
ar
X

iv
:c

s/
05

11
04

5v
1

 [
cs

.L
O

]
 1

2
N

ov
 2

00
5

An Invariant Cost Model

for the Lambda Calculus

Ugo Dal Lago∗ Simone Martini†

Abstract

We define a new cost model for the call-by-value lambda-calculus satisfying the invariance
thesis. That is, under the proposed cost model, Turing machines and the call-by-value lambda-
calculus can simulate each other within a polynomial time overhead. The model only relies on
combinatorial properties of usual beta-reduction, without any reference to a specific machine
or evaluator. In particular, the cost of a single beta reduction is proportional to the difference
between the size of the redex and the size of the reduct. In this way, the total cost of
normalizing a lambda term will take into account the size of all intermediate results (as well
as the number of steps to normal form).

1 Introduction

Any computer science student knows that all computational models are extensionally equivalent,
each of them characterizing the same class of computable functions. However, the definition of
complexity classes by means of computational models must take into account several differences
between these models, in order to rule out unrealistic assumptions about the cost of respective
computation steps. It is then usual to consider only reasonable models, in such a way that the
definition of complexity classes remain invariant when given with reference to any such reasonable
model. If polynomial time is the main concern, this reasonableness requirement take the form of
the invariance thesis [12]:

Reasonable machines can simulate each other within a polynomially-bounded overhead
in time and a constant-factor overhead in space.

Once we agree that Turing machines are reasonable, then many other machines satisfy the invari-
ance thesis. Preliminary to the proof of polynomiality of the simulation on a given machine, is
the definition of a cost model, stipulating when and how much one should account for time and/or
space during the computation. For some machines (e.g., Turing machines) this cost model is obvi-
ous; for others it is much less so. An example of the latter kind is the type-free lambda-calculus,
where there is not a clear notion of constant time computational step, and it is even less clear how
one should count for consumed space.

The idea of counting the number of beta-reductions [5] is just too näive, because beta-reduction
is inherently too complex to be considered as an atomic operation, at least if we stick to explicit
representations of lambda terms. Indeed, in a beta step

(λx.M)N →M{x/N},

there can be as many as |M | occurrences of x inside M . As a consequence, M{x/N} can be as big
as |M ||N |. As an example, consider the term n 2, where n ≡ λx.λy.xny is the Church numeral for

∗Dipartimento di Scienze dell’Informazione, Università di Bologna, Mura Anteo Zamboni 7, 40127 Bologna,

Italy. dallago@cs.unibo.it
†Dipartimento di Scienze dell’Informazione, Università di Bologna, Mura Anteo Zamboni 7, 40127 Bologna,

Italy. martini@cs.unibo.it

1

http://arxiv.org/abs/cs/0511045v1

n. Under innermost reduction this term reduces to normal form in 3n − 1 beta steps, but there
is an exponential gap between this quantity and the time needed to write the normal form, that
is 2n. Under outermost reduction, however, the normal form is reached in an exponential number
of beta steps. This simple example shows that taking the number of beta steps to normal form as
the cost of normalization is at least problematic. Which strategy should we choose1? How do we
account for the size of intermediate (and final) results?

Clearly, a viable option consists in defining the cost of reduction as the time needed to normalize
a term by another reasonable abstract machine, e.g. a Turing machine. However, in this way we
cannot compute the cost of reduction from the structure of the term, and, as a result, it is very
difficult to compute the cost of normalization for particular terms or for classes of terms. Another
invariant cost model is given by the actual cost of outermost (normal order) evaluation, naively
implemented [8]. Despite its invariance, it is a too generous cost model (and in its essence not
much different from the one that counts the numbers of steps needed to normalize a term on a
Turing machine). What is needed is a machine-independent, parsimonious, and invariant cost
model. Despite some attempts [6, 8, 9] (which we will discuss shortly), a cost model of this kind
has not appeared yet.

To simplify things, we attack in this paper the problem for the call-by-value lambda-calculus,
where we do not reduce under an abstraction and we always fully evaluate an argument before firing
a beta redex. Although simple, it is a calculus of paramount importance, since it is the reduction
model of any call-by-value functional programming language. For this calculus we define a new,
machine-independent cost model and we prove that it satisfies the invariance thesis for time. The
proposed cost model only relies on combinatorial properties of usual beta-reduction, without any
reference to a specific machine or evaluator. The basic idea is to let the cost of performing a
beta-reduction step depend on the size of the involved terms. In particular, the cost of M → N
will be related to the difference |N | − |M |. In this way, the total cost of normalizing a lambda
term will take into account the size of all intermediate results (as well as the number of steps to
normal form). The last section of the paper will apply this cost model to the combinatory algebra
of closed lambda-terms, to establish some results needed in [3]. We remark that in this algebra
the universal function (which maps two terms M and N to the normal form of MN) adds only
a constant overhead to the time needed to normalize MN . This result, which is almost obvious
when viewed from the perspective of lambda-calculus, is something that cannot be obtained in
the realm of Turing machines.

1.1 Previous Work

The two main attempts to define a parsimonious cost model share the reference to optimal lambda
reduction à la Lévy [10], a parallel strategy minimizing the number of (parallel) beta steps (see [2]).

Frandsen and Sturtivant [6] propose a cost model essentially based on the number of parallel
beta steps to normal form. Their aim is to propose a measure of efficiency for functional pro-
gramming language implementations. They show how to simulate Turing machines in the lambda
calculus with a polynomial overhead. However, the paper does not present any evidence on the
existence of a polynomial simulation in the other direction. As a consequence, it is not known
whether their proposal is invariant.

More interesting contributions come from the literature of the nineties on optimal lambda
reduction. Lamping [7] was the first to operationally present this strategy as a graph rewriting
procedure. The interest of this technique for our problem stems from the fact that a single beta
step is decomposed into several elementary steps, allowing for the duplication of the argument, the
computation of the levels of nesting inside abstractions, and additional bookkeeping work. Since
any such elementary step is realizable on a conventional machine in constant time, Lamping’s
algorithm provides a theoretical basis for the study of complexity of a single beta step. Lawall and
Mairson [8] give results on the efficiency of optimal reduction algorithms, highlighting the so-called

1Observe that we cannot take the lenght of the longest reduction sequence, both because in several cases this

would involve too much useless work, and because for some normalizing term there is not a longest reduction

sequence.

2

bookkeeping to be the bottleneck from the point ot view of complexity. A consequence of Lawall
and Mairson’s work is evidence on the inadequacy of the cost models proposed by Frandsen and
Sturtivant and by Asperti [1], at least from the point of view of the invariance thesis. In subsequent
work [9], Lawall and Mairson proposed a cost model for the lambda calculus based on Lévy’s labels.
They further proved that Lamping’s abstract algorithm satisfies the proposed cost model. This,
however, does not imply by itself the existence of an algorithm normalizing any lambda term with
a polynomial overhead (on the proposed cost). Moreover, studying the dynamic behaviour of Lévy
labels is clearly more difficult than dealing directly with the number of beta-reduction steps.

