
Datatype-Generic Reasoning

Roland Backhouse

School of Computer Science and Information Technology, University of Nottingham,
Nottingham NG8 1BB, England, rcb@cs.nott.ac.uk

Abstract. Datatype-generic programs are programs that are parame-
terised by a datatype. Designing datatype-generic programs brings new
challenges and new opportunities. We review the allegorical foundations
of a methodology of designing datatype-generic programs. The effective-
ness of the methodology is demonstrated by an extraordinarily concise
proof of the well-foundedness of a datatype-generic occurs-in relation.

Keywords: datatype, generic programming, relation algebra, allegory,
programming methodology

1 Introduction

The central issue of computing science is the development of practical program-
ming methodologies. Characteristic of a programming methodology is that it
involves a discipline designed to maximise confidence in the reliability of the
end product. The discipline constrains the construction methods to those that
are demonstrably simple and easy to use, whilst still allowing sufficient flexibility
that the creative process of program construction is not impeded. For example,
an insight that played an important role in the development of a methodology
for sequential programs is that it is possible to restrict attention —without loss
of generality— to just the class of while programs. It is neither necessary nor
desirable to consider arbitrary goto programs.

The systematic use of induction on the structure of datatypes is another
such discipline; defining and exploiting application-specific datatypes is sound
practice, as is well-known, particularly among functional programmers. This has
led to the development of a new programming concept, called (datatype-)generic
programming [21, 14, 15, 22]. Datatype-generic programs are programs that are
parameterised by a data structure. For example, the compression of data can
be much more effective if the specific structure of the data is known in advance
— the compression of eg computer programs can exploit the specific syntactic
structure of the programs to achieve a higher compression ratio [15].

The idea of making data structure a parameter opens up new challenges
and new opportunities. A major new insight is to consider the algebraic struc-
ture of data structures — how complex data structures are built from simpler
components. In this paper, we review the theoretical foundations of reasoning
about datatype-generic programs. We review the notion of “ F -reductivity”, in-
troduced by Doornbos [11, 9, 12], and show its application to establishing the

well-foundedness of the occurs-in relation in a dataype-generic unification algo-
rithm [20, 7].

2 Relation algebra

2.1 Basic Definitions

Although much recent work on datatype-generic programming has been con-
ducted within the paradigm of functional programming, there are far-reaching
arguments for adopting a relational framework. Two directly relevant to the cur-
rent paper are: specifications are typically nondeterministic (i.e. relations, not
functions) and termination arguments are almost always conducted within the
framework of well-founded relations. So, for us, a program is an input-output
relation. The convention we use when defining relations is that the input is on
the right and the output on the left (as in functional programming). Formally,
a (binary) relation is a triple consisting of a pair of types I and J , say, and a
subset of the cartesian product I×J . We write R :: I←J (read “ R has type
I from J ”), the left-pointing arrow indicating that we view I as the set of
possible outputs and J as the set of possible inputs. I is called the target and
J the source of the relation R , and I←J is called its type. We use a raised
infix dot to denote relational composition. Thus R ·S denotes the composition
of relations R and S . The converse of relation R is denoted by R∪ . Relations
of the same type are ordered by set inclusion denoted in the conventional way
by the infix ⊆ operator.

For each set I , there is an identity relation which we denote by idI . Thus
idI :: I←I . Relations of type I←I contained in idI will be called coreflexives.
By convention, we use R , S , T to denote arbitrary relations and A , B and
C to denote coreflexives. Clearly, the coreflexives of type I←I are in one-to-
one correspondence with the subsets of I ; we exploit this correspondence by
identifying subsets of I with the coreflexives of type I←I .

Functions are “single-valued” relations; a relation R is single-valued if
R ·R∪ ⊆ idI where I is the target of R . We use an infix dot to denote function
application. Thus f.x denotes application of function f to argument x . Dual
to the notion of single-valued is the notion of injectivity. A relation R with
source J is injective if R∪ ·R ⊆ idJ . Which of the properties R ·R∪ ⊆ idI or
R∪ ·R ⊆ idJ one calls “single-valued” and which “injective” is a matter of inter-
pretation. The choice here fits in with the convention that input is on the right
and output on the left. More importantly, it fits with the convention of writing
f.x rather than say xf (that is the function to the left of its argument). A
sensible consequence is that type arrows point from right to left.

2.2 Domains and Division Operators

The left domain of a relation R is, informally, the set of output values that are
related by R to at least one input value. Formally, the right domain R> of a

relation R of type I←J is a coreflexive of type I←I satisfying the property
that

〈∀A : A⊆ idI : A ·R=R ≡ R<⊆A〉 . (1)

Given a coreflexive A , A⊆ idI , the relation A ·R can be viewed as the relation
R restricted to outputs in the set A . Thus, in words, the left domain of R is the
least coreflexive A that maintains R when R is restricted to outputs in the set
A . The right domain R> is defined symetrically by reversing the composition
R ·A . The left/right domain should not be confused with the target/source of
the relation.

In general, for relations R of type I←J and T of type I←K there is a
relation R\T of type J←K satisfying the Galois connection, for all relations
S ,

R ·S ⊆ T ≡ S ⊆ R\T .

The operator \ is called a division operator (because of the similarity of the
above rule to the rule of division in ordinary arithmetic). The relation R\T is
called a residual or a factor of the relation T . Interpreting relations as specifica-
tions, the above Galois connection defines R\T to be the “weakest” specification
of a program S such that executing R after S satisfies specification T . With
this interpretation, R\T has been called a weakest prespecification [16].

