GIST: Group-Independent Spanning Tree for
Data Aggregation in Dense Sensor Networks

Lujun Jia!, Guevara Noubir!, Rajmohan Rajaraman!, and Ravi Sundaram?

College of Computer and Information Science
Northeastern University, Boston, MA 02115, USA
{lujunjia, noubir, rraj, koods}@ccs.neu.edu

Abstract. Today, there exist many algorithms and protocols for con-
structing agregation or dissemination trees for wireless sensor networks
that are optimal (for different notions of optimal, i.e. under different
cost metrics). However, all these schemes differ from one common failing
- they construct an optimal tree for a given fired subset of the sensors.
In most practical scenarios, the sensor group is continuously and dy-
namically varying - consider for example the set of sensors scattered in
a forest that are sensing temperatures above some specified threshold,
during a wildfire. Given the limited computational and energy resources
of sensor nodes it is impossible to either prestore the optimal tree for
every conceivable group or to dynamically generate them on the fly.

In this paper we propose the novel approach of constructing a single
group-independent spanning tree (GIST) T for the network and then
letting any sensor group .S use the subtree induced by S on T, Ts as its
group aggregation tree. The important question is, how does the quality
of the subtree T's compare to the optimal tree, OPTgs, across different
groups S. We consider two well-accepted measures - aggregation cost
(sum over all links) and delay (diameter). We show that in polynomial
time we can construct a GIST that simultaneously achieves O(logn)-
approximate aggregation cost and O(1)-approximate delay, for all groups
S.

To the best of our knowledge GIST is the first construction with a non-
trivial and provable performance guarantee that works for all groups. We
provide a practical and distributed protocol for realizing GIST that re-
quires only local knowledge. We show an (2(n) lower bound for commonly
accepted solutions such as MST and SPT (i.e. there exists a group for
which the induced subtree performs poorly) and demonstrate by sim-
ulation that GIST is good not just in the worst case - it outperforms
SPT and MST by between 30 and 60 per cent in realistic random sce-
narios. GIST is an overlay construction and for the special case of grids
we present GRID-GIST, a physical tree that uses only grid edges and
achieves the same performance bounds.

1 Introduction

Wireless sensor networks have emerged at the forefront of applications involving
the measurement of physical phenomena, environmental monitoring, medical

instrumentation, and building monitoring in warehouses and homes. A wireless
sensor network is comprised of hundreds or thousands of sensor nodes networked
through wireless links for collecting and processing environmental data. Sensor
networks have stringent energy restrictions, and are typically deployed in high
density to ensure coverage and fault tolerance.

Fig. 1. In the above network, a spanning tree T is depicted by solid edges. A subset S
consists of the two square nodes. A subtree of T" induced by S is depicted by the thick
edges. Clearly, the subtree is far from optimal, which includes the two dotted edges.

With the advent of large-scale sensor network applications, there is consid-
erable interest in a database abstraction for sensor networks, in which users
program the sensors using a high-level declarative language [16,31,38]. A user
issues a query to the network, and every sensor node that meets the criteria
defined in the query replies with the desired data reading. In the reply phase,
data can be aggregated in-network to reduce communication complexity, and
hence energy consumption [28,31]. Data aggregation is usually performed using
a reverse multicast tree, in which each intermediate node receives packets from
its children, aggregates the information, and sends one packet to its parent. As
shown in multiple studies, this can lead to considerable savings in energy con-
sumption over an approach that does not use in-network aggregation [16,28, 31].

Consider a sensor network deployed in a large forest for monitoring forest
fires. A user may issue the following query (written in a variant of SQL) to the
whole network:

SELECT MAX(temperature), location FROM sensors
WHERE temperature > threshold

DURATION (now,now+3600s)

EVERY 30s

In the above declarative query, the user asks for the maximum temperature
and its location, every 30 seconds for a duration of an hour, if this maximum
temperature is above a certain threshold. Due to temperature changes in different
areas of the forest, the group of sensors satisfying the threshold criteria may

change continually. Therefore, the aggregation group (the group of sensors that
need to send readings to the user) changes in an unpredictable manner over time,
and the total number of such groups is large. In such a scenario, the following
dilemma seems unavoidable:

— Since the number of different groups is large — exponential in the number
of sensors, in the worst case — it is prohibitively expensive for the energy-
constrained, distributed and multi-hop sensor nodes to compute efficient
aggregation trees for each group.

— On the other hand, if a communication-optimized data aggregation structure
is not used, the aggregation itself can be expensive.

Most existing algorithms and protocols for constructing data aggregation
trees have drawbacks in that one aggregation tree has to be constructed and
maintained for one group of sensors [3,19,27,31]. Such aggregation protocols
are not suitable for large-scale sensor networks serving aggregation queries at
high frequencies. We refer to these protocols as group-dependent data aggrega-
tion protocols. Group-dependence, or group-awareness, makes the optimization
of communication cost possible, however only for a single group. Therefore, in
sensor applications where the sensor groups of interest evolve constantly or dif-
ferent queries are issued on a frequent basis, new solutions are desired to support
effective in-network aggregation.

