Skip to main content

On the Design of Codes for DNA Computing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3969))

Abstract

In this paper, we describe a broad class of problems arising in the context of designing codes for DNA computing. We primarily focus on design considerations pertaining to the phenomena of secondary structure formation in single-stranded DNA molecules and non-selective cross-hybridization. Secondary structure formation refers to the tendency of single-stranded DNA sequences to fold back upon themselves, thus becoming inactive in the computation process, while non-selective cross-hybridization refers to unwanted pairing between DNA sequences involved in the computation process. We use the Nussinov-Jacobson algorithm for secondary structure prediction to identify some design criteria that reduce the possibility of secondary structure formation in a codeword. These design criteria can be formulated in terms of constraints on the number of complementary pair matches between a DNA codeword and some of its shifts. We provide a sampling of simple techniques for enumerating and constructing sets of DNA sequences with properties that inhibit non-selective hybridization and secondary structure formation. Novel constructions of such codes include using cyclic reversible extended Goppa codes, generalized Hadamard matrices, and a binary mapping approach. Cyclic code constructions are particularly useful in light of the fact we prove that the presence of a cyclic structure reduces the complexity of testing DNA codes for secondary structure formation.

This work was supported in part by a research grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada. Portions of this work were presented at the 2005 IEEE International Symposium on Information Theory (ISIT’05) held in Adelaide, Australia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abualrub, T., Ghrayeb, A.: On the construction of cyclic codes for DNA computing (preprint)

    Google Scholar 

  2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  3. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)

    Article  Google Scholar 

  4. Boneh, D., Dunworth, C., Lipton, R.: Breaking DES using a molecular computer. Technical Report CS-TR-489-95, Department of Computer Science, Princeton University, USA (1995)

    Google Scholar 

  5. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296, 492–502 (2002)

    Article  Google Scholar 

  6. Breslauer, K., Frank, R., Blocker, H., Marky, L.: Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750 (1986)

    Article  Google Scholar 

  7. Clote, P., Backofen, R.: Computational Molecular Biology – An Introduction. Wiley Series in Mathematical and Computational Biology, New York (2000)

    MATH  Google Scholar 

  8. D’yachkov, A., Erdös, P.L., Macula, A., Rykov, V., Torney, D., Tung, C.-S., Vilenkin, P., White, S.: Exordium for DNA codes. J. Comb. Optim. 7(4), 369–379 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. D’yachkov, A., Macula, A., Renz, T., Vilenkin, P., Ismagilov, I.: New results on DNA codes. In: Proc. IEEE Int. Symp. Inform. Theory (ISIT 2005), Adelaide, Australia, September 2005, pp. 283–287 (2005)

    Google Scholar 

  10. Gaborit, P., King, O.D.: Linear constructions for DNA codes. Theoretical Computer Science 334(1-3), 99–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goulden, I.P., Jackson, D.M.: Combinatorial Enumeration. Dover (2004)

    Google Scholar 

  12. Hall, J.I.: Lecture notes on error-control coding, available online at: http://www.mth.msu.edu/~jhall/

  13. Heng, I., Cooke, C.H.: Polynomial construction of complex Hadamard matrices with cyclic core. Applied Mathematics Letters 12, 87–93 (1999)

    MathSciNet  MATH  Google Scholar 

  14. King, O.D.: Bounds for DNA codes with constant GC-content. The Electronic Journal of Combinatorics 10(1), p. R33 (2003)

    Google Scholar 

  15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals (Russian). Dokl. Akad. Nauk SSSR 163(4), 845–848 (1965)

    MATH  Google Scholar 

  16. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  17. Mansuripur, M., Khulbe, P.K., Kuebler, S.M., Perry, J.W., Giridhar, M.S., Peyghambarian, N.: Information storage and retrieval using macromolecules as storage media. University of Arizona Technical Report (2003)

    Google Scholar 

  18. Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial DNA word design. J. Comput. Biol. 8, 201–219 (2001)

    Article  MATH  Google Scholar 

  19. Mneimneh, S.: Computational Biology Lecture 20: RNA secondary structures, available online at engr.smu.edu/~saad/courses/cse8354/lectures/lecture20.pdf

  20. Milenkovic, O.: Generalized Hamming and coset weight enumerators of isodual codes. Designs, Codes and Cryptography (accepted for publication)

    Google Scholar 

  21. Milenkovic, O., Kashyap, N.: DNA codes that avoid secondary structures. In: Proc. IEEE Int. Symp. Inform. Theory (ISIT 2005), pp. 288–292 (September 2005)

    Google Scholar 

  22. Nussinov, R., Jacobson, A.B.: Fast algorithms for predicting the secondary structure of single stranded RNA. Proc. Natl. Acad. Sci. USA 77(11), 6309–6313 (1980)

    Article  Google Scholar 

  23. Rykov, V., Macula, A.J., Torney, D., White, P.: DNA sequences and quaternary cyclic codes. In: Proc. IEEE Int. Symp. Inform. Theory (ISIT 2001), Washington DC, June 2001, p. 248 (2001)

    Google Scholar 

  24. Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittman, M., David, R.W.: Quantitative phenotye analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nature Genetics 16, 450–456 (1996)

    Article  Google Scholar 

  25. Stojanovic, M.N., Stefanovic, D.: A deoxyribozyme-based molecular automaton. Nature Biotechnology 21, 1069–1074 (2003)

    Article  Google Scholar 

  26. Svanström, M., Östergard, P.R.J., Bogdanova, G.T.: Bounds and constructions for ternary constant-composition codes. IEEE Trans. Inform. Theory 48(1), 101–111 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tsaftaris, S., Katsaggelos, A., Pappas, T., Papoutsakis, E.: DNA computing from a signal processing viewpoint. IEEE Signal Processing Magazine (September 2004), 100–106 (2004)

    Google Scholar 

  28. Tzeng, K.K., Zimmermann, K.P.: On extending Goppa codes to cyclic codes. IEEE Trans. Inform. Theory IT-21, 712–716 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. The Vienna RNA Secondary Structure Package, http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi

  30. Winfree, E.: DNA computing by self-assembly. The Bridge 33(4), 31–38 (2003), Also available online at: http://www.dna.caltech.edu/Papers/FOE_2003_final.pdf

    Google Scholar 

  31. Wood, D.H.: Applying error correcting codes to DNA computing. In: Proc. 4th Int. Meeting on DNA Based Computers, pp. 109–110 (1998)

    Google Scholar 

  32. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13), 3406–3415 (2003), Web access at: http://www.bioinfo.rpi.edu/~zukerm/rna/

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Milenkovic, O., Kashyap, N. (2006). On the Design of Codes for DNA Computing. In: Ytrehus, Ø. (eds) Coding and Cryptography. WCC 2005. Lecture Notes in Computer Science, vol 3969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11779360_9

Download citation

  • DOI: https://doi.org/10.1007/11779360_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35481-9

  • Online ISBN: 978-3-540-35482-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics