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Abstract
In multi-service packet networks the packet scheduling
algorithm plays a key role in delivering guaranteed ser-
vice to different flows. In this article we evaluate sur-
plus round robin (SRR) scheduling algorithm. We apply
the Latency-Rate (LR) servers theory in order to obtain
bounds on the latency and delay provided by the algo-
rithm. We compare the performance characteristics of
SRR with the popular deficit round robin (DRR) algo-
rithm to conclude that SRR can provide better perfor-
mance than DRR.

1 INTRODUCTION

In packet switched networks traffic flows form dif-
ferent types of applications and users are contending for
the network resources. In order to guarantee the different
QoS requirements of the the network switches should sup-
port per flow queues. A packet scheduling algorithm ar-
bitrates the transmissions of the packets from the queues
on a link. Important requirements for a scheduling algo-
rithm are its ability to provide end-to-end delay guaran-
tee, fairness and its low complexity.

In [1] and [2] a general model, called Latency −Rate
(LR) servers, was developed for the analysis of traffic
scheduling algorithms. The model introduce the notion
of latency, which bounds the time that a flow has to wait
until it begins receiving service at its guaranteed rate.
From the latency one can obtain upper bounds on the
delay, backlog in the queue and burtsiness of the output
traffic.

A broad number of scheduling algorithms are avail-
able in the literature. Some of them like WFQ[3], V C[4],
STFQ[5], WF 2Q+[6], generally classified as sorted pri-
ority algorithms, maintain a sorted queue. This allows
them to serve the sessions regardless of the arrival order

of the packets but based on a parameter of the session -
the guaranteed bandwidth for example. The algorithms
try to simulate the order in which the packets would leave
the server if served under ideal general processor sharing
(GPS) discipline. Sorted-priority scheduling disciplines
generally provide low delay bound on the traffic but have
high complexity, which depends on the number of con-
tending flows.

Other schedulers, like DRR[7], SRR[8] (further
specified in the context of striping protocol [9]),
Nested DRR[10], ERR[11], EBRR[12], use round robin
(RR) order for servicing the flows which results in
O(1)complexity of the algorithm. One of the most popu-
lar algorithm is named Deficit Round Robin (DRR) and
is described in [7]. It is also implemented in several
high-speed routers usually combined with strict prior-
ity queuing [13], [14]. According to the DRR algorithm
the flows are selected for service in a round robin order.
When a flow becomes backlogged it is added to a list of
backlogged flows. To the different flows are assigned al-
lowances in a round they can send, where the allowance,
called quantum, is expressed in bytes. The quantums
indicate the amount of service in a round a flow should
receive. A counter for each flow keeps track of the re-
maining service for the round. Each time a packet is
transmitted the counter for the flow is reduced with the
size of the packet. The decision whether or not a packet
should be transmitted depends on the packet size. If the
transmission of the packet would cause the counter to be-
come negative the service of the flow for the round ends
and the scheduler moves on to serve the next flow in the
round robin order. The deficit of service in a round, in-
dicated with the value of the counter at the end of the
service of a flow, is compensated in the next round.

In [2] the fairness and latency bound were derived
for WFQ, VC, STFQ, and DRR. Lower bounds on the
latency and fairness of DRR were later derived in [15],
[16]. The fairness and delay bounds for ERR, EBRR and
Nested DRR can be found in the articles in which these



algorithms were described.
In this paper we specify more detailed the Surplus

Round Robin (SRR) algorithm previously described in
[8] and [9]. We also point out certain implementation is-
sues, which have to be taken into account if SRR is to be
applied as fair scheduling mechanism. We evaluate theo-
retically its performance and derive fairness and latency
bound using the LR servers model.

The paper is organized as follows. In the next sec-
tion we describe and discuss implementation issues of
the SRR algorithm. In section 3 we analyze the perfor-
mance of the SRR and derive bounds on the latency and
calculate the fairness by using the LR servers model. In
the section 4 we discuss the obtained results and com-
pare them with the bounds available for DRR. In the
last section conclusions are drawn.