2 Syntax

The language we study is the pure untyped lambda calculus endowed with lazy evaluation (that
is, we never reduce under an abstraction) and call-by-value reduction.

Definition 1 The following definitions are standard:
• Terms are defined as follows:

M ::= x | λx.M |MM

Λ denotes the set of all lambda terms.
• Values are defined as follows:

V ::= x | λx.M

Ξ denotes the set of all closed values.
• Call-by-value reduction is denoted by → and is obtained by closing the rule

(λx.M)V →M{V/x}

under all applicative contexts. Here M ranges over terms, while V ranges over values.
• The length |M | of M is the number of symbols in M .

Following [11] we consider this system as a complete calculus and not as a mere strategy for
the usual lambda-calculus. Indeed, respective sets of normal forms are different. Moreover, the
relation→ is not deterministic although, as we are going to see, this non-determinism is completely
harmless.

The way we have defined beta-reduction implies a strong correspondence between values and
closed normal forms:

Lemma 1 Every value is a normal form and every closed normal form is a value.

Proof. By definition, every value is a normal form, because evaluation is lazy and, as a conse-
quence, every abstraction is a normal form. For the other direction, we have to prove that if M
is a closed normal form, then M is an abstraction. We proceed by induction on M . But if M is
an application NL, then by induction hypothesis both N and L are abstractions and M is not a
normal form. ✷

The prohibition to reduce under abstraction enforces a strong notion of confluence, the so-called
one-step diamond property, which instead fails in the usual lambda calculus.

Proposition 1 (Diamond Property) If M → N and M → L then either N ≡ L or there is P
such that N → P and L→ P .

Proof. By induction on the structure of M . Clearly, M cannot be a variable nor an abstraction
so M ≡ QR. We can distinguish five cases:
• If Q ≡ λx.T and R is a value, then N ≡ L ≡ T {x/R}, because R is a variable or an abstraction.
• If N ≡ TR and L ≡ UR, where Q → T and Q → U , then we can apply the induction
hypothesis.

3

• Similarly, if R→ T and R→ U , where N ≡ QT and L ≡ QU , then we can apply the induction
hypothesis.
• If N ≡ QT and L ≡ UR, where R→ T and Q→ U , then N → UT and L→ UT .
• Similarly, if N ≡ UR and L ≡ QT , where R→ T and Q→ U , then N → UT and L→ UT .

This concludes the proof. ✷

As an easy corollary of Proposition 1 we get an equivalence between all normalization strategies—
once again a property which does not hold in the ordinary lambda-calculus.

Corollary 1 (Strategy Equivalence) M has a normal form iff M is strongly normalizing.

Proof. Observe that, by Proposition 1, if M is diverging and M → N , then N is diverging, too.
Indeed, if M ≡M0 →M1 →M2 → . . ., then we can build a sequence N ≡ N0 → N1 → N2 → . . .
in a coinductive way:
• If M1 ≡ N , then we define Ni to be Mi+1 for every i ≥ 1.
• If M1 6≡ N then by proposition 1 there is N1 such that M1 → N1 and N0 → N1.

Now, we prove by induction on n that if M →n N , with N normal form, then M is strongly
normalizing. If n = 0, then M is a normal form, then strongly normalizing. If n ≥ 1, assume,
by way of contraddiction, that M is not strongly normalizing. Let L be a term such that M →
L →n−1 N . By the above observation, L cannot be strongly normalizing, but this goes against
the induction hypothesis. This concludes the proof. ✷

But we can go even further: in this setting, the number of beta-steps to the normal form is
invariant from the evaluation strategy:

Lemma 2 (Parametrical Diamond Property) If M →n N and M →m L then there is a
term P such that N →l P and L→k P where l ≤ m, k ≤ n and n+ l = m+ k.

Proof. We will proceed by induction on n + m. If n + m = 0, then P will be N ≡ L ≡ M . If
n+m > 0 but either n = 0 or m = 0, the thesis easily follows. So, we can assume both n > 0 and
m > 0. Let now Q and R such that M → Q→n−1 N and M → R→m−1 L. From proposition 1,
we can distinguish two cases:
• Q ≡ R, By induction hypothesis, we know there is T such that N →l T and L →k T , where
l ≤ m − 1 ≤ m, and k ≤ n − 1 ≤ n. Moreover (n − 1) + l = (m − 1) + k, which yields
n+ l = m+ k.
• There is T with Q → T and R → T . By induction hypothesis, there are two terms U,W
such that T →i U , T →j W , N →p U , L →q W , where i ≤ n − 1, j ≤ m − 1, p, q ≤ 1,
n− 1+ p= 1+ i and m− 1+ q = 1+ j. By induction hypothesis, there is P such that U →r P
and W →s P , where r ≤ j, s ≤ i and r + i = s+ j. But, summing up, this implies

N →p+r P

L →q+s P

p+ r ≤ 1 + j ≤ 1 +m− 1 = m

q + s ≤ 1 + i ≤ 1 + n− 1 = n

p+ r + n = (n− 1 + p) + 1 + r = 1 + i+ 1 + r

= 2+ r + i = 2 + s+ j = 1 + 1 + j + s

= 1+m− 1 + q + s = q + s+ n

This concludes the proof. ✷

Proposition 2 For every term M , there are at most one normal form N and one integer n such
that M →n N .

Proof. Suppose M →n N and M →m L, with N and L normal forms. Then, by lemma 2, there
are P, k, l such that N →l P and L →k P and n + l = m + k. But since N and L are normal
forms, P ≡ N , P ≡ L and l = k = 0, which yields N ≡ L and n = m. ✷

4

3 An Abstract Time Measure

We can now define an abstract time measure and prove a diamond property for it. Intuitively,
every beta-step will be endowed with a positive integer cost bounding the difference (in size)
between the reduct and the redex.

Definition 2 • Concatenation of α, β ∈ N
∗ is simply denoted as αβ.

• ։ will denote a subset of Λ × N
∗ × Λ. In the following, we will write M

α
։ N standing for

(M,α,N) ∈։. The definition of ։ (in SOS-style) is the following:

M
ε
։ M

M → N n = max{1, |N | − |M |}

M
(n)
։ N

M
α
։ N N

β
։ L

M
αβ
։ L

Observe we charge max{1, |N | − |M |} for every step M → N . In this way, the cost of a
beta-step will always be positive.
• Given α = (n1, . . . , nm) ∈ N

∗, define ||α|| =
∑m

i=1 ni.

The confluence properties we proved in the previous section can be lifted to this new notion on
weighted reduction.

Proposition 3 (Diamond Property Revisited) If M
(n)
։ N and M

(m)
։ L, then either N ≡ L

or there is P such that N
(m)
։ P and L

(n)
։ P .