We propose GIST (Group-Independent Spanning Tree) for data aggregation
in sensor networks. A GIST, T is a single spanning tree that is “oblivious” to
any aggregation group in the sense that the aggregation structure adopted for
any group is simply the subtree of T induced by the group. The performance of
GIST for a given group is measured by comparing the cost of this induced subtree
with the cost of an optimal aggregation tree for that group. Figure 1 illustrates a
group-independent spanning tree and its subtree induced by a subset of nodes. It
is not clear a priori that it is possible to find such a group-independent tree with
good guarantee. Two natural candidates for GIST are the minimum spanning
tree (MST) and the shortest-paths tree (SPT). However as shown in [22], they
both have 2(n) worst case performance.

1.1 Main results

— We propose the group-independent tree paradigm for providing effective un-
derlying structures to support data aggregation in wireless sensor networks
that performs well in terms of aggregation cost and delay. The worst-case
performance of common tree structures such as MST and SPT is shown to
be 2(n) times the optimal in terms of aggregation cost.

— We propose an algorithm for constructing GIST in sensor networks, such
that the cost of the tree induced by any group is within O(logn) factor of
the cost of the optimal cost for that group, and delay is within O(1) factor
of the optimal delay. We also present a distributed protocol for constructing
our GIST, performing data aggregation, and for maintaining GIST as nodes
join or leave the network.

— We prove that our upper bound of O(logn) is nearly tight by presenting a
lower bound of O(logn/loglogn) for aggregation cost, for any polynomial
time algorithm that approximates the problem.

— Through extensive simulations, we show that our GIST algorithm outper-
forms both MST and SPT by 30 — 60% in terms of both the communication
cost as well as average delay.

Our GIST protocol reduces the tree construction overhead, and each node
in GIST only needs to memorize a single parent. Also, our GIST protocol has a
provable O(logn) performance guarantee for aggregation cost and the delay is
within a constant factor of all induced subtrees.

The remainder of this paper is organized as follows. In Section 2, we survey
related work. Section 3 presents our models and basic assumptions. In Section 4,
we give the formal definition of GIST and present the GIST algorithm. In Sec-
tion 5, we give a distributed implementation of our GIST algorithm. In Section 6,
we evaluate the performance of our GIST algorithm by simulations. In Section 7,
we discuss future work and some limitations of our scheme, and propose an al-
gorithm for constructing physical GIST on grid networks.

2 Related work

A number of data aggregation algorithms and protocols have been proposed
for wireless sensor networks over the past several years. Directed diffusion [20]
is proposed as a data centric communication paradigm for sensor networks. In
directed diffusion, subscriptions use flooding to spread interest. Initially, the data
is sent to the sink along multiple paths; however, better aggregation paths are
gradually enforced. SAFE [25] uses geographically limited flooding to forward
query to nodes. Due to expensive flooding operations, it is not suitable for large
sensor networks. TTDD [39] exploits local flooding within a local cell of a grid to
facilitate large scale data dissemination. However, when the sink moves out of the
cell, the dissemination path has to be reconstructed. In [18], a regional-flooding
based multicast scheme for the problem of mobicast is proposed, where high
sensor network density is exploited for delivery guarantee as well as satisfying
certain temporal requirements.

In [28], data-centric routing protocols were compared with traditional address-
centric protocols, and the authors showed that data-centric routing offers sig-
nificant performance gains in a wide range of operational scenarios. In [2,24],
the authors consider the problem of data dissemination from a source node to
multiple mobile sinks. In their algorithm, a mobile sink is attached to a static
sensor access point close to it, and a multicast group consists of a set of such
access points that request the same information from a sensor region. Their al-
gorithm is based on the construction of minimum Steiner trees. In [27,31],
data aggregation algorithms are designed to reduce the rounds of transmitted
data from sensors to sink. In-network data aggregation has also been considered
in [3,27,31]. We however note that none of the proposed schemes is able to
achieve a provable performance guarantee.

In [21], the authors developed a polynomial time algorithm for computing
a spanning tree with O(log* n/loglogn) stretch on arbitrary metrics. For Eu-
clidean metrics, an O(logn)-stretch spanning tree is presented. The O(logn)-
stretch spanning tree construction of [21] requires the whole network to be known
a priori, and the algorithm is centralized and not suitable for a distributed net-
work. In addition, the algorithm only specifies the initial construction of the tree,
and does not consider the maintenance of the tree in presence of node failures.
Note that the scheme of dividing the Euclidean plane into recursively small re-
gions is a commonly used technique, and has been considered in [30]. Schemes
that take into account both edge cost and network diameter are also considered
in [32].

Multicast communication algorithms are also considered in the context of
ad hoc networks. The authors in [19] construct a publish/subscribe spanning
tree across the network. A location-aware Steiner tree based algorithm is pro-
posed in [10] for multicast in ad hoc networks. Geocasting [26], where multicast
algorithms are tailored for sending information to a geographical area, is stud-
ied in [26]. In [14], hierarchical multicast routing protocols are proposed. The
authors adopted an overlay-driven approach for supporting hierarchical routing.

A number of overlay multicast protocols have been proposed in the context of
IP multicast. In [37], a proactive approach is considered for reconstructing over-
lay multicast trees. In [4], the authors consider the trade-off between path length
and the load on nodes in overlay multicasting, and proposed an application-layer
mininum delay multicast algorithm. Related studies identify network structures
that optimize other metrics. In [8,9], the authors proposed algorithms for con-
structing routing structures that minimize network congestion at nodes. In [7],
the problem of routing for minimizing transmission energy under the relay model
is studied.

