated
by the protocol during its execution in all situations, i.e. the norm compliance of
the protocol should not depend on the state of the world. Therefore, the protocol
should provide a violation-free path to achieve the agent’s goals. As long as the
protocol is followed to the letter the agent should stay out of harm’s way.

In this paper we present a formal method for checking the norm compli-
ance of protocols based on temporal logic, using an approach used in concurrent
programming [14]. We have chosen this approach over traditional techniques
for verifying (sequential) programs, because verification methods for concurrent
programs and temporal logics allow us to see whether norms are violated in
intermediate steps as well, where traditional techniques are only for checking
the input and output of a program. The formalism of [14] is, however, limited
to checking properties and assertions for concurrent programs, not for checking
norm compliance. Therefore we enhanced the formalism with the means to ex-
press norms and violations and prove the non-violating of these norms by the
protocol. Some of the additions to the formalism from [14] are mentioned in the
following sections.

The outline of this paper is as follows. We start by a discussion of the work
done in field norms and agents. Then, in §3, we present the formal framework
and explain some of the difficulties one will encounter when formalising protocols
and norms. In §4 we show how the formalism works on an example protocol taken
from the medical domain. We end this paper with some conclusions and propose
some future work.

The example problem that we are going to use throughout this paper is
a real-life protocol that describes which steps should be taken by a doctor to
determine whether he can extract the organs of a donor or not (for the use of
transplantation). A simplified version of this protocol is included in figure 1. We
are using this real-life protocol because of the complexity of the norms applicable
to the domain. We feel that if the formalism is able to express and handle such
norms, it can be applied to all sorts of normative domains. Also, although it
is not feasible to have agents performing the tasks mentioned in this example
protocol, protocols that are designed for use by agents are of similar structure

47

Check criteria and
contra-indications

Deceased

Potential donor?

Consult donor register

Registered?

Permission?

Other
statement of intent?

Inform relatives

Non-natural death?

Ask relatives

Permission?

No donation Report donor at
transplant coordinator

through
Eurotransplant,

Report to
local

coroner

Permission of
district attorney?

No donation

Donation

Fill in donor form

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes
Yes

Fig. 1. Protocol for organ donation.

and complexity. And even though this protocol is knowledge-based1, the method
we present in this paper can be applied to other sorts of protocols as well.

2 Related Work

In those situations where agents might deviate from expected behaviour to fulfil
their own goals, a multi-agent system needs mechanisms to defend and recom-
mend right and wrong behaviour, along with safe environments to support those

1 Knowledge-based protocols depend on the knowledge of the agent to decide which
action is to be performed next, which results in a change of knowledge. The goal of
such protocols is to determine whether something is known by the agent at the end
of the protocol’s execution.

48

mechanisms. As we mentioned in §1, in eInstitutions expected behaviour is de-
fined by means of norms. But providing agents with a set of norms is not enough;
an eInstitution should also ensure norm compliance.

In literature, there are two approaches for norm compliance from the indi-
vidual agent perspective:

– agents that always obey norms [3] [20]
– agents that autonomously decide to obey norms [2] [5] [7] [16] [15] [24].

The former ensures norm compliance by default and it is used in those domains
where total control of the agent behaviour is needed, but issues on the conflict
between the agent goals and the norms should be solved. The latter allows the
design of dynamic systems where agents are able to join a society while satisfying
their own goals. The conflict between the agents’ goals and the norms controlling
its behaviour is handled explicitly in the reasoning process of the agent. In [15],
autonomous norm compliance is divided in two separate processes: a) a process to
deliberate about whether to comply with a norm (the norm deliberation process),
and b) a process to update the goals and intentions of agents accordingly (the
norm compliance process).

In those systems where autonomous norm compliance is allowed from the
agent perspective, there is a need to enforce to some extent the compliance of
norms from the social perspective. In [15] there is no direct enforcement on norm
compliance, but influenced norm compliance, where behaviour of other agents
against the non-compliance of a norm influences the decision of each agent. In
[23] a more direct approach is taken: the agent platform hosting the eInstitution
provides time-efficient services to help a special type of agents (the Police Agents)
to enforce proper behaviour. As Police Agents cannot see or control the internal
mental states and the reasoning process of the other agents, norm enforcement
is based on the detection of violation situations in terms of (public) messages
and (visible) actions.