Proof. We can proceed as in Proposition 1. Observe that if M
α
։ N , then ML

α
։ NL and

LM
α
։ LN . We go by induction on the structure of M . Clearly, M cannot be a variable nor an

abstraction so M ≡ QR. We can distinguish five cases:
• If Q ≡ λx.T and R is a value, then N ≡ L ≡ T {x/R}, because R is a variable or an abstraction.

• If N ≡ TR and L ≡ UR, where Q
(n)
։ T and Q

(m)
։ U , then we can apply the induction

hypothesis, obtaining that T
(m)
։ W and U

(n)
։ W . This, in turn, implies N

(m)
։ WR and

L
(n)
։ WR.

• Similarly, if N ≡ QT and L ≡ QU , where R
(n)
։ T and R

(m)
։ U , then we can apply the

induction hypothesis.

• If N ≡ QT and L ≡ UR, where R
(n)
։ T and Q

(m)
։ U , then N

(m)
։ UT and L

(n)
։ UT .

• Similarly, if N ≡ UR and L ≡ QT , where R
(n)
։ T and Q

(m)
։ U , then N

(m)
։ UT and L

(n)
։ UT .

This concludes the proof. ✷

Lemma 3 (Parametrical Diamond Property Revisited) If M
α
։ N and M

β
։ L, then

there is a term P such that N
γ
։ P and L

δ
։ P where ||αγ|| = ||βδ||.

Proof. We proceed by induction on αβ. If α = β = ε, then P will be N ≡ L ≡M . If αβ 6= 0 but
either α = ε or β = ε , the thesis easily follows. So, we can assume both α 6= ε and β 6= ε. Let

now Q and R such that M
(n)
։ Q

ρ
։ N and M

(m)
։ R

δ
։ L. From Proposition 3, we can distinguish

two cases:
• Q ≡ R (and m = n). By induction hypothesis, we know there is T such that N

γ
։ T and

L
δ
։ T , where ||ργ|| = ||σδ||, which yields ||αγ|| = ||βδ||.

• There is T with Q
(m)
։ T and R

(n)
։ T . By induction hypothesis, there are two terms U,W

such that T
ξ
։ U , T

η
։ W , N

θ
։ U , L

µ
։ W , where ||ρθ|| = ||(m)ξ|| and ||σµ|| = ||(n)η||. By

5

induction hypothesis, there is P such that U
ν
։ P and W

τ
։ P , where ||ξν|| = ||ητ ||. But,

summing up, this implies

N
θν
։ P

L
ητ
։ P

||αθν|| = ||(n)ρθν|| = ||(n)(m)ξν|| =

= ||(m)(n)ξν|| = ||(m)(n)ητ || = ||(m)σµτ || =

= ||βµτ ||

This concludes the proof. ✷

Proposition 4 For every term M , there are at most one normal form N and one integer n such

that M
α
։ N and ||α|| = n.

Proof. Suppose M
α
։ N and M

β
։ L, with N and L normal forms. Then, by Lemma 2, there

are P, γ, δ such that N
γ
։ P and L

δ
։ P and ||αγ|| = ||βδ||. But since N and L are normal forms,

P ≡ N , P ≡ L and γ = δ = ε, which yields N ≡ L and ||α|| = ||β||. ✷

We are now ready to define the abstract time measure which is the core of the paper.

Definition 3 (Difference cost model) If M
α
։ N , where N is a normal form, then Time(M)

is ||α||+ |M |. If M diverges, then Time(M) is infinite.

Observe that this is a good definition, in view of Proposition 4. In other words, showing M
α
։ N

suffices to prove Time(M) = ||α||+ |M |. This will be particularly useful in the following section.
As an example, consider again the term n 2 we discussed in the introduction. It reduces to

normal form in one step, because we do not reduce under the abstraction. To force reduction,
consider E ≡ n 2 c, where c is a free variable; E reduces to

λyn.(λyn−1 . . . (λy2.(λy1.c
2y1)

2y2)
2 . . .)yn

in Θ(n) beta steps. However, Time(E) = Θ(2n), since at any step the size of the term is dupli-
cated.

4 Simulating Turing Machines

In this and the following section we will show that the difference cost model satisfies the polynomial
invariance thesis. The present section shows how to encode Turing machines into the lambda
calculus.

We denote by H the term MM , where

M ≡ λx.λf.f(λz.xxfz).

H is a call-by-value fixed-point operator: for every N , there is α such that

HN
α
։ N(λz.HNz)

||α|| = O(|N |)

The lambda term H provides the necessary computational expressive power to encode the whole
class of computable functions.

The simplest objects we need to encode in the lambda-calculus are finite sets. Elements of any
finite set A = {a1, . . . , an} can be encoded as follows:

paiq
A ≡ λx1.λxn.xi

6

Notice that the above encoding induces a total order on A such that ai ≤ aj iff i ≤ j.
Other useful objects are finite strings over an arbitrary alphabet, which will be encoded using

a scheme attributed to Scott [13]. Let Σ = {a1, . . . , an} be a finite alphabet. A string in s ∈ Σ∗

can be represented by a value psqΣ
∗

as follows, by induction on s:

pεqΣ
∗

≡ λx1.λxn.λy.y

paiuq
Σ∗

≡ λx1.λxnλy.xipuq
Σ∗

Observe that representations of symbols in Σ and strings in Σ∗ depend on the cardinality of Σ. In
other words, if u ∈ Σ∗ and Σ ⊂ ∆, puqΣ

∗

6= puq∆
∗

. Besides data, we want to be able to encode
functions between them. In particular, the way we have defined numerals lets us concatenate two
strings in linear time in the underlying lambda calculus.

Lemma 4 Given a finite alphabet Σ, there are terms AC (Σ), AS(Σ) and AR(Σ) such that for
every a ∈ Σ and u, v ∈ Σ∗ there are α, β, γ such that

AC (Σ)paqΣpuqΣ
∗ α

։ pauqΣ
∗

AS(Σ)puqΣ
∗

pvqΣ
∗ β

։ puvqΣ
∗

AR(Σ)puqΣ
∗

pvqΣ
∗ γ

։ purvqΣ
∗

and

||α|| = O(1)

||β|| = O(|u|)

||γ|| = O(|u|)

Proof. The three terms are defined as follows:

AC (Σ) ≡ λx.λy.xM1 . . .M|Σ|y

∀i.Mi ≡ λy.λx1.λx|Σ|.λw.xiy

AS(Σ) ≡ H(λx.λy.λz.yN1 . . .N|Σ|(λw.w)z)

∀i.Ni ≡ λw.λk.(λh.λx1λx|Σ|.λg.xih)(xwk)

AR(Σ) ≡ H(λx.λy.λz.yP1 . . . P|Σ|(λw.w)z)

∀i.Pi ≡ λw.λk.xw(λx1λx|Σ|.λh.xik)