3 Models and assumptions

3.1 Network model

Unit disk graphs. We model a wireless sensor network as an undirected unit
disk graph G = (V, E) on the Euclidean plane, where V is the set of nodes, and
E is a set of edges on V. (We remark that our GIST algorithm can be easily
extended to 3-dimensional space.) A edge (u,v) exists between u,v € V' if both
nodes are capable of exchanging messages over the distance |uv|. We assume
that each node is aware of its own geographical location. This can be achieved
by either a GPS device, or a location service such as the position estimator
in [1,5].

Node density. The focus of this paper is on large-scale dense sensor networks,
where scalability is the main challenge for data aggregation. We assume a de-
ployment of n sensors randomly placed in the 2-D plane, with a density of
2(logn) nodes per unit area, assuming unit transmission range for all nodes. It
is well-known that an n-node network is disconnected (assuming unit transmis-
sion range) with high probability if the density is O(logn) [15, 33].

As discussed in Section 1, our main performance measures are the total com-
munication cost and the average delay. The total communication cost for an
aggregation is measured by total number of hops used in the aggregation, while
the delay is the number of hops between the root and the farthest node being
aggregated. Through standard probabilistic analysis, it has been shown that if
the density is £2(logn) (for a suitably chosen constant hidden in the {2 notation),
each cell of a sufficiently small constant area is occupied [15]. In such a dense
network, the network hop distance is well-approximated by the Euclidean dis-
tance (within a small constant factor). This correlation has also been established
by means of an in-depth experimental study in [18]. In our performance analysis,
we adopt the Euclidean distance as our measure of the hop metric since these
are equivalent up to small constant factors and the Euclidean metric is more
conducive to our analysis for establishing provable bounds.

We emphasize that the correctness of our protocol does not rely on any

assumptions about the sensor node density; our protocol works for any connected
network.
Routing. Our general GIST algorithm constructs an overlay tree on the underly-
ing physical graph G = (V, E). An edge in the overlay tree corresponds to a path
in the underlying graph. Therefore, an underlying routing service from a source
to a destination is required. Note that the idea of using overlay trees for data
dissemination and aggregation is not new and has been considered in [2,6,24]
for wireless sensor networks and in [13,36] in the context of ad hoc networks.
Such underlying paths can be shortest paths, or paths computed by geographic
routing protocols [23,29], etc.

In Section 7, we propose an algorithm, GRID_GIST, which is not dependent
on any underlying routing service. In a GRID_GIST, all edges are physical edges
in the underlying graph G. In location-based services, the deployment regions
can be divided into a number of small geographic areas such that two nodes in
neighboring areas can communicate with each other. In each area, a leader can
be selected, and a GRID_GIST can be constructed for all the leaders. Whenever a
node want to participate in the data aggregation process, it first sends messages
to its leader in the area, then the GRID_GIST is employed to transport and
aggregate data to the sink.

3.2 Aggregation functions

In this study, we assume distributive aggregation functions [28,31], where in-
termediate nodes compute and transmit one single output packet as the result
of aggregating over multiple input packets. In such aggregates, the size of the
partial state record is the same as the final aggregate. Thus, each transmitted
packet is of the same size. Computing maximum, minimum, average, sum, count
are examples of this class of aggregation functions. Assuming distributive aggre-
gates, it can be easily seen that given a group S of sensor nodes and a root node
(information sink), the minimum cost (total number of transmissions) data ag-
gregation tree is a minimum Steiner tree, where the Steiner set consists of the
information sink and all the data sources involved [2,10,24]. Therefore, the cost

of using an aggregation tree can be measured by simply counting the number of
edges on the tree, since each node transmits only once.

3.3 Simulation model

In our simulation, we first evaluate our algorithm on dense sensor networks where
all nodes in the network are capable of sensing, aggregating and transmitting
data. We refer to this model as SNM (Sensor Network Model). We compare the
performance of GIST, MST and SPT under two metrics: aggregation cost and
aggregation delay. As discussed in the preceeding section, aggregation cost can be
measured by the number of edges on the tree, assuming distributive aggregation
functions. We measure aggregation delay by the maximum tree depth rooted at
the sink node, since this represents the maximum number of hops for a packet
to reach the sink. Note that delays caused by packet collision are not considered.

In addition to the above model, we consider sensor networks consisting of reg-
ular sensor nodes, as well as a dense collection of cooperative “relay” nodes [17,
34]. Relay nodes are only capable of routing and forwarding; they do not par-
ticipate in data aggregation and other higher-layer sensor network applications.
In [17], the authors show that given a certain energy budget, it is more efficient
to deploy additional relay nodes than increase energy in existing nodes in order
to extend the life time of the network. Our bound on the performance of GIST
requires a dense network of the combined sensor and relay deployment. We refer
to this model as SRNM (Sensor and Relay Network Model).