The use of protocols to ease agent interaction (as discussed in §1) adds an
extra level between the norms and the agent behaviour.In this case norm com-
pliance is divided into two different levels:

– norm compliance of the protocol : to ensure that a given protocol adheres to
the norms defined in a context. If the protocol is norm-compliant, following
the protocol ensures that the agent(s) will not violate the norms.

– protocol compliance by the agent : to check that the behaviour of an agent
complies with the expected behaviour defined by the protocol [25].

The former is the focus of this paper (see §3.3 and §4), as it is usually overlooked
in other works. The latter (protocol compliance) has been studied both in the-
oretical and practical approaches. In [25] a formal framework for commitment
protocols is presented. Verification in this case is an external process and there-
fore it cannot use the internal knowledge of the agents, only the (observable)
behaviour. In [8] protocol compliance is handled by means of interaction scripts
that are explicitly accepted by the agents through interaction contracts. Each

49

contract includes the interacting agents, the roles they are playing, the contract
clauses and the protocol. Verification of protocol compliance is an optional clause
in the contract that, if included, specifies who and how will verify the interaction
and the actions to take if the protocol is not followed. In [9] interaction protocols
are structured in a performative structure. Although agents can decide not to
follow the protocol (there is no direct control of the agent platform over the
agents’ beliefs and desires), there is an intermediate actor, the governor, that
filters any non-allowed message that the agent tries to send to the eInstitution
and is not allowed. Therefore protocol compliance is ensured by filtering those
messages that, for a given state of the interaction, are not included in the pro-
tocol as possible messages to be uttered. However, in none of these works there
is a method to ensure that the protocols are norm-compliant.

3 Our Approach

In this section we will set out the steps of the verification process necessary for
checking the norm compliance of protocols. While discussing these steps we will
also focus on some interesting aspects and problems that one can encounter.

3.1 Formalising the Protocol

First, we start with formalising the protocol that we want to check. Since pro-
tocols are very similar to programs we have based our protocol checking for-
malism on the formal verification methods designed for parallel programs taken
from [14]. This program verification method uses first-order linear-time temporal
logic (LTL) to express how programs change the world over time, and uses this
logic to prove that certain specified properties of a program hold (e.g., deadlock
freedom, mutual exclusion, termination, etc.). In this paper we will not go into
an elaborate syntactical and semantical definition of the language used and will
only give the informal interpretations of the operators. The proper definitions of
the operators can be found in [1].

The protocol we want to verify is translated into a program using a syntax
containing among others variable assignments, if−then−else−fi and while−
do−od statements, with the conditions of these statements being formulas of a
classical first-order predicate logic LP . For ease of reference all statements are
labelled, with the labels being unique throughout a program, i.e., no two labels
occurring in a program are equal. Using this we can formalise the example-
protocol from figure 1 as follows (because of space limitations we only include
the part of the protocol necessary for the proof we provide in §4, the complete
version can be found in [1]):

Π= Initial R;

π0: 〈check criteria & contra-indications〉;
π1: if know criteria(d,y)∧know no contra-indication(d,y)

then π2: know potential donor(d,y):=TRUE

else π3: know not potential donor(d,y):=TRUE

50

fi;
π4: if know potential donor(d,y)

then π5: 〈consult donor register〉
fi;
...

π33: 〈fill donor form〉;
πe: stop

This formal program is a representation of the top three boxes of the protocol
shown in figure 1 and describes the steps taken by the doctor. These steps are;
1) the doctor first checks whether the patient satisfies the conditions and none
of the contra-indications for becoming an organ donor (formalised in π0), then
2) using the results of these tests the doctor determines whether the patient is
a suitable donor (formalised in π1 to π3). In the case that the patient does not
satisfy the criteria or shows one of the contra-indications, the doctor knows that
the patient is not a potential donor, thereby terminating the protocol (shown in
π3

2). However, if the patient does satisfy the criteria and does not show any of the
contra-indications, the doctor determines that the patient is a potential donor
(see π2), and then 3) continues to check whether the patient has registered his
permission (or prohibition) for extracting organs for transplantation (formalised
in π4 and π5).

Note that the result of the actions like check criteria & contra-indications is
dependent on the domain, i.e. if the patient satisfies the criteria and none of the
contra-indications, the result of the action in π0 would be that the doctor knows
this, thus know criteria(d, y) ∧ know no contra-indication(d, y).

The logic used for verifying protocols consists of a classical first-order predi-
cate logic LP which is extended with # (next-state), 2 (always) and atnext (first
time) operators to obtain a first-order linear-time temporal predicate logic LTP .
Using these operators we can also derive the ♦ (sometime) and until operators.
To reason about events in the past, LTP is extended with past-time operators,
which are discussed in the next section (for formal semantics of LTP see [14] and
[1]). The logic LTP is then expanded to LTPΠ

by adding the set of propositional
variables at λ (which means that action labelled λ is next to be executed), to
link the protocol state to a state in the temporal model of the logic. Therefore,
although the protocol has actions, the logic, instead, only uses the labels of the
actions.

In order to prove that a protocol is norm-compliant in all situations that
might arise we need to check the protocol in various different models and see
whether the norm compliance holds. For instance, a protocol for obtaining donor
organs needs to be checked in models where the donor is male and in models
where the donor is female to determine that the protocol does not violate a
norm about not discrimination between donors based on sex, race, etc. Only if
the protocol generates the desired and expected result in both situations, we can
say that the protocol does not violate that norm.

2 The fact that know not potential donor(d, y) becomes true means in this protocol
that all of the next steps are skipped, and the protocol terminates by specifying that
no permission can be obtained.

51

Since time is defined as semi-finite (it starts at the start of the protocol),
protocols cannot use information about previous runs and next runs (unless ex-
plicitly modelled). If protocolsΠ1 andΠ2 are run one after another (i.e.,Π1;Π2),
Π1 cannot use information from or about Π2 and Π2 cannot use information
from or about Π1; they are considered as separate runs. This means that the
value of program variables, truth values of predicates and states and information
gathered is restricted to the runtime of the protocol. Propositions and predicates
can change their truth values during a protocol run, however, but only because
of actions taken in the protocol.

3.2 Formalising the Norms

The norms that apply to the domain in which we are checking the protocol are
then translated into a high-level formal language, which should provide enough
room for the formal representation of the norms to keep their abstract nature.
We have used a formalism similar to the one used in [23]. In order to be able
to use these high-level formalised norms in the checking of the protocols we
needed to extend the first-order language specified above with deontic concepts,
Ox, Px, Fx, to express x being obliged, permitted or prohibited some action,
respectively. To give meaning to these deontic operators we introduced special
predicates to denote when violations occur. To handle the temporal aspects of
norms, such as deadlines, we used ideas from [4], [6] and [8] and adapted these
to be used with the first-order temporal logic as specified above. Furthermore
we have extended our language with DOx λ (x is going to do λ next) to reason
about actions and �ϕ (past operator) and �ϕ (previous-state operator) to reason
about the events that have happened (such as actions that have been done:
DONEx α ≡ �DOx α).

The deontic operators discussed above are introduced as abbreviations of
complex temporal formulas. Definition 1 shows the temporal translations of obli-
gations in our formalism (based on [8]).

Definition 1 (Obligations).

Ox(DOx α < δ) ≡ ♦δ ∧
[

(¬δ ∧¬viol(x,DOx α,δ)∧¬DONEx α) until

((DOx α ∧#(2¬viol(x,DOx α,δ)))∨

(¬DOx α∧#(δ ∧ viol(x,DOx α,δ))))
]

Similar temporal translations are made for permissions and prohibitions (not
included here due to space constrains, see [1] for these definitions).