Observe that

AC (Σ)paiq
Σ
puqΣ

∗ (1,1)
։ paiq

ΣM1 . . .M|Σ|puq
Σ∗

α
։ Mipuq

Σ∗ 1
։ paiuq

Σ∗

where α does not depend on u. Now, let Ri be Ni{λz.AS(Σ)z/x}. Then, we can proceed by

7

induction:

AS (Σ)pεqΣ
∗

pvqΣ
∗ α

։ (λy.λz.yR1 . . . R|Σ|(λw.w)z)pεq
Σ∗

pvqΣ
∗

(1,1)
։ pεqΣ

∗

R1 . . . R|Σ|(λw.w)pvq
Σ∗

β
։ (λw.w)pvqΣ

∗ (1)
։ pvqΣ

∗

AS(Σ)paiuq
Σ∗

pvqΣ
∗ α

։ (λy.λz.yR1 . . . R|Σ|(λw.w)z)paiuq
Σ∗

pvqΣ
∗

(1,1)
։ paiuq

Σ∗

R1 . . . R|Σ|(λw.w)pvq
Σ∗

γ
։ Ripuq

Σ
pvqΣ

∗

(1,1,1)
։ (λh.λx1.λx|Σ|.λg.xih)(AS (Σ)puq

Σ
pvqΣ

∗

)

δ
։ (λh.λx1.λx|Σ|.λg.xih)puvq

Σ∗

(1)
։ λx1.λx|Σ|.λg.xipuvq

Σ∗

where α, β, γ do no depend on u and v. Finally, let Qi be Pi{λz.AR(Σ)z/x}. Then, we can
proceed by induction:

AR(Σ)pεqΣ
∗

pvqΣ
∗ α

։ (λy.λz.yQ1 . . . Q|Σ|(λw.w)z)pεq
Σ∗

pvqΣ
∗

(1,1)
։ pεqΣ

∗

Q1 . . . Q|Σ|(λw.w)pvq
Σ∗

β
։ (λw.w)pvqΣ

∗ (1)
։ pvqΣ

∗

AR(Σ)paiuq
Σ∗

pvqΣ
∗ α

։ (λy.λz.yQ1 . . . Q|Σ|(λw.w)z)paiuq
Σ∗

pvqΣ
∗

(1,1)
։ paiuq

Σ∗

Q1 . . . Q|Σ|(λw.w)pvq
Σ∗

γ
։ Qipuq

Σ
pvqΣ

∗

(1,1,1)
։ AR(Σ)puqΣpaivq

Σ∗

δ
։ puraivq

Σ∗

≡ p(aiu)
rvqΣ

∗

where α, β, γ do not depend on u, v. ✷

The encoding of a string depends on the underlying alphabet. As a consequence, we also need to
be able to convert representations for strings in one alphabet to corresponding representations in
a bigger alphabet. This can be done efficiently in the lambda-calculus.

Lemma 5 Given two finite alphabets Σ and ∆, there are terms CC (Σ,∆) and CS (Σ,∆) such
that for every a0, a1, . . . , an ∈ Σ there are α and β with

CC (Σ,∆)pa0q
Σ α

։ pu0q
∆∗

CS (Σ,∆)pa1 . . . anq
Σ∗ β

։ pu1 . . . unq
∆∗

∀i.ui =

{
ai if ai ∈ ∆
ε otherwise

and

||α|| = O(1)

||β|| = O(n)

8

Proof. The two terms are defined as follows:

CC (Σ,∆) ≡ λx.xM1 . . .M|Σ|

∀i.Mi ≡

{
paiq

∆∗

if ai ∈ ∆

pεq∆
∗

otherwise

CS (Σ,∆) ≡ H(λx.λy.yN1 . . .N|Σ|(pεq
∆∗

))

∀i.Ni ≡

{
λz.(λw.λx1.λx|∆|.λh.xiw)(xz) if ai ∈ ∆
λz.xz otherwise

Observe that

CC (Σ,∆)paiq
Σ

(1)
։ paiq

ΣM1 . . .M|Σ|

α
։

{
paiq

∆∗

if ai ∈ ∆

pεq∆
∗

otherwise

Let Pi be Ni{λz.CS(Σ,∆)z/x}. Then:

CS (Σ,∆)pεqΣ
∗ α

։ (λy.yP1 . . . P|Σ|pεq
∆∗

)pεqΣ
∗

(1)
։ pεqΣ

∗

P1 . . . P|Σ|pεq
∆∗

β
։ pεq∆

∗

CS (Σ,∆)paiuq
Σ∗ γ

։ (λy.yP1 . . . P|Σ|pεq
∆∗

)paiuq
Σ∗

(1)
։ paiuq

Σ∗

P1 . . . P|Σ|pεq
∆∗

δ
։ Pipuq

Σ∗

(1,1)
։

{
(λw.λx1λx|∆|.λh.xiw)(CS (Σ,∆)puqΣ

∗

) if ai ∈ ∆

CS (Σ,∆)puqΣ
∗

otherwise

where α, β, γ, δ do not depend on u. ✷

A deterministic Turing machineM is a tuple (Σ, ablank , Q, qinitial , qfinal , δ) consisting of:
• A finite alphabet Σ = {a1, . . . , an};
• A distinguished symbol ablank ∈ Σ, called the blank symbol ;
• A finite set Q = {q1, . . . , qm} of states ;
• A distinguished state qinitial ∈ Q, called the initial state;
• A distinguished state qfinal ∈ Q, called the final state;
• A partial transition function δ : Q × Σ ⇀ Q × Σ × {←,→, ↓} such that δ(qi, aj) is defined iff
qi 6= qfinal .

A configuration forM is a quadruple in Σ∗ ×Σ× Σ∗ ×Q. For example, if δ(qi, aj) = (ql, ak,←),
thenM evolves from (uap, aj, v, qi) to (u, ap, akv, ql) (and from (ε, aj, v, qi) to (ε, ablank , akv, ql)).
A configuration like (u, ai, v, qfinal) is final and cannot evolve. Given a string u ∈ Σ∗, the initial
configuration for u is (ε, a, u, qinitial) if u = av and (ε, ablank , ε, qinitial) if u = ε. The string
corresponding to the final configuration (u, ai, v, qfinal) is uaiv.

A Turing machine (Σ, ablank , Q, qinitial , qfinal , δ) computes the function f : ∆∗ → ∆∗ (where
∆ ⊆ Σ) in time g : N → N iff for every u ∈ ∆∗, the initial configuration for u evolves to a final
configuration for f(u) in g(|u|) steps.