4 A provably near-optimal group-independent spanning
tree

The optimal data aggregation tree problem can be reduced to the classic mini-
mum Steiner tree problem, assuming distributive aggregate functions. The min-
imum Steiner tree problem is NP-complete [12], but can be easily approximated
to within a constant factor in polynomial time, given the fixed group of vertices
that need to be connected [35]. As discussed in Section 1, however, in many
sensor network applications, the group of relevant sensors that needs to be ag-
gregated may evolve constantly. Thus, it is infeasible for the resource-constrained
sensor nodes to compute efficient multicast trees for the many groups (poten-
tially, exponential in the number of sensors) on-line. Motivated by this [21], one
can consider the following natural variation of the Steiner tree problem, univer-
sal Steiner tree problem: Given a root node r € V, is there a spanning tree T
connecting r to all nodes in V' — {r}, such that for any subset S of V' the cost
of tree induced by S+ {r} on T is “close” to that of an optimal Steiner tree for
the set S + {r}? If a “good” universal Steiner tree exists and can be computed
efficiently, it is an excellent candidate for group-independent data aggregation,
with the information sink as the root. We now present a formal definition of the
universal Steiner tree problem [21].

Definition 3.1 An instance of the universal Steiner tree problem is a triple
(V,d,r) where (V,d) forms a metric space, and r is a distinguished vertex in V'
that we refer to as the root. Let ||T'|| denote the cost of tree T'. For any spanning
tree T of V, define the stretch of T as maxscv ||Ts1¢rl/||Optstiry]|, where
Ts4¢ry denote the tree induced by S + {r} on T" and Optg(y is a minimum
Steiner tree for subset S 4 {r}. The goal is to determine a spanning tree with
minimum stretch.

Two natural candidates for a universal Steiner tree are the minimum span-
ning tree (MST) and the shortest-paths tree (SPT). In Section 4.1, we show that
both MST and SPT have {2(n) stretch, thus making them poor choices for group-
independent aggregation in the worst-case. The main focus of this section is a
new algorithm for constructing GIST that achieves O(logn) stretch in Euclidean
metrics, and can be efficiently implemented in wireless sensor networks.

4.1 Lower bounds for MST and SPT

MST and SPT [11] are polynomial time computable structures that are often
used for optimizing the overall tree cost or individual cost of each node com-
municating with the root. However, when used as a GIST, MST and SPT can
perform arbitrarily bad. We have the following,

Theorem 1 The worst-case stretch of both SPT and MST in Euclidean plane
is £2(n), where n is the number of vertices in the metric.

Due to space constraints, the proof of the above theorem is included in the
full version [22].

4.2 GIST for wireless sensor networks

Our GIST algorithm will adopt the following approaches to address the issues
discussed in the preceding section. First, we assume that each sensor node is
aware of its geographical location. This can be achieved by adopting a location
service such as the position estimators in [1,5]. We also assume that each node
also knows the location of the root node (information sink). Given such location
information, our GIST algorithm divides the whole deployment region into re-
cursively small regions (levels), and tree construction computation is limited to
the subset of nodes in each such region. Second, our GIST algorithm constructs
an overlay tree, i.e., an edge in this overlay tree can be a path in the original
unit disk graph. Each node in the overlay tree represents a geographical region
it resides in, and is referred to as a leader of this region. This enables GIST to
be constructed without full knowledge of the network. Finally, leader election,
as well as node joining/leaving the tree will be implemented on the overlay tree
structure, which will also be the basis for handling communication failures in
unreliable sensor networks.

The value v/5 is used to ensure communication between two nodes at the
opposite end of a 2 x 1 rectangle (consisting of two neighboring squares). Let

Algorithm 1 GIST (v, (z1,y1), (z2,y2))

1: if |z2 — x1| > R/V/5 then

2: Divide the square region marked by (z1,y1) and (z2,y2) into 9 equally-sized
smaller square regions (Figure 2);

else
return;

end if

Within each square region, select any node not selected before to be a leader, except

for the square region where v resides (for which v shall still be the leader);

Output an edge between each selected leader ¢ and wv;

8: For each square region, invoke GIST (¢, (z1,v1), (z5,y3)), where £ is the leader of
the square region, (z7,y;) and (z5,y5) are the coordinates marking the square
region;

I~

R be the transmission range of sensor nodes, and let D be the maximum dis-
tance between any node in V — {r} and r. (Recall that r is the root node.)
Without loss of generality, let the coordinate of be (0,0). Algorithm 1 presents
the formal definition of our GIST algorithm. It takes as input a root node and
a square region specified by two diagonally-opposite locations, and computes a
spanning tree connecting the root node to nodes within the square. To compute
a final GIST tree, GIST (r, (—D,—D), (D, D)) is invoked. Our algorithm adopts
a top-down approach: In each recursion, a set of new leaders representing certain
geographical regions are selected and connected to their parent; each new invo-
cation of the algorithm divides a square region into smaller pieces and repeats
the same leader selection process. Note that a selected leader for a square region
will also be the leader for one of the 9 smaller square regions. This applies to
root node r. Let T be the GIST computed by our algorithm. For any subset
S C V, we use aggregation cost to refer to the total edge distance of the tree
induced by S+ {r} on T, and use aggregation delay to denote the length of the
path from a node to the root. We have the following theorem for the aggregation
delay,

Theorem 2 (Aggregation Delay) Let T be a GIST generated by Algorithm 1.
The distance from any node v € V to r on T is within a constant factor of the
Euclidean distance between v and r.

For the aggregation cost, we have the following.

Theorem 3 (Aggregation Cost) Under the Euclidean metric, Algorithm 1 com-
putes an GIST with stretch O(logn) in polynomial time.

The proof of the above two theorems is included in the full version [22].