Norms applicable to the example mentioned in §1 are, for instance, obliging
doctors to talk to relatives for obtaining permission before extracting organs
from a donor, prohibiting the extraction of organs without the approval of the
district attorney in case of suspicion of a non-natural death , etc3. In §4 we prove
that the protocol abides to the norm that doctors are obliged to pronounce dead
of a patient before removing an organ.

3 A full set of norms is available in [1].

52

Permissions and Non-Permissions In theoretical deontic studies, such as
[17], [21] permissions are normally modelled as Px(DOx α) ≡ DOx α→ ¬viol(x, α),
which says that being permitted to do α means that doing α leads to non-
violation. Moreover, permissions are, in classic deontic studies, normally defined
as being equivalent to ¬Fx(DOx α) and ¬Ox(¬DOx α). The problem with this
definition, which is also discussed in deontic studies (cf. [18]), is that it makes
the existence of permissive norms nonessential when trying to determine whether
violations occur. From observations of the legal domain, and as already proposed
in [18], it follows, however, that permissions can be considered as exceptions to
a general prohibition. The fact that an article in a law provides a certain set of
people in a certain situation with the permission to do α means that in other
situations these people, or other people at all times, are prohibited to do α. Some
lawbooks even express this explicitly by means of an article that something is
forbidden unless stated otherwise within that lawbook. We model this relation
between permissions by a technique similar to negation as failure, as used in
logic programming [22]; the inability to derive that you are permitted to do α
means that you are forbidden to do α:

∼ Px(DOx α)→ Fx(DOx α)

Of course, we could have opted for a relation in the other direction, i.e., ∼
Fx(DOx α) → Px(DOx α) which means that if something is not explicitly for-
bidden it is permitted. The choice between whether to use the first or the second
relation entirely depends on the nature of the norms one is trying to formalise,
i.e., the choice is dependent on the character of the legal system, thus whether
it is permissive in nature or restrictive (see [19] for a discussion on the character
of legal systems).

Now, since we add the ∼ Px(DOx α) → Fx(DOx α) rule to our system to
model that permissions are exceptions to general prohibitions (where this general
prohibition might only follow from the characteristic nature of the law), we
get into trouble if we don’t assume that permissions follow from obligations
(i.e., Ox(DOx α) → Px(DOx α)). This assumption is an axiom in most deontic
systems, but we are reluctant to insert it because we feel that in the real world
this might not necessarily hold. It is, however, true that a normative system
is supposed to uphold this principle, i.e., normative systems should be designed
such that obligations to do α can actually be fulfilled, but this is actually the ideal
situation. When designing a normative system (thus, when laws are postulated)
it should be taken into account that obligations can be fulfilled. However, it is not
necessarily the case that this condition is always met in normative systems (due
to mistakes in designing the system). In the case presented in §4, however, we
can safely assume that this assumption has not been violated by the law-maker.

Linking Levels A problem that arises because of the high-level of abstraction
for the formalisation of norms is the mapping between the concepts in the norms
and the actions specified by the protocols. In order for the norms to range over

53

a wide variety of situations, and in order to function for a long duration with-
out the need of modification, norms tend to abstract from a variety of concrete
aspects, such as time, role, etc. Therefore, in order to check whether certain con-
crete actions and situations contained in the protocol violate a norm we need to
map these concrete actions and situations to the abstract actions and situations
described by the norms. The mappings that we can provide are generally con-
sidered to be one-way mappings, that is, a concrete action a in a protocol can be
considered to be an instance of an abstract action α mentioned in the norms, but
since there are many more actions conceivable that can be considered instances
of α, we cannot say that a and α are equivalent; we can only say that a is an
instance of α, or that doing a counts as doing α (DOx a ; DOx α). Although
this mapping problem seems to follow from our high-level formal language, it
is also present when using formalisms with a lower abstraction level (although
implicit). The explicit mapping that we need to make between the protocols and
norms now is in such a case taken care of when formalising the norms (by means
of choosing the appropriate concrete concepts in the formalisation of the norms).
In this paper we use a simplified version of the counts as as defined in [10] and
[12].