A configuration (s, a, t, q) of a machine M = (Σ, ablank , Q, qinitial , qfinal , δ) is represented by
the term

p(u, a, v, q)qM ≡ λx.xpur
q
Σ∗

paqΣ pvqΣ
∗

pqqQ

We now encode a Turing machine M = (Σ, ablank , Q, qinitial , qfinal , δ) in the lambda-calculus.
Suppose Σ = {a1, . . . , a|Σ|} and Q = {q1, . . . , q|Q|} We proceed by building up three lambda
terms:

9

• First of all, we need to be able to build the initial configuration for u from u itself. This can
be done in linear time.
• Then, we need to extract a string from a final configuration for the string. This can be done
in linear time, too.
• Most importantly, we need to be able to simulate the transition function ofM, i.e. compute
a final configuration from an initial configuration (if it exists). This can be done with cost
proportional to the number of stepsM takes on the input.

The following three lemmas formalize the above intuitive argument:

Lemma 6 Given a Turing machine M = (Σ, ablank , Q, qinitial , qfinal , δ) and an alphabet ∆ ⊆ Σ

there is a term I(M,∆) such that for every u ∈ ∆∗, I(M,∆)puq∆
∗ α
։ pCqM where C is the

initial configuration for u and ||α|| = O(|u|).

Proof. I(M,∆) is defined as
H(λx.λy.yM1 . . .M|∆|N)

where

N ≡ p(ε, ablank , ε, qinitial)q
M

Mi ≡ λz.(xz)(λu.λa.λv.λq.λw.(λx.xupaiq
Σwq)(AC (Σ)av))

Let Pi be Mi{λz.I(M,∆)z/x}. Then

I(M,∆)pεq∆
∗ α

։ (λy.yP1 . . . P|∆|N)pεq∆
∗

(1)
։ pεq∆

∗

P1 . . . P|∆|N

β
։ N ≡ p(ε, ablank , ε, qinitial)q

M

I(M,∆)paiuq
∆∗ α

։ (λy.yP1 . . . P|∆|N)paiuq
∆∗

(1)
։ paiuq

∆∗

P1 . . . P|∆|N

β
։ Pipuq

∆∗

(1)
։ (I(M,∆)puq∆

∗

)(λu.λa.λv.λq.λw.(λx.xupaiq
Σwq)(AC (Σ)av))

γ
։ pDq

M(λu.λa.λv.λq.λw.(λx.xupaiq
Σwq)(AC (Σ)av))

where α, β do not depend on u and D is and initial configuration for u. Clearly

pDq
M(λu.λa.λv.λq.λw.(λx.xupaiq

Σwq)(AC (Σ)av))
(1,1,1,1,1)

։ pEq
M

where E is an initial configuration for aiu. ✷

Lemma 7 Given a Turing machineM = (Σ, ablank , Q, qinitial , qfinal , δ) and for every alphabet ∆,
there is a term F (M,∆) such that for every final configuration C for u1 . . . un there is α such that

F (M,∆)pCqM
α
։ pv1 . . . vnq

∆∗

, ||α|| = O(n) and

∀i.vi =

{
ui if ui ∈ ∆
ε otherwise

Proof. F (M,∆) is defined as

λx.x(λu.λa.λv.λq.AR(Σ)(CS (Σ,∆)u)(AS (Σ)(CC (Σ,∆)a)(CS (Σ,∆)v))

10

Consider an arbitrary final configuration p(u, a, v, qfinal)q
M. Then:

F (M,∆)p(u, a, v, qfinal)q
M

(1,1,1,1,1)
։ AR(Σ)(CS (Σ,∆)puqΣ

∗

)(AS(Σ)(CC (Σ,∆)paqΣ)(CS (Σ,∆)pvqΣ
∗

))
α
։ AR(Σ)(puq∆

∗

)(AS (∆)(paq∆
∗

)(pvq∆
∗

))
β
։ AR(Σ)puq∆

∗

pavq∆
∗

γ
։ puravq∆

∗

where α = O(|u|+ |v|), β does not depend on u, v and γ = O(|u|). ✷

Lemma 8 Given a Turing machine M = (Σ, ablank , Q, qinitial , qfinal , δ), there is a term T (M)
such that for every configuration C:
• If D is a final configuration reachable from C in n steps, then there exists α such that

T (M)pCqM
α
։ pDqM; moreover ||α|| = O(n);

• The term T (M)pCqM diverges if there is no final configuration reachable from C.

Proof. T (M) is defined as

H(λx.λy.y(λu.λa.λv.λq.q(M1 . . .M|Q|)uav))

where

∀i.Mi ≡ λu.λa.λv.a(N1
i . . . N

|Σ|
i)uv

∀i, j.N j
i ≡







λu.λv.λx.xupajq
Σvpqiq

Q if qi = qfinal
λu.λv.x(λz.zupakq

Σvpqlq
Q) if δ(qi, aj) = (ql, ak, ↓)

λu.λv.x(uP1 . . . P|Σ|P (AC (Σ)pakq
Σv)pqlq

Q) if δ(qi, aj) = (ql, ak,←)
λu.λv.x(vR1 . . . R|Σ|R(AC (Σ)pakq

Σu)pqlq
Q) if δ(qi, aj) = (ql, ak,→)

∀i.Pi ≡ λu.λv.λq.λx.xupaiq
Σvq

P ≡ λv.λq.λx.xpεqΣ
∗

pablankq
Σvq

∀i.Ri ≡ λv.λu.λq.λx.xupaiq
Σvq

R ≡ λu.λq.λx.xupablankq
Σ
pεqΣ

∗

q

To prove the thesis, it suffices to show that

T (M)pCq
M

β
։ T (M)pEq

M

where E is the next configuration reachable from C and β is bounded by a constant independent
of C. We need a number of abbreviations:

∀i.Qi ≡Mi{λz.T (M)z/x} ∀i.Ui ≡ Pi{λz.T (M)z/x} ∀i.Wi ≡ Ri{λz.T (M)z/x}

∀i, j.T j
i ≡ N j

i {λz.T (M)z/x} U ≡ P{λz.T (M)z/x} W ≡ R{λz.T (M)z/x}

Suppose C = (u, aj, v, qi). Then

T (M)pCq
M γ

։ pqiq
QQ1 . . . Q|Q|puq

Σ∗

pajq
Σ
pvqΣ

∗

δ
։ Qipuq

Σ∗

pajq
Σ
pvqΣ

∗

(1,1,1)
։ pajq

ΣT 1
i . . . T j

i puq
Σ∗

pvqΣ
∗

ρ
։ T j

i puq
Σ∗

pvqΣ
∗

where γ, δ, ρ do not depend on C. Now, consider the following four cases, depending on the value
of δ(qi, aj):

11

• If δ(qi, aj) is undefined, then qi = qfinal and, by definition T j
i ≡ λu.λv.λx.xupajq

Σvpqiq
Q. As

a consequence,

T j
i puq

Σ∗

pvqΣ
∗ (1,1)

։ λx.xpuqΣ
∗

pajq
Σ
pvqΣ

∗

pqiq
Q

≡ p(u, aj, v, qi)q
M

• If δ(qi, aj) = (ql, ak, ↓), then T j
i ≡ λu.λv.(λz.T (M)z)(λz.zupakq

Σvpqlq
Q). As a consequence,

T j
i puq

Σ∗

pvqΣ
∗ (1,1)

։ (λz.T (M)z)(λz.zpuqΣ
∗

pakq
Σ
pvqΣ

∗

pqlq
Q)

(1)
։ T (M)(λz.zpuqΣ

∗

pakq
Σ
pvqΣ

∗

pqlq
Q)

≡ T (M)pEq
M

• If δ(qi, aj) = (ql, ak,←), then

λu.λv.x(uU1 . . . U|Σ|U(AC (Σ)pajq
Σv)pqlq

Q).