One interesting property of Algorithm 1 is that it eliminates dependence on
knowledge of the network topology, since each node in the overlay tree represents
a geographical region. Nodes can join (e.g., powered on) or leave (e.g., due to
failure) the network in a dynamic fashion, while geographical regions are rela-
tively stable. This forms the basis for our tree maintenance and fault tolerance

10

(-0.5,0.5) (05,0.5)

REY !
/.
\ o~ e 6
P
5
.\
| e 4
3
J \ 2
/ 1
(-05,-0.5) (0.5,-0.5) r

1 2 3 4 5 6 7

Fig. 2. Algorithm 1 divides the net-
work into recursively small regions, and

constructs an overlay tree with stretch
O(logn).

Fig.3. Algorithm 3 construct a
GRID_GIST on grid networks. The
stretch is O(logn).

mechanisms (Section 5). Another property of Algorithm 1 is that the distance
between any node v € V' and root r on the computed GIST is within a constant
factor of the minimum distance between v and r. This implies that the aggre-
gation delay using the induced tree of GIST is within a constant factor of the
minimum aggregation delay.

4.3 Lower bound for GIST

Our bound on the aggregation cost of GIST is almost tight. We can establish
the following lower bound on GIST(please refer to [22] for the proof).

Theorem 4 No algorithm can build a GIST with stretch better than Q(lglgl;n)
for any sensor network on Euclidean plane.

5 A GIST based data aggregation protocol

In this section, we present a distributed implementation of Algorithm 1 for con-
structing GIST. Our protocol proceeds in rounds by selecting leader among
nodes in small regions in the first round, and electing leaders among leaders
selected in the previous round in larger regions, and so on. We also define tree
maintenance and fault tolerance mechanisms, as well as a brief description on
data aggregation using GIST. Our protocol is a bottom-up implementation of
Algorithm 1.

5.1 A distributed protocol for constructing GIST

Let (zy,y,) be the coordinate of v € V. Without loss of generality, root node
has coordinate (0,0). Let ¢ = R/+/5 be the smallest square size (side length of

11

the square). As discussed in Section 4, the output of Algorithm 1 is a hierarchical
overlay tree, and a selected leader £ of a larger square region (higher level) is also
the leader for the smaller region (lower level) in which ¢ resides in. Each node
running the distributed protocol maintains a variable Cur_Level indicating the
largest square region for which it currently is a leader. The size of a square where
v is a leader is equal to 3¢¥-Level=1c e a leader for the square with size ¢ has
Cur_Level = 1, a leader for squares with size 3¢ has Cur_Level = 2, and so on.
By default, each node is a leader of level 0.

The protocol for constructing GIST proceeds in rounds. In each round, a
leader is elected by exchanging LEADER_ELECTION packets. The leader elec-
tion packet contains the following information: [L, SQ_X, SQ_Y,id], where id is
an integer uniquely identifying a node who is participating in the leader elec-
tion process. The first field, L, represents the level (also the size of the square
region) for which a leader is to be elected. The level number L, together with
SQ-X,S5Q.Y, defines the geographical region where a leader is elected. SQ_X
and SQ_Y are integers that are defined as follows,

SQX = |z,/3" - ¢)], SQY = |y,/(B")],

where (x,,¥,) is the coordinate of node v. Thus, a node is able to compose a
packet by filling in the leader selection level, SQ_X, SQ_Y, and its id number.

Upon receiving a LEADER_ELECTION packet, a node u can decide whether
it is contained in the square region defined by the packet’s L, SQ_X and SQ_Y:
if

SQX -37le <z, <(SQX +1)-3L71¢,
SQY -3F e <y, < (SQY +1)-317 ¢,

then u is in the region; otherwise, u is not.

In each round, each node v broadcasts its own LEADER_ELECTION packet
with [Cur_Level + 1, SQ_X, SQ_Y,id], if v has not heard of any Cur_Level + 1
LEADER_ELECTION packet with lower node id, or any Cur_Level + 2 or higher
level LEADER_ELECTION packet. When v broadcasts a packet, it also records
the level number and its own id in a local database. The root node r can fill in
a negative ¢d number in r’s broadcast packet to ensure that it is elected a leader
in each round. Since by default a node is a level 0 leader, the leader election
starts with level 1. A node u upon receiving a LEADER_ELECTION packet pkt
will invoke Algorithm 2.

The if-block of Line 4 handles the case where v actively participates in the
leader selection process, since Cur_Level = L — 1. The if-block of Line 10
is only for forwarding leader selection packets for higher level election, since
Cur_Level < L — 1 and v is aware of the fact that it cannot participate in
this leader election. The if-block of Line 17 handles the case where v is already
a leader for a certain region while another node is attempting leader election.
Combined with Line 10 in Algorithm 2, the purpose of Line 17 is to suppress
such leader election requests. However, different policies can be considered here:

12

Algorithm 2 A distributed protocol for constructing GIST.

1: if w is not contained in pkt’s region then

2 u discards pkt;

3: end if

4: if u is contained in pkt’s region, and u’s Cur_Level is equal to L — 1 then

5 if u’s database has a record indexed by pkt’s L and pkt’s id field is lower than
the record’s id field, or u does not have such a record yet then

6 Record pkt’s L and id, and re-broadcast pkt;

7. else

8: u discards pkt;

9: end if

10: else if u is contained in pkt’s region, and w’s Cur_Level is smaller than L — 1
then

11: if u’s database does not have a record indexed by pkt’s L, or u has such a record

and pkt’s id field is lower than the record’s id field then

12: u re-broadcast pkt and record L and 1id;

13: else

14: u discards pkt;

15: end if

16: else if u is contained in pkt’s region, and u’s Cur_Level is larger than L — 1 then

17: w broadcasts a LEADER_ELECTION packet with [Cur_Level +
1,5Q-X,5Q.Y,id|;

18: end if

e.g., an old leader can allow a new leader to be elected if it decides that its
residual energy is not sufficient for reliable communication any more. The lo-
cal database used for recording level number and node id helps in reducing the
broadcast traffic in the network.