2 SURPLUS ROUND ROBIN

In this section we describe and further specify the
SRR algorithm. Consider a number of flows contending
for a link, each flow i having a corresponding queue i
where the packets belonging to this flow are stored. To
each flow is assigned weight wi and a quantum Qi propor-
tional to that weight. The quantum indicates the portion
of the resources in a round robin cycle a flow should get.
If the minimum quantum, say Qmin is chosen not less
than the maximum packet length in the network then
the algorithm has O(1) complexity. For the quantums
we can write

Qi = wiQmin (1)

To each flow i is associated a counter called surplus
counter SCi, which indicates the amount of service the
flow should still receive in a round. The flows are serviced
in a round robin order. Each round a flow is served once.
When a flow is picked for service its SCi is increased with
its quantum. After a packet is sent SCi is decreased with
the size of the packet. Packets are transmitted from the
flow as long as SCi is positive. If in a round a flow is
served surplus amount i.e. SCi has some non-positive
value, it is penalized by this amount in the next round,
regardless whether the queue became empty or not after
the packet was transmitted. The last condition is impor-
tant because of the unfairness that might arise if a flow is
not penalized. Consider the scenario, where the packets
of flow i arrive in bursts of Qi + SCi bytes each round.
When these bytes are transmitted the queue of the flow
becomes empty. If the scheduler does n’t penalize for the
next round the flow will be allowed to send each round
above its quantum. Thus the SRR algorithm can not
be implemented as a straightforward extension of DRR
but it can be realized for example by implementing the

algorithm as in [12] with more than one backlogged list,
keeping a round counter, and another variable per flow
to track the penalty rounds. From implementation point
of view the main advantage of the algorithm is that, un-
like DRR, the SRR does n’t need information about the
length of the next packet waiting in the queue connected
with the flow to make the scheduling decision.

In the next section we analyze the SRR algorithm and
derive latency and fairness bounds.

3 ANALYTICAL RESULTS

Consider N contending flows for a shared link with
rate r and a SRR scheduler, which arbitrates the packet
transmissions from the flows. Let ri be the reserved rate
for flow i and rmin designate the smallest of ri. The
weight assigned to flow i is can be chosen proportional
to the reserved rate

wi =
ri

rmin
(2)

Assigned in this way the weights guarantee the re-
served rates provided that

∑N
i=1 ri ≤ r, which we are

going to presume in the following analysis.
A frame f is one round robin cycle amongst the back-

logged flows. Thus it can be expressed as

f =
N∑

i=1

Qi =
N∑

i=1

wiQmin (3)

Replacing the weights from (2) the frame size can be
bounded

f =
N∑

i=1

ri

rmin
Qmin ≤

r

rmin
Qmin = F (4)

where F is the maximum frame size. Replacing (2) in (1)
and rewriting the rhs. of (4) as Qmin

rmin
= F

r we obtain for
the quantum for flow i

Qi =
ri

rmin
Qmin =

ri

r
F (5)

In order to derive latency bound we will need bounds on
the surplus counter.

Lemma 3.1. The surplus counter of a backlogged flow i
at the end of a round is bounded by

−(Lmax − 1) ≤ SCi ≤ 0

where Lmax indicates the maximum packet length.



Proof. According to the SRR definition the scheduler will
continue servicing a flow as long as its SC is positive.
Thus if a flow is backlogged at the end of service SCi ≤
0 otherwise the service will continue. If after servicing
a packet with length Li the SC becomes negative the
server will proceed with serving another flow. For the
service counter at the end of the round we can write
SCi = SC−

i −Li, where SC−
i is the value of the counter

before Li is served. This value is bounded by SC−
i ≥ 1.

Thus SCi = SC−
i −Li ≥ −(Li−1) ≥ −(Lmax−1), which

completes the proof.