3.3 Verifying Protocols

The next step of the process is the actual verification of the protocol. The for-
malism that we have chosen allows us to specify properties that are verified by
means of automated reasoning. This means that we check the protocol in all
sorts of different situations (that apply to the protocol and norms) in order to
check whether all situations guarantee the norm compliance that we require.

In order to check the protocol on norm compliance we specify a safety prop-
erty that has to be derivable from the protocol. This safety property is an in-
variant, a formula that should hold during the entire execution of the protocol.
We define the safety property for checking protocols as follows:

Definition 2 (Safety Property of Protocols).

startΠ ∧ 2Norms→ 2¬violation

Where startΠ ≡ at α0 (the protocol is at its start label), Norms being the con-
junction of all applicable norms, and violation ≡

∨

x,α,δ viol(x, α, δ) (violation
is the disjunction of all viol-formulas that occur in Norms). This safety property
of protocols is defined as the global invariance of ¬violation for the protocol Π
under the condition that Norms always holds, i.e., if 2Norms holds upon the
start of running Π , then ¬violation will hold in all states of the run.

To prove that a protocol satisfies this property we introduce the following
rule:

54

Theorem 1 (Invariance Rule). The following rule is valid:

startΠ ∧ 2Norms→ ¬violation
¬violation invof M̄Π

startΠ ∧2Norms→ 2¬violation

Where C invof α ≡ atα ∧ C → #C (C is an invariant of α) and C invof M ≡
C invof α1∧ . . .∧C invof αm (C is an invariant of every α ∈M), and M̄Π is the
set of all labels in the program except for the label of stop, the end-statement.
A proof of this theorem can be found in [14]. This rule is also very close to the
intuition one might have about protocols being norm-compliant, namely if there
are no steps in the protocol that violate any norm, the protocol will not violate
any of the norms as a whole (if no violation existed when the protocol started
running).

Of course, this is not the only property that a protocol needs to satisfy. Be-
cause law is generally applicable to a single context, one who is not participating
in the activities of that context is not regulated by these laws; the laws mean
nothing to someone not trying to do anything regulated by that particular set of
laws. For instance, traffic laws have no influence on those who do not participate
in traffic situations; if someone sits at home all times, these laws will never be
violated. The problem is that laws regulating a specific domain assume that you
are trying to do something or otherwise participate in that domain, and only
regulates these actions and participations.

While all protocols that satisfy the aforementioned safety property are com-
pliant to the norms, we would actually like to be able to say a bit more about
the protocols we are trying to verify. Since protocols that do satisfy the safety
protocol, and thereby the norm compliance, that merely consist of actions that
are not regulated by the applicable norms, are not that interesting to the agents
interacting in the eInstitutions (e.g., although “while True do skip od” does
satisfy almost all violation invariances, it is not very interesting from an interac-
tion or institution’s point of view). Therefore, we need to define another property
that allows us to determine whether a protocol is, next to being norm-compliant,
also trying to achieve something interesting. Norm-compliant protocols that are
actually relevant to the domain not only satisfy the violation invariance property,
but also a liveness property. This sort of properties specify that a protocol/pro-
gram will, at sometime, reach a certain (interesting) state. We can use this to
check whether the protocol achieves a specified goal at the end of its run:

Definition 3 (Liveness Property of Protocols).

startΠ ∧ 2Norms→ ♦(at αe ∧ goal)

Where at αe is the stop-statement of Π and goal is the goal that the protocol
should reach. In our example this is a complex declarative statement specifying
that when the conditions hold (i.e., the donation should ideally take place), the
agent/doctor running the protocol will know that the donation can take place,
and when one of the conditions for the donation fails, the agent/doctor knows
that the donation cannot take place.