Each node u keeps a timer with time out value 7. When u sends out a
LEADER_ELECTION packet attempting to be a level Cur_Level + 1 leader, u
starts the timer. When the timer fires after 7, if no better leader is detected,
u increment its Cur_Level variable by 1, indicating that it is now a leader;
otherwise, u picks the node id indexed by Cur_Level + 1 in its database to be
its parent. After a node u has picked its parent, u sends a register packet to the
parent.

lgorithm 2 ensures that at least one leader is elected within the contended
region in each level. Note that there are several cases in which multiple leaders
may be elected for the same region and same level:

— The timeout value 7 is too small for the broadcast packets to reach all
destined nodes; or some broadcast packets are destroyed due to collision
while they are being forwarded. The value 7 is thus a adjustable protocol
parameter.

— If there are multiple connected network components within the region for
which a leader is to be elected, multiple leaders will be elected.

13

Note that the presence of multiple leaders within the same region on the
same level, though it may have impact on the performance of the GIST, does
not affect the correctness of Algorithm 2. This is because 1) each level i leader is
able to promote itself to a level i 41 leader (possibly after timeout) and compete
in the next round for a level i + 2 leader, which eventually leads to root r; 2)
each node will have one and only one parent, due to Line 5 of Algorithm 2.

The tie-breaking scheme in the above process is based on node ID. However,
other tie-breaking schemes can easily be adopted by putting extension fields
in the LEADER_ELECTION packet. For example, to elect leaders with higher
residual energy, an extension field containing the residual energy reading can be
used.

5.2 Data aggregation with GIST

After a GIST T is constructed, the information sink r can broadcast queries
and collect data readings using T'. This process is similar to most other data
aggregation schemes, e.g., [31]. Due to space constraints, we only give a brief de-
scription of the query distribution and data aggregation phase, and omit detailed
discussions of protocol parameters.

In the query distribution phase, the root can send a query to its direct chil-
dren. Each direct child sets a timer of 7, (a function of the Epoch time) for
awaiting replies from its children, and includes this information in the query
passing down the tree. The next level children will set their own timer (smaller
than their parent) and pass down the query, and so on. The choice of timer 7,
is related to the hop distance between a child and its parent. In our scheme,
the region is divided into 9 smaller regions in each recursion. Consequently, the
parent-child distance decreases by a factor of 3 each time. Thus, the timeout
values for the leaders along a query distribution path can be approximated by
a geometric series by 7644 = ¢ . rParent where) < ¢ < 1. We omit the details
for selecting ¢ here, and consider it in our future study. In the data aggregation
phase, each intermediate node waits for the timeout, aggregates all the received
data readings, and sends the packet to its parent.

5.3 Tree maintenance and Fault tolerance

We now consider the maintenance of a GIST in case of node failures. We as-
sume an independent protocol for failure detection. For example, each child can
check the status of its parent using periodic ping messages. If a node u con-
cludes that its parent has failed, it sends out a LEADER_ELECTION packet
with [Cur_Level + 1,SQ_X, SQ_Y,id] to be a level Cur_Level + 1 leader. At
the same time, other children of the failed parent may also broadcast such
LEADER.ELECTION packets. Such operations can easily be handled by the
same procedure as in Algorithm 2. This is because Algorithm 2, though pre-
sented in a synchronous fashion, is in fact an asynchronous protocol. Multiple
leaders can appear in this process. However as we have discussed in preceeding
sections, the correctness of the protocol is not affected. Note that if a level ¢

14

leader u failed, only the several level ¢ — 1 leaders in the region where u resides
will initiate LEADER_ELECTION packets. Other nodes in that region only for-
ward such packets (Line 10 in Algorithm 2). In a similar manner, the operations
for new nodes joining the tree can also be handled by Algorithm 2. This way,
our scheme can potentially be combined with activity scheduling protocols [6]
to achieve more energy savings.

In the data aggregation phase, fault tolerance can be achieved by constructing
two independent trees. Each time a node sends its data reading, it sends two
copies. For fault tolerance in the data aggregation phase, we can adopt the
techniques of [31].

6 Experimental evaluation

In this section, we compare the performance of our GIST algorithm with MST
and SPT under the aggregation cost and aggregation delay metrics as discussed
in Section 3. We simulate under two different settings: SNM (sensor network
model) and SRNM (sensor relay network model). Recall that SNM models the
situation where each sensor node in the network is capable of sensing, aggregating
and transmitting; while in the SRNM model, the relay node is only capable of
forwarding traffic.

6.1 SNM performance evaluation

Aggregation Cost
Aggregation Delay

o
100 150 200 250 300 350 400 450 500 550 600 100 200 300 400 s00 00
Number of Nodes Number of Nodes

Fig. 4. Aggregation cost with increas-
ing network size under SNM model.
Event sources are picked within a
strip.