3.1 Latency bound of SRR
To derive the latency we apply the theory of

Latency−Rate (LR) servers described in [2]. Basic con-
cept in the LR servers is the notion of flow’s busy period.
This is defined as the maximum interval of time during
which the flow would remain backlogged if served at its
reserved rate. A flow is considered backlogged if there
is at least one packet from this flow in the system. For
a discussion on the difference between backlogged and
busy period see [2]. Consider Wi(τ, t) the amount of ser-
vice received by flow i in the time interval (τ, t). The
latency of a scheduling algorithm S is defined in [2] as
the minimum non-negative constant θS

i that satisfies

Wi(t0, t) ≥ max(0, ri(t− t0 − θS
i )) (6)

where t0 is a start of a busy period and t is any time
instance within this busy period. In the same reference
was shown that if (6) is true for one backlogged period
than the value of the latency obtained is an upper bound
on the latency of the server θS

i . It can be easily deter-
mined whether the bound obtained from the backlogged
period is a tight bound by giving an example where the
offered service is equal to the bound. From the latency of
a server one can easily obtain a bound on the maximum
delay Dmax for a leaky-bucket shaped traffic source with
parameters (σi, ri). This is given by

Dmax ≤
σi + θS

i

ri
(7)

If only latency values at packet departure times are con-
sider a tighter bound on the maximum delay can be ob-
tained. The latency considered only at packet departure
times is referred to as SBI and is defined in [6].

Theorem 3.2. The SRR scheduler belongs to the class
of the LR-servers, with an upper bound on the latency θi,
for flow i given by

θSRR
i ≤ F −Qi + (N − 1)(Lmax − 1)

r

Proof. To show that the SRR scheduler belongs to the
class of LR servers we need to show that the service re-
ceived by a flow, served by an SRR scheduler, is given by
(6). As was discussed earlier the latency can be bounded
based on the offered service in any one backlogged pe-
riod. The service received by a backlogged flow i in one
round, say h starting at time th−1 is given by

Wi(th−1, th) = Qi + SCi(h− 1)− SCi(h) (8)

where SC(k − 1) is the penalty for the surplus the flow
received the previous round. Consider a backlogged pe-
riod starting in round k0 in which the flow does n’t have
to be penalized i.e SCi(k0−1) = 0. An example for such
period is the first backlogged period of the flow. Let the
start time of round k0 is t0. Using equation (8) over k
consecutive backlogged rounds after k0 the work is given
by

Wi(t0, tk) = kQi + SCi(k0 − 1)− SCi(k0 + k) (9)

Both expressions are the same as the ones for DRR (see
[2]) but as the bounds on the SC are different from the
ones on the deficit counter the work done for a backlogged
period differs for the two schedulers. For any time t′ after
flow i received service in round k0 + k the total service
for the backlogged period can be upper bounded by

Wi(t0, t′) ≤Wi(t0, tk) ≤ kQi + (Lmax − 1) (10)

In obtaining this bound we have used that there is no
penalty in the k0 round and the left bound on the counter
from lemma 3.1.

For any time t ≤ tk

Wi(t0, t) ≥W (t0, tk−1) + Wi(tk−1, t) ≥W (t0, tk−1)
(11)

where the last inequality comes from the fact that t can
be any time in a round where the flow has n’t received
any service yet. Using equation (9) to express the service
received for k−1 rounds and considering the upper bound
on the surplus from lemma 3.1 we obtain lower bound on
the work in the backlogged period (t0, t)

Wi(t0, t) ≥ (k − 1)Qi (12)

The total work done by the server for the time interval
(t0, t) can be written as the sum of the amount of service
received from all flows Ws(t0, t) =

∑N
j=1 Wj(t0, t) and

can be bound considering (10) and replacing Wi with



the minimum value from (12) for the considered period

Ws(t0, t) ≤
N∑

j=1;j 6=i

Wj(t0, tk) + (k − 1)Qi

≤
N−1∑

j=1;j 6=i

kQj + Lmax − 1 + kQi −Qi

≤ kF −Qi + (N − 1)(Lmax − 1). (13)

Expressing k and considering that for constant rate
server Ws(t0, t) = r(t− t0)

k ≥ r(t− t0)
F

+
Qi − (N − 1)(Lmax − 1)

F
(14)

We now replace the value of k in (12) and considering 5,
obtain

Wi(t0, t) ≥

≥
{

(r(t− t0)
F

+
Qi − (N − 1)(Lmax − 1)