55

4 Practice

Now that we have seen a description of the approach we are using to verify the
norm compliance, we show in this section how this approach is to be used. We
show this by using the example protocol mentioned above in figure 1. To ensure
the norm compliance of this protocol we need to check whether the safety and
liveness properties, as specified before, are satisfied. Although it is possible to
give a fully formal proof we will only show the first steps due to space limitations.
In this proof we assume that y denotes the patient with respect to whom the
protocol is run, d denotes the doctor running the protocol and d′ is a doctor-
variable (denoting a unspecified doctor).

For the invariance proof, i.e. proving that ¬violation is an invariant of the
protocol, we make use of the invariance rule as mentioned in theorem 1. We as-
sume that startΠ ∧ 2Norms→ ¬violation holds (1) and will try to prove that
¬violation is an invariance of every following step of the protocol, thereby deriv-
ing that ¬violation is an invariant of the protocol. We can make this assumption
because we are not interested in the situations where this assumption does not
hold, such as the situation in which the protocol is started when a violation
has already occurred, since starting the protocol in such a situation would say
nothing about the norm compliance of the protocol, only that it cannot “repair”
the situation it started in.

Note that we only need to check the actions taken by the protocol, since the
“control points” used in the protocol (i.e. protocol labels referring to conditions
of if -clauses) are trivially norm-compliant since they do not change the value of
any viol-predicate (actually, the action that is thereafter chosen shows whether
the decision made at the control point was correct). This is expressed in step
(3).

(1) startΠ∧2Norms→¬violation assumption

(2) startΠ→(at π0∧intented(organ removal)) definition of startΠ

(3) ¬violation invof M̄Π\{π0,π5,π7,π9,π14,π16,π21,π23,π24,π26,π33} Trivial

Next we prove that step π0 of the protocol (checking whether the patient
satisfies the criteria and none of the contra-indications for being a donor) is
norm-compliant. The only norm in the law concerning this actions is the fact that
doctors are supposed to check whether a patient is brain death before removing
any organs, of which the translation is seen in step (5). In order to use this deontic
expression for determining whether violations occur, we need to “expand” the
norm in (5) to its temporal counterpart by using the definition 1 seen earlier,
as seen in (6). Now, since we can derive from the structure of the protocol
that DOd′ remove organ(d′, y) has not yet occurred, or is occurring now (7), we
can derive that the value of V1 will not be changed by DOd certify dead(d, y),
shown in (8) and (10). Finally, after connecting the abstract norm level to the
protocol level using (4) to derive (11), remembering the fact that obligations
imply permissions (12) (and therefore do not lead to violations by acting upon

56

the obligation)4, and adding the fact that no other norms were applicable and
thereby cannot be violated (13), we can conclude that ¬violation is an invariant
of π0, see (15).

(4) at π0; DOd certify dead(d,y)

(5) Od(DOd certify dead(d,y)<DOd′ remove organ(d′,y)) Art. 14

(6) ♦DOd′ remove organ(d′,y)∧
[

(¬DOd′ remove organ(d′,y)∧¬V1∧¬DONEd certify dead(d,y)) until

((DOd certify dead(d,y)∧#2¬V1) ∨

(¬DOd certify dead(d,y)∧#(DO
d′ remove organ(d′,y)∧V1)))

]

V1=viol(d,DOd certify dead(d,y),DOd′ remove organ(d′,y)) (5)

(7) ¬�DOd′ remove organ(d′,y) (Π)

(8) DOd certify dead(d,y)∧¬violation→#2¬V1 (6),(7)

(9) #2ϕ→#ϕ (taut)

(10) DOd certify dead(d,y)∧¬violation→#¬V1 (8),(9)

(11) at π0∧¬violation→#¬V1 (4),(10)

(12) Pd(DOd certify dead(d,y)<DO
d′ remove organ(d′,y)) (5)

(13) at π0∧¬violation→#¬viol(d,α,δ) (V C)

for all viol-predicates other thanV1

(14) at π0∧¬violation→#¬violation (11),(13)

(15) ¬violation invof π0 (14)

And so, after checking the norm compliance of π0 we continue with checking
whether the next actions (starting with π5 and so on, see the formalised protocol
in §3.1 and the full proof in [1]) do not violate the norms. After deriving that
¬violation is an invariant of all the protocol steps we can derive, by theorem 1,
that the protocol does not violate any of the norms, see (111).