Fig.5. Aggregation delay with in-
creasing network size under SNM
model. Event sources are picked
within a strip.

In our simulations, the network topology is generated by randomly distribut-
ing nodes in the deployment region. The density (average number of neighbors
within a node’s transmission range), is around 10 in each experiment. In our first
experiments, we study the aggregation cost when the event sources are picked

15

Aggregation Cost
Aggregation Delay

10 20 30 0 50 60 70 80 10 20 30 0 50 60 70 80
Number of Sources. Number of Sources.

Fig. 6. Aggregation cost with increas- Fig.7. Aggregation delay with in-

ing number of random sources under creasing number of random sources

the SRNM model. 200 sensor nodes. under the SRNM model. 200 sensor
nodes.

within a strip close to the border of the sensor deployment region. This is useful
in applications where the sensor nodes observing common phenomena are along
a line, for example when a group of intruders approaching the border in a battle
field trigger the sensors. Figure 4 demonstrates the result. In this simulation,
GIST performs better than SPT, which is better than MST. The reason that
GIST is better than SPT is because when the event sources are picked along a
line strip, a large number of event sources may traverse non-overlapping paths to
the sink, thus reducing the chance for data aggregation in intermediate nodes.
Figure 5 illustrates the aggregation delay in this experiment, in which GIST
demonstrates close to optimal (SPT) delay.

6.2 SRNM performance evaluation

In this section, we evaluate the performance of GIST, MST and SPT under the
SRNM model, where the network consists of sensor nodes as well as relay nodes.
We simulate a network that consists of 200 sensor nodes, and a dense network of
relay nodes. The density is such that the probability that a underlying routing
path between two sensor nodes containing another sensor node is small. This case
can be thought of as the opposite of the SNM model, where the relay density is
0. In this model, the SPT overlay tree from the sensor nodes to the sink exhibits
a star-like structure. Therefore, the aggregation in intermediate sensor nodes is
minimal.

Figure 6 and Figure 7 illustrate the aggregation cost and delay in the exper-
iments with 10, 20, ..., or 80 random event sources. Note that the values in the
figures are calculated by normalizing the network deployment region to a 1 x 1
region. The aggregation cost (induced tree cost) of SPT is the worst among the
3 algorithms as expected, due to the lack of aggregation. MST and GIST both
have much better performance than SPT. When the number of sources is small,
an induced aggregation tree of MST costs more than that of GIST, because some
event sources may traverse long routes to the root, as can be observed in the

16

aggregation delay in Figure 7. When the number of random sources increases,
such long paths may contain more and more other sources so that aggregation
can be performed.

7 Conclusion and future work

In this paper, we proposed a novel approach to data aggregation based on the
concept of group-independent spanning tree GIST, and show that such a tree
can be found in polynomial time with O(logn) performance guarantee. Specifi-
cally, we have designed an algorithm for constructing an GIST for dense sensor
networks such that for any group, the cost of the induced subtree of our GIST is
within a logarithmic factor of the optimal solution for the group. We have also
shown that traditional spanning tree algorithms MST and SPT are extremely
poor in the worst case. An important aspect of our GIST algorithm is its simplic-
ity and amenability to distributed implementation. We have presented a protocol
for constructing and maintaining GIST and for performing data aggregation over
the tree.

Our algorithm for constructing GIST yields an overlay tree and assumes
an underlying routing mechanism. This assumption can limit the application
of our protocol. We propose an algorithm ([22]) for constructing GRID_GIST
for grid sensor networks that does not require an underlying routing service. In
this algorithm, each edge selected into the physical GRID_GIST tree has to be
an existing edge in grid networks. Routing from any node in G to the root is
specified during tree contruction phase, thus eliminating the dependence on an
underlying routing service as required by GIST. Such physical trees on grids
can be useful for densely deployed sensor networks. Due to space constraints,
we present our algorithm GRID_GIST in the full version [22]. One limitation
to the GRID_GIST scheme is that it assumes regularity of the network. An
important direction for future research is to determine the best “physical” GIST
for arbitrary network topologies.

In our simulations, we have studied two variants of the sensor network model,
one consisting purely of sensor nodes, and the other consisting of sensors placed
in a dense relay field. Our simulations validate our theoretical work by demon-
strating that our GIST outperforms both MST and SPT. As part of our future
work, we will compare our scheme with other data aggregation schems in this
literature in addition to MST and SPT.

References

1. J. Albowicz, A. Chen, and L. Zhang. Recursive position estimation in sensor
networks. In IEEE ICNP, November 2001.

2. S. Bhattacharya, H. Kim, S. Prabh, and T. Abdelzaher. Energy-conserving data
placement and asynchronous multicast in wireless sensor networks. In International
Conference on Mobile Systems, Applications, and Services (MobiSys), May 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

17

B. Bonfils and P. Bonnet. Adaptive and decentralized operator placement for
in-network query processing. In Proceedings of Information Processing in Sensor
Networks, April 2003.

E. Brosh and Yuval Shavitt. Approximation and heuristic algorithms for minimum
delay application-layer multicast trees. In INFOCOM, March 2004.

N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low cost outdoor localization
for very small devices. In IEEE Personal Communications, Special Issue on Smart
Space and Environments, October 2000.

U. Cetintemel, A. Flinders, and Y. Sun. Power-efficient data dissemination in
wireless sensor networks. In ACM MobiDE, September 2003.