The weakest liberal precondition operator will be denoted here by the symbol
“ \ ”. Formally, if R is a relation of type I←J and A is a coreflexive of type
I←I then R\A is a coreflexive of type J←J characterised by the property
that, for all coreflexives B of type J←J ,

(R ·B)< ⊆ A ≡ B ⊆ R\A . (2)

Again, we use a division-like notation, rather than “wlp”, to emphasise the
similarity with division in normal arithmetic.

3 Allegories and Relators

We assume that the reader is familiar with the most basic notions of category
theory, namely objects, arrows, functors, natural transformations and (initial)
algebras We use Fun to denote the category with sets as objects and func-
tions between sets as arrows. We use Rel to denote the category with sets as
objects and binary relations as arrows. We also assume familiarity with the rele-
vance of these concepts to functional programming: functors correspond to type
constructors and natural transformations correspond to polymorphic functions.

The categorical notion of functor is too weak to describe type constructors
in the context of a relational theory of datatypes. The notion of an “allegory”
[13] extends the notion of a category in order to better capture the essential
properties of relations, and the notion of a “relator” [1, 3, 4] extends the notion
of a functor in order to better capture the relational properties of datatype
constructors.

Formally, an allegory is a category such that, for each pair of objects A and
B , the class of arrows of type A←B forms an ordered set. In addition there
is a converse operation on arrows and a meet (intersection) operation on pairs
of arrows of the same type. These are the minimum requirements. For practical
purposes, more is needed. A locally-complete, tabulated, unitary, division allegory
is an allegory such that, for each pair of objects A and B , the partial ordering on
the set of arrows of type A←B is complete (“locally-complete”), the division
operators introduced in section 2.2 are well-defined (“division allegory”), the
allegory has a unit (which is a relational extension of the categorical notion of a
unit — “unitary”) and, finally, the allegory is “tabulated”. “Tabulated” captures
the fact that relations are subsets of the cartesian product of a pair of sets [8].
(Tabularity is vital because it provides the link between categorical properties
and their extensions to relations.)

A suitable extension to the notion of functor is the notion of a “relator”
[1]. A relator is a functor whose source and target are both allegories, and is
monotonic with respect to the subset ordering on relations of the same type,
and commutes with converse. Thus, a relator F is a function to the objects of
an allegory C from the objects of an allegory D together with a mapping to the
arrows (relations) of C from the arrows of D satisfying the following properties:

F.R has type F.I �C
F.J whenever R has type I �D

J . (3)

F.R · F.S = F.(R ·S) for each R and S of composable type, (4)

F.idA = idF.A for each object A , (5)

F.R ⊆ F.S ⇐ R ⊆ S for each R and S of the same type, (6)

(F.R)∪ = F.(R∪) for each R . (7)

For example, List is a unary relator, and product is a binary relator. If R is a
relation of type I←J then List.R relates a list of I s to a list of J s whenever
the two lists have the same length and corresponding elements are related by R .
The relation R×S relates two pairs if the first components are related by R and
the second components are related by S . List is an example of an inductively-
defined datatype; in [2] it was observed that all inductively-defined datatypes
are relators.

A design requirement, that dictates the above definition of a relator, is that
a relator should extend the notion of a functor but in such a way that it coin-
cides with the latter notion when restricted to functions. Formally, relation R
of type I←J is total iff idJ ⊆ R∪ ·R . A function is a relation that is both
total and single-valued. It is easy to verify that total relations are closed under
composition, as are single-valued relations. Hence, functions are closed under
composition too. In other words, the functions form a sub-category. For an al-
legory A , we denote the sub-category of functions by Map(A) . In particular,
Map(Rel) is the category Fun . Now, the desired property of relators is that
relator F of type A←B is a functor of type Map(A)←Map(B) . It is easily
shown that our definition of relator guarantees this property.

(Bird and De Moor [8] omit (7) and define a relator to be a monotonic functor.
However, their theorem 5.1, which purports to justify the omission, is false.)

Polymorphic functions play a major role in functional programming. An in-
sight that has helped to increase the understanding of the relevance of category
theory to functional programming is that polymorphic functions, like the flatten
function on lists, are natural transformations [27, 28]. However, caution is needed
when extending the categorical notion of natural transformation to allegories. In
the latter context, the term lax natural transformation is sometimes used. The
collection of lax natural transformations to relator F from G is denoted by
F←↩G and defined by

α :: F←↩G ≡ (F.R · αJ ⊇ αI · G.R for each R :: I←J) . (8)

A relationship between naturality in the allegorical sense and in the categorical
sense is the following [17]. Recall that relators respect functions, i.e. relators are
functors on the sub-category Map . Then, in the case that all elements of the
collection α are functions,

α :: F←↩G in A ≡ α :: F←G in Map(A)

where by “in X ” we mean that all quantifications in the definition of the type of
natural transformation range over the objects and arrows of X . This means that
the notion of “lax” natural transformation is the more appropriate allegorical
extension of the categorical notion of natural transformation rather than being
a natural transformation in the underlying category. Thus we shall not use the
qualifier “lax”. For us, a natural transformation is as defined by (8).

4 A Programming Paradigm

4.1 Hylo programs

Characteristic of a programming methodology is that it involves a discipline de-
signed to maximise confidence in the reliability of the end product. The discipline
constrains the construction methods to those that are demonstrably simple and
easy to use, whilst still allowing sufficient flexibility that the creative process of
program construction is not impeded