As a consequence,

T j
i puq

Σ∗

pvqΣ
∗ (1,1)

։ (λz.T (M)z)(puqΣ
∗

U1 . . . U|Σ|U(AC (Σ)pajq
Σ
pvqΣ

∗

)pqlq
Q)

Now, if u is ε, then

(λz.T (M)z)(puqΣ
∗

U1 . . . U|Σ|U(AC (Σ)pajq
Σ
pvqΣ

∗

)pqlq
Q)

η
։ (λz.T (M)z)U(AC (Σ)pajq

Σ
pvqΣ

∗

)pqlq
Q

ξ
։ (λz.T (M)z)U(pajvq

Σ∗

)pqlq
Q)

(1,1)
։ (λz.T (M)z)p(ε, ablank , akv, ql)q

M

(1)
։ T (M)p(ε, ablank , akv, ql)q

M

where η, ξ do not depend on C. If u is tap, then

(λz.T (M)z)(pur
q
Σ∗

U1 . . . U|Σ|U(AC (Σ)pajq
Σ
pvqΣ

∗

)pqlq
Q)

π
։ (λz.T (M)z)Uppt

r
q
Σ∗

(AC (Σ)pajq
Σ
pvqΣ

∗

)pqlq
Q

θ
։ (λz.T (M)z)Uppt

r
q
Σ∗

(pakvq
Σ∗

)pqlq
Q)

(1,1)
։ (λz.T (M)z)p(t, aj, akv, ql)q

M

(1,1)
։ T (M)p(t, aj, akv, ql)q

M

where π, θ do not depend on C.
• The case δ(qi, aj) = (ql, ak,→) can be treated similarly.

This concludes the proof. ✷

At this point, we can give the main simulation result:

Theorem 1 If f : ∆∗ → ∆∗ is computed by a Turing machine M in time g, then there is a

term U(M,∆) such that for every u ∈ ∆∗ there is α with U(M,∆)puq∆
∗ α
։ pf(u)q∆

∗

and
||α|| = O(g(|u|))

Proof. Simply define U(M,∆) ≡ λx.F (M,∆)(T (M)(I(M,∆)x)). ✷

Noticeably, the just described simulation induces a linear overhead: every step ofM corresponds
to a constant cost in the simulation, the constant cost not depending on the input but only onM
itself.

12

5 Evaluating with Turing Machines

We informally describe a Turing machine R computing the normal form of a given input term, if
it exists, and diverging otherwise. If M is the input term, R takes time O((Time(M))4).

First of all, let us observe that the usual notation for terms does not take into account the
complexity of handling variables, and substitutions. We introduce a notation in the style of
deBruijn [4], with binary strings representing occurrences of variables. In this way, terms can be
denoted by finite strings in a finite alphabet.

Definition 4 • The alphabet Θ is {λ,@, 0, 1,◮}.
• To each lambda term M we can associate a string M# ∈ Θ+ in the standard deBruijn way,
writing @ for (prefix) application. For example, if M ≡ (λx.xy)(λx.λy.λz.x), then M# is

@λ@◮0◮λλλ◮10

In other words, free occurrences of variables are translated into ◮, while bounded occurrences
of variables are translated into◮s, where s is the binary representation of the deBruijn index
for that occurrence.
• The true length ||M || of a term M is the length of M#.

Observe that ||M || grows more than linearly on |M |:

Lemma 9 For every term M , ||M || = O(|M | log |M |). There is a sequence {Mn}n∈N such that
|Mn| = Θ(n), while ||Mn|| = Θ(|Mn| log |Mn|).

Proof. Consider the following statement: for every M , the string M# contains at most 2|M | − 1
characters from {λ,@} and at most |M | blocks of characters from {0, 1,◮}, the length of each of
them being at most 1 + ⌈log2 |M |⌉. We proceed by induction on M :
• If M is a variable x, then M# is◮. The thesis is satisfied, because |M | = 1.
• If M is λx.N , then M# is λu, where u is obtained from N# by replacing some blocks in the
form◮with◮s, where |s| is at most ⌈log2 |M |⌉. As a consequence, the thesis remains satisfied.
• If M is NL, then M# is @N#L# and the thesis remains satisfied.

This proves ||M || = O(|M | log |M |). For the second part, define

Mn ≡ λx.

n times
︷ ︸︸ ︷

λy.λy .

n+ 1 times
︷ ︸︸ ︷
x . . . x

Clearly,

M#
n ≡

n+ 1 times
︷ ︸︸ ︷

λ . . . λ

n times
︷ ︸︸ ︷

@◮u . . .@◮u◮u

where u is the binary coding of n (so |u| = Θ(logn)). As a consequence:

|M | = 3n+ 3 = Θ(n);

||M || = |M#| = 3n+ 3 + n|u| = Θ(n logn).

This concludes the proof. ✷

R has nine tapes, expects its input to be in the first tape and writes the output on the same
tape. The tapes will be referred to as Current (the first one), Preredex , Functional , Argument,
Postredex , Reduct, StackTerm, StackRedex , Counter . R operates by iteratively performing the
following four steps:

1. First of all, R looks for redexes in the term stored in Current (call it M), by scanning
it. The functional part of the redex will be put in Functional while its argument is copied
into Argument . Everything appearing before (respectively, after) the redex is copied into
Preredex (respectively, in Postredex). If there is no redex in M , then R halts. For example,
consider the term (λx.λy.xyy)(λz.z)(λw.w) which becomes @@λλ@@◮ 1◮ 0◮ 0λ◮ 0λ◮ 0
in deBruijn notation. Table 1 summarizes the status of some tapes after this initial step.

13

Table 1: The status of some tapes after step 1
Preredex @@
Functional λλ@@◮1◮0◮0
Argument λ◮0
Postredex λ◮0

Table 2: How stack evolves while processing @λ◮0λ◮0

@λ◮λ◮0 F@

@λ◮0λ◮0 F@Aλ

@λ◮0λ◮0 S@

@λ◮0λ◮0 S@

@λ◮0λ◮0 S@Aλ

@λ◮0λ◮0 ε
@λ◮0λ◮0 ε

2. Then, R copies the content of Functional into Reduct , erasing the first occurrence of λ and
replacing every occurrence of the bounded variable by the content of Argument. In the
example, Reduct becomes λ@@λ◮0◮0◮0.

3. R replaces the content of Current with the concatenation of Preredex , Reduct and Postredex
in this particular order. In the example, Current becomes @λ@@λ◮ 0◮ 0◮ 0λ◮ 0, which
correctly correspond to (λy.(λz.z)yy)(λw.w).

4. Finally, the content of every tape except Current is erased.
Every time the sequence of steps from 1 to 4 is performed, the term M in Current is replaced by
another term which is obtained from M by performing a normalization step. So, R halts on M if
and only if M is normalizing and the output will be the normal form of M .

Tapes StackTerm and StackRedex are managed in the same way. They help keeping track of
the structure of a term as it is scanned. The two tapes can only contain symbols Aλ, F@ and S@.
In particular:
• The symbol Aλ stands for the argument of an abstraction;
• the symbol F@ stands for the first argument of an application;
• the symbol S@ stands for the second argument of an application;

StackTerm and StackRedex can only be modified by the usual stack operations, i.e. by pushing
and popping symbols from the top of the stack. Anytime a new symbol is scanned, the underlying
stack can possibly be modified:
• If @ is read, then F@ must be pushed on the top of the stack.
• If λ is read, then Aλ must be pushed on the top of the stack.
• If◮is read, then symbols S@ and Aλ must be popped from the stack, until we find an occurrence
of F@ (which must be popped and replaced by S@) or the stack is empty.

For example, when scanning the term @λ◮0λ◮0, the underlying stack evolves as in table 2 (the
symbol currently being read is underlined). Now, consider an arbitrary iteration step, where M
is reduced to N . We claim that the steps 1 to 4 can all be performed in O((||M ||+ ||N ||)2). The
following is an informal argument.
• Step 1 can be performed with the help of auxiliary tapes StackTerm and StackRedex . Current
is scanned with the help of StackTerm. As soon as R encounter a λ symbol in Current , it
treats the subterm in a different way, copying it into Functional with the help of StackRedex .
When the subterm has been completely processed (i.e. when StackRedex is becomes empty),
the machine can verify whether or not it is the functional part of a redex. It suffices to check
the topmost symbol of StackTerm and the next symbol in Current . We are in presence of a
redex only if the topmost symbol of StackTerm is F@ and the next symbol in Current is either
λ or◮. Then, R proceeds as follows:

14

• If we are in presence of a redex, then the subterm corresponding to the argument is copied
into Argument , with the help of StackRedex ;
• Otherwise, the content of Functional is moved to Preredex and Functional is completely
erased.

• Step 2 can be performed with the help of StackRedex and Counter . Initially, R simply writes 0
into Counter , which keeps track of λ-nesting depth of the current symbol (in binary notation)
while scanning Functional . StackRedex is used in the usual way. Whenever we push Aλ

into StackRedex , Counter is incremented by 1, while it is decremented by 1 whenever Aλ is
popped from StackRedex . While scanning Functional , R copies everything into Reduct . If R
encounters a◮, it compares the binary string following it with the actual content of Counter .
Then it proceeds as follows:
• If they are equal, R copies to Reduct the entire content of Argument.
• Otherwise, R copies to Reduct the representation of the variable occurrences, without
altering it.

Lemma 10 If M →n N , then n ≤ Time(M) and |N | ≤ Time(M).

Proof. Clear from the definition of Time(M). ✷

Theorem 2 R computes the normal form of the term M in O((Time(M))4) steps.

6 Closed Values as a Partial Combinatory Algebra

If U and V are closed values and UV has a normal form W (which must be a closed value), then we
will denote W by {U}(V). In this way, we can give Ξ the status of a partial applicative structure,
which turns out to be a partial combinatory algebra. The abstract time measure induces a finer
structure on Ξ, which we are going to illustrate in this section. In particular, we will be able to
show the existence of certain elements of Ξ having both usual combinatorial properties as well as
bounded behaviour. These properties are exploited in [3], where elements of Ξ serves as (bounded)
realizers in a semantic framework.

In the following, Time({U}(V)) is simply Time(UV) (if it exists). Moreover, 〈V, U〉 will denote
the term λx.xV U .

First of all, we observe the identity and basic operations on couples take constant time. For
example, there is a termMswap such that {Mswap}(〈V, U〉) = 〈U, V 〉 and Time({Mswap}(〈V, U〉)) =
5. Formally:

Proposition 5 (Basic Operators) There are terms Mid ,Mswap ,Massl ,Mtens ∈ Ξ and con-
stants cid , cswap , cassl , c1tens and c2tens such that, for every V, U,W ∈ Ξ, there is Y ∈ Ξ such
that

{Mid}(V) = V

{Mswap}(〈V, U〉) = 〈U, V 〉

{Massl}(〈V, 〈U,W 〉〉) = 〈〈V, U〉,W 〉

{Mtens}(V) = Y

{Y }(〈U,W 〉) = 〈{V }(U),W 〉

Time({Mid}(V)) ≤ cid

Time({Mswap}(〈V, U〉)) ≤ cswap

Time({Massl}(〈V, 〈U,W 〉〉)) ≤ cassl

Time({Mtens}(V)) ≤ c1tens

Time({Y }(〈U,W 〉)) ≤ c2tens + Time({V }(U))

15

Proof. First of all, let us define terms:

Mid ≡ λx.x

Mswap ≡ λx.x(λy.λw.λz.zwy)

Massl ≡ λx.x(λy.λw.w(λz.λq.λr.r(λs.syz)q))

Mtens ≡ λs.λx.x(λy.λw.(λx.λz.zxw)(sy))

Now, let us observe that

MidV
(1)
։ V

Mswap〈V, U〉
(1)
։ 〈V, U〉(λy.λw.λz.zwy)

(1)
։ (λy.λw.λz.zwy)V U

(1)
։ (λw.λz.zwV)U

(1)
։ (λw.λz.zwV)U

(1)
։ 〈U, V 〉

Massl 〈V, 〈U,W 〉〉
(1)
։ 〈V, 〈U,W 〉〉(λy.λw.w(λz.λq.λr.r(λs.syz)q))

(1)
։ (λy.λw.w(λz.λq.λr.r(λs.syz)q))V 〈U,W 〉

(1)
։ (λw.w(λz.λq.λr.r(λs.sV z)q))〈U,W 〉

(1)
։ 〈U,W 〉(λz.λq.λr.r(λs.sV z)q)

(1)
։ (λz.λq.λr.r(λs.sV z)q)UW

(1)
։ λr.r(λs.sV U)W) ≡ 〈〈V, U〉,W 〉

MtensV
(1)
։ λx.x(λy.λw.(λx.λz.zxw)(V y)) ≡ Y

Y 〈U,W 〉
(1)
։ 〈U,W 〉(λy.λw.(λx.λz.zxw)(V y))

(1)
։ (λy.λw.(λx.λz.zxw)(V y))UW

(1)
։ (λw.(λx.λz.zxw)(V U))W

(1)
։ (λx.λz.zxW)(V U)

✷

There is a term in Ξ which takes as input a pair of terms 〈V, U〉 and computes the composition
of the functions computed by V and U . The overhead is constant, i.e. do not depend on the
intermediate result.