J. Chen, L. Jia, X. Liu, G. Noubir, and R. Sundaram. Minimum energy accumu-
lative routing in wireless networks. In In Proceedings of IEEE INFOCOM 2005,
The 24th Annual Joint Conference of the IEEE Computer and Communications
Societies, 2005.

J. Chen, R. Kleinberg, L. Lovéasz, R. Rajaraman, R. Sundaram, and A. Vetta.
(Almost) tight bounds and existence theorems for confluent flows. In Proceedings
of the 86th Annual ACM Symposium on Theory of Computing (STOC), pages
529-538, June 2004.

J. Chen, R. Rajaraman, and R. Sundaram. Meet and merge: Approximation algo-
rithms for confluent flows. In Proceedings of the 35th Annual ACM Symposium on
Theory of Computing (STOC), pages 373-382, June 2003. This paper has been ac-
cepted for publication in the special issue of the Journal of Computer and System
Sciences (JCSS).

K. Chen and K. Nahrstedt. Effective location-guided tree construction algorithm
for small group multicast in manet. In IEEFE INFOCOM, June 2002.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, New York, 1979.

C. Gui and P. Mohapatra. Efficient overlay multicast for mobile ad hoc networks.
In IEEE WCNC, April 2003.

C. Gui and P. Mohapatra. Scalable multicasting in mobile ad hoc networks. In
INFOCOM, March 2004.

P. Gupta and P. Kumar. Capacity of wireless networks. [EEE Transactions on
Information Theory, 1T-46:388-404, 2000.

J. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average: Towards
sophisticated sensing with queries. In Intl Workshop on Information Processing in
Sensor Networks (IPSN), 2003.

Y.T. Hou, Y. Shi, H. Sherali, and S. Midkiff. On energy provisioning and re-
lay node placement for wireless sensor networks. IEEE Transactions on Wireless
Communications, 4, 2005.

Q. Huang, C. Lu, and R. Gruia-Catalin. Spatiotemporal multicast in sensor net-
works. In SenSys, November 2003.

Y. Huang and H. Garcia-Molina. Publish/subscribe tree construction in wireless
ad-hoc networks. In Proceedings of the 4th International Conference on Mobile
Data Management, January 2003.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and
robust communication paradigm for sensor networks. In ACM MobiCom, August
2000.

18

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

. L. Jia, G. Lin, G. Noubir, R. Rajaraman, and R. Sundaram. Universal approxi-
mations for TSP, Steiner tree, and set cover. In Proceedings of the Thirty-Seventh
ACM Symposium on Theory of Computing (STOC), May 2005.

L. Jia, G. Noubir, R. Rajaraman, and R. Sundaram. Gist: Group-independent
spanning tree for data aggregation in dense sensor networks. Technical report,
Northeastern University, May 2006.

B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless
networks. In Proceedings of ACM Symposium on Mobile Computing and Network-
ing, pages 243-254, August 2000.

H. Kim, T. Abdelzaher, and W. Kwon. Minimum-energy asynchronous dissem-
ination to mobile sinks in wireless sensor networks. In ACM SenSys, November
2003.

S. Kim, S.H. Son, J.A. Stankovic, S. Li, and Y. Choi. Safe: A data dissemination
protocol for periodic updates in sensor networks. In Workshop on Data Distribution
for Real-Time Systems (DDRTS), May 2003.

Y.B. Ko and N.H. Vaidya. Geocasting in mobile ad hoc networks: Location-based
multicast algorithms. In WMCSA, Feburary 1999.

B. Krishnamachari, d. Estrin, and S. Wicker. The impact of data aggregation in
wireless sensor networks. In Proceedings of the 22nd International Conference on
Distributed Computing Systems Worshops, July 2002.

B. Krishnamachari, D. Estrin, and S. Wicker. Modelling data-centric routing in
wireless sensor networks. In IEEE INFOCOM, June 2002.

F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-case optimal and average-case
efficient geometric ad-hoc routing. In ACM Mobihoc, June 2003.

J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable location
service for geographic ad-hoc routing. In Proceedings of the 6th ACM International
Conference on Mobile Computing and Networking (MobiCom ’00), pages 120-130,
August 2000.

S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. Tag: A tiny aggregation
service for ad hoc sensor networks. In OSDI, December 2002.

Madhav V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, Daniel J. Rosenkrantz, and
Harry B. Hunt III. Bicriteria network design problems. In Automata, Languages
and Programming, pages 487-498, 1995.

M. Penrose. On fk-connectivity for a geometric random graph. Random Structures
and Algorithms, 15:145-164, 1999.

B. Sirkeci-Mergen and A. Scaglione. A continuum approach to dense wireless
networks with cooperation. In INFOCOM, March 2005.

V. Vazirani. Approxzimation Algorithms. Springer-Verlag, 2003.

J. Xie and R. Talpade. AMRoute: Ad hoc multicast routing protocol. ACM Mobile
Networks and Applications, 7, December 2002.

M. Yang and Z. Fei. A proactive approach to reconstructing overlay multicast
trees. In INFOCOM, March 2004.

Y. Yao and J. Gehrke. The Cougar approach to in-network query processing in
sensor networks. Sigmod Record, 31(3), September 2002.

F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination model
for large-scale wireless sensor networks. In MOBICOM, September 2002.