F
− 1

}
Qi

≥ ri(t− t0 −
−Qi + (N − 1)(Lmax − 1)

r
− Qi

ri
)

(15)

. Simplifying further the expression we obtain for the
service received by a backlogged session i in the time
interval (t0, t)

Wi(t0, t) ≥

≥ max(0, ri(t− t0 −
F −Qi + (N − 1)(Lmax − 1)

r
))

(16)

In order to show that this is a tight bound we will
present an example. In the case of the SRR algorithm it
is a rather obvious one because the upper latency bound
coincides with the maximum start up delay. Consider
a flow which starts service in a round when there are
N-1 other backlogged flows in the system. Before being
considered for service the scheduler will service the other
N-1 flows i.e. it has to wait N-1 flow to receive service
given by (8)

t− t0 ≤
∑N−1

j=1 Qj − SC(k − 1) + SC(k)
r

≤ F −Qi + (N − 1)(Lmax − 1)
r

, (17)

in the last equality used that F =
∑N

i=1 Qi and lemma
3.1. With this we concluded the proof.

3.2 Fairness of SRR
To calculate the fairness of the SRR algorithm we use the

modified in [2] definition of the Golestiani’s fairness

�
�
�
�

Wi(τ, t)

ri
− Wj(τ, t)

rj

�
�
�
�
≤ ΦS , (18)

where the interval (τ, t] is such that the two compared con-
nections i,j are continuously backlogged.

Equation (12) bounds the work received in an interval
(t0, t) where t0 is the start of a round where the flow is not
penalized. However, in order to calculate the fairness we need
a bound on the service for any interval (τ, t). To obtain it
we consider the lower bound on the SC form lemma 3.1 in
equation (8) giving

Wi(τ, t) ≥ (k − 1)Qi − (Lmax − 1). (19)

If two connections are continuously backlogged over a cer-
tain interval then their round robin order relative to each
other under the SRR scheduling disciplines remains the same
over the interval. The moment τ is at some time instant in
round k0 before flow i is considered for service. Flow i re-
ceives service in round k0 before flow j and in round k the
moment t is taken after flow i receives service and before flow
j is start being served. Replacing the minimum bound from
equation (19) and the maximum bound from equation (10)
on the service received from two backlogged flows in equation
(18) one obtains

�
�
�
�

Wi(τ, t)

ri
− Wj(τ, t)

rj

�
�
�
�
≤ Qj

rj
+

Lmax − 1

ri
+

Lmax − 1

rj
. (20)

Taking into account (5) we can write for the fairness

ΦS =
F

r
+

Lmax − 1

ri
+

Lmax − 1

rj
. (21)

4 DISCUSSION

Several latency bounds have been reported in the litera-
ture for DRR [2], [15], [16]. The one reported in [15] is the
lowest bound and is

θDRR
i =

(W − wi)Qmin + (N − 2)(m− 1)

r
+

m− 1

ri
. (22)

In this equation (W −wi)Qmin = F −Qi and the authors in
[15] use m to denote any packet size, which in the considered
model is bounded by Lmax.

The SRR latency bound according to theorem 3.2 is lower
than the lowest latency bound reported for the DRR algo-
rithm with factor Li−1

ri
. The difference is inverse proportional

to the reserved rate thus it will be more significant for flows
with small reserved rates. On figure 1 we compare the two
latencies based on a practical example from broadband access
cable network. Consider an output link with rate r = 40Mb/s
shared by 100 flows. The minimum reserved rate rmin is 8
Kb/s and the maximum packet size is 1518 bytes. Let the
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Figure 1. Comparison of the latency bounds of SRR and
DRR.

minimum quantum equal the maximum packet size then the
length of frame expressed from 5 as F = Qmin

rmin
= 1.518s. The

figure demonstrates that SRR has lower latency bound than
the one for DRR.

The fairness value for SRR given by equation (21) is the
same as the one reported in [16].

5 CONCLUSIONS

In this article we analyzed the SRR scheduling algorithm.
By using the LR servers model we derived latency bound and
demonstrated that it is lower than the one obtained for the
popular DRR. The fairness was calculated and the results
demonstrated that it achieves the same fairness as DRR.
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