Proposition 6 (Composition) There are a term Mconc ∈ Ξ and two constants c1conc , c
2
conc such

that, for every V, U,W,Z ∈ Ξ, there is X ∈ Ξ such that:

{Mconc}(〈V, U〉) = X

{X}(W) = {V }({U}(W))

Time({Mconc}(〈V, U〉)) ≤ c1conc

Time({X}(W)) ≤ c2conc + Time({U}(W)) + Time({V }({U}(W)))

Proof. First of all, let us define term:

Mconc ≡ λx.x(λx.λy.λz.x(yz))

16

Now, let us observe that

Mconc〈V, U〉
(1)
։ 〈V, U〉(λx.λy.λz.x(yz))

(1)
։ (λx.λy.λz.x(yz))V U

(1)
։ (λy.λz.V (yz))U

(1)
։ λz.V (Uz) ≡ X

XW
(1)
։ V (UW)

✷

We need to represent functions which go beyond the realm of linear logic. In particular, terms
can be duplicated, but linear time is needed to do it.

Proposition 7 (Contraction) There are a term Mcont ∈ Ξ and a constant ccont such that, for
every V ∈ Ξ:

{Mcont}(V) = 〈V, V 〉

Time({Mcont}(V)) ≤ ccont + |V |.

Proof. First of all, let us define term:

Mcont ≡ λx.λy.yxx

Now, let us observe that

McontV
(n)
։ 〈V, V 〉,

where n ≤ ||V ||. ✷

From a complexity viewpoint, what is most interesting is the possibility to perform higher-order
computation with constant overhead. In particular, the universal function is realized by a term
Meval such that {Meval}(〈V, U〉) = {V }(U) and Time({Meval}(〈V, U〉)) = 4 + Time({U}(V)).

Proposition 8 (Higher-Order) There are terms Meval ,Mcurry ∈ Ξ and constants ceval , c
1
curry ,

c2curry , c
3
curry such that, for every V, U ∈ Ξ, there are W,X, Y, Z ∈ Ξ such that:

{Meval}(〈V, U〉) = {V }(U)

{Mcurry}(V) = W

{W}(X) = Y

{Y }(Z) = {V }(〈X,Z〉)

Time({Meval}(〈V, U〉)) ≤ ceval + Time({U}(V))

Time({Mcurry}(V)) ≤ c1curry

Time({W}(X)) ≤ c2curry

Time({Y }(Z)) ≤ c3curry + Time({V }(〈X,Z〉))

Proof. Define:

Meval ≡ λx.x(λy.λw.yw)

Mcurry ≡ λx.λy.λw.x(λz.zyw)

17

Now, observe that

Meval〈V, U〉
(1)
։ 〈V, U〉(λy.λw.yw)

(1)
։ (λy.λw.yw)V U

(1)
։ (λw.V w)U

(1)
։ V U

McurryV
(1)
։ λy.λw.V (λz.zyw) ≡W

WX
(1)
։ λw.V (λz.zXw) ≡W ≡ Y

Y Z
(1)
։ V (λz.zXZ) ≡ V 〈X,Z〉

✷

The fact that a “universal” combinator with a constant cost can be defined is quite remarkable. It
is a consequence of the inherent higher-order of the lambda-calculus. Indeed, this property does
not hold in the context of Turing machines.

7 Conclusions

We have introduced and studied the difference cost model for the pure, untyped, call-by-value
lambda-calculus. The difference cost model satisfies the invariance thesis, at least in its weak
version [12]. We have given sharp complexity bounds on the simulations establishing the invariance
and giving evidence that the difference cost model is a parsimonious one. We do not claim this
model is the definite word on the subject. More work should be done, especially on lambda-calculi
based on other evaluation models.

The availability of this cost model allows to reason on the complexity of call-by-value reduction
by arguing on the structure of lambda-terms, instead of using complicated arguments on the details
of some implementation mechanism. In this way, we could obtain results for eager functional
programs without having to resort to, e.g., a SECD machine implementation.

We have not treated space. Indeed, the very definition of space complexity for lambda-
calculus—at least in a less crude way than just “the maximum ink used [8]”—is an elusive subject
which deserves better and deeper study.

References

[1] Andrea Asperti. On the complexity of beta-reduction. In Proc 23rd ACM SIGPLAN Sym-
posium on Principles of Programming Languages, pages 110–118, 1996.

[2] Andrea Asperti and Stefano Guerrini. The Optimal Implementation of Functional Program-
ming Languages, volume 45 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1998.

[3] Ugo Dal Lago and Martin Hofmann. Quantitative models and implicit complexity. In Proc.
Foundations of Software Technology and Theoretical Computer Science, 2005. To appear.

[4] N.G de Bruijn. Lambda calculus with nameless dummies, a tool for automatic formula
manipulation, with application to the church-rosser theorem. Indagationes Mathematicae,
34(5):381–392, 1972.

[5] Mariangiola Dezani-Ciancaglini, Simona Ronchi della Rocca, and Lorenza Saitta. Complexity
of lambda-terms reductions. R.A.I.R.O. Informatique Theorique, 13(3):257–287, 1979.

18

[6] Gudmund Skovbjerg Frandsen and Carl Sturtivant. What is an efficient implementation of
the lambda-calculus? In Proc. 5th ACM Conference on Functional Programming Languages
and Computer Architecture, pages 289–312, 1991.

[7] John Lamping. An algorithm for optimal lambda calculus reduction. In Proc 17th ACM
SIGPLAN Symposium on Principles of Programming Languages, pages 16–30, 1990.

[8] Julia L. Lawall and Harry G. Mairson. Optimality and inefficiency: What isn’t a cost model of
the lambda calculus? In Proc. 1996 ACM SIGPLAN International Conference on Functional
Programming, pages 92–101, 1996.

[9] Julia L. Lawall and Harry G. Mairson. on global dynamics of optimal graph reduction.
In Proc. 1997 ACM SIGPLAN International Conference on Functional Programming, pages
188–195, 1997.

[10] Jean-Jacques Lévy. Réductions corrected et optimales dans le lambda-calcul. Université Paris
7, Thèses d’Etat, 1978.

[11] Simona Ronchi Della Rocca and Luca Paolini. The Parametric lambda-calculus. Texts in
Theoretical Computer Science: An EATCS Series. Springer-Verlag, 2004.

[12] Peter van Emde Boas. Machine models and simulation. In Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity (A), pages 1–66. 1990.

[13] Christopher Wadsworth. Some unusual λ-calculus numeral systems. In J.P. Seldin and J.R.
Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and For-
malism. Academic Press, 1980.

19