...
(110) ¬violation invof π33

No norms concerning filling in donor form (V C)

(111) ¬violation invof M̄Π (1),(3),(15),...,(110)

In a similar fashion we can prove that a liveness property as specified in
definition 3 holds for Π . Where

at αe ≡ at πe

goal ≡ criteria(y)∧¬contra-indication(y)∧ (statement permission(y)∨ other statement(z,y)∨ relative permission(y)) ∧

(¬non-natural dead(y)∨DA permission(p,remove organs))

→ know permission(d,remove organ(y))
V

¬ (criteria(y)∧¬contra-indication(y)∧ (statement permission(y)∨ other statement(z,y)∨ relative permission(y)) ∧

(¬non-natural dead(y)∨DA permission(p,remove organs)))

→ know no permission(d,remove organ(y))

This goal represents that the protocol is supposed to make sure that the agent
obtains the knowledge whether it has the permission for the organ transplanta-
tion or not, after ending the protocol run. By proving these safety and liveness
properties we show that Π is not only norm-compliant, but also that Π actually
achieves the goal for which it is designed (that is, to determine whether you are
allowed to extract the patients organs for transplantation).

4 Remember that not being able to derive this permission would have meant that there
existed a prohibition on this action, see §3.2

57

5 Conclusions & Future Work

In this paper we discussed a formal approach on norm compliance of protocols
based on the verification of programs. We give a view of how these techniques can
be used, after some adaptation and extension, to verify that a (knowledge-based)
protocol is norm-compliant. We also show, as an example, how norm compliance
of a knowledge-based protocol (actually used in the medical domain) can be
proven.

Please note that norm compliance of the protocols used by the agents is only
a step towards the implementation of norms in MAS. Protocols are guidelines
and agents are, therefore, not necessarily constrained to follow the protocol. A
more direct enforcement is needed instead. Norms can be enforced either by the
use of violation detection and sanctioning these violations [23], or by directly
constraining the agents such that they can only do actions that do not violate
norms.

Currently our formal method is suited for verification of single sequential
protocols. We plan to extend our LTPΠ

language to prove norm compliance of
parallel protocols (such as interaction protocols). We also plan to extend the LTP

language with operators from epistemic logic in order to improve expressiveness
of knowledge and beliefs of agents following a protocol. Moreover, we are very
interested in seeing how this extended approach can, for instance, be used for
the checking of security and authentication protocols.

The framework discussed in this paper uses a theorem proving method to
verify the norm compliance of protocols. This is known to be labour-intensive.
We are currently considering the use of model-checking, instead.

References

1. H. Aldewereld, J. Vázquez-Salceda, F. Dignum, and J.-J.Ch. Meyer. Proving norm
compliancy of protocols in electronic institutions. Technical Report UU-CS-2005-
010, Institute of Information and Computing Sciences, Utrecht University, 2005.

2. G. Boella and L. Lesmo. Deliberative normative agents. In C. Dellarocas and
R. Conte, editors, Workshop on Norms and Institutions in Multi-Agent Systems,
pages 15–25. ACM-AAAI, ACM Press, 2000.

3. M. Boman. Norms in artificial decission making. Artificial Intelligence and Law,
7(1):17–35, 1999.

4. J. Broersen, F. Dignum, V. Dignum, and J.-J. Ch. Meyer. Designing a Deontic
Logic of Deadlines. In 7th Int. Workshop on Deontic Logic in Computer Science
(DEON’04), Portugal, May 2004.

5. C. Castelfranchi, F. Dignum, C. Jonker, and J. Treur. Deliberative Normative
Agents: Principles and architecture. In Proc. of the 6th Int. Workshop on Agent
Theories, Architectures, and Languages (ATAL-99), 1999.

6. F. Dignum, J. Broersen, V. Dignum, and J.-J. Ch. Meyer. Meeting the Deadline:
Why, When and How. In 3rd Goddard Workshop on Formal Approaches to Agent-
Based Systems (FAABS), Maryland, April 2004.

7. F. Dignum, D. Morley, and E.A. Sonenberg. Towards socially sophisticated BDI
agents. In DEXA Workshop, pages 1134–1140, 2000.

58

8. V. Dignum. A Model for Organizational Interaction: based on Agents, founded in
Logic. SIKS Dissertation Series 2004-1. SIKS, 2004. PhD Thesis.

9. M. Estava. Electronic Institutions: from specification to development. PhD thesis,
Universitat Politèchnica de Catalunya, 2003.

10. D. Grossi, H. Aldewereld, J. Vázquez-Salceda, and F. Dignum. Ontological as-
pects of the implementation of norms in agent-based electronic institutions. Ac-
cepted for the 1st International Symposium on Normative Multiagent Systems
(NorMAS2005), 2005.

11. D. Grossi and F. Dignum. From abstract to concrete norms in agent institutions.
In M. G. Hinchey, J. L. Rash, W. F. Truszkowski, and et al., editors, Formal
Approaches to Agent-Based Systems: Third International Workshop, FAABS 2004,
Lecture Notes in Computer Science, pages 12–29. Springer-Verlag, April 2004.

12. D. Grossi, F. Dignum, and J-J. Ch. Meyer. Contextual taxonomies. In J. Leite and
P. Toroni, editors, Proceedings of CLIMA V Workshop, Lisbon, September, pages
2–17, 2004.

13. H. L. A. Hart. The Concept of Law. Clarendon Press, Oxford, 1961.
14. Fred Kröger. Temporal Logic of Programs, volume 8 of EACTS monographs on

theoretical computer science. Springer-Verlag, 1987.
15. F. López y Lopez. Social Power and NormsL Impact on Agent Behaviour. PhD

thesis, Faculty of Engineering and Applied Science, Univ. of Southampton, 1997.
16. F. López y Lopez, M. Luck, and M. d’Inverno. A framework for norm-based inter-

agent dependence. In Proceedings of The Third Mexican International Conference
on Computer Science, pages 31–40. SMCC-INEGI, 2001.

17. J.-J. Ch. Meyer and R.J. Wieringa. Deontic logic: A concise overview. In Deon-
tic Logic in Computer Science: Normative System Specification, pages 3–16. John
Wiley & Sons Ltd., Chichester, UK, 1994.

18. L. Royakkers and F. Dignum. Giving permission implies giving choice. In
E. Schweighofer, editor, 8th International Conference and Workshop on Database
and Expert Systems Applications. Toulouse, France, 1997.

19. M.J. Sergot, F. Sadri, R.A. Kowalski, and F. Kriwaczek. The british nationality
act as a logic program. Communications of the ACM, 29(5):370–386, May 1986.

20. Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: Off-
line design. Artificial Intelligence, 73(1-2):231–252, 1995.

21. A. Soeteman. Logic in Law: Remarks on logic and rationality in normative rea-
soning, especially in law. Kluwer Academic Publishers, 1989.

22. M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a pro-
gramming language. Journal of the ACM (JACM), 23(4):733–742, October 1976.

23. J. Vázquez-Salceda, H. Aldewereld, and F. Dignum. Implementing norms in multi-
agent systems. In G. Lindemann, J. Denzinger, I.J. Timm, and R. Unland, editors,
Multiagent System Technologies, LNAI 3187, pages 313–327. Springer-Verlag, 2004.

24. J. Vázquez-Salceda and F. Dignum. Modelling electronic organizations. In
V. Marik, J. Muller, and M. Pechoucek, editors, Multi-Agent Systems and Ap-
plications III, LNAI 2691, pages 584–593. Springer-Verlag, 2003.

25. Mahadevan Venkatraman and Munindar P. Singh. Verifying compliance with com-
mitment protocols. Autonomous Agents and Multi-Agent Systems, 2(3):217–236,
1999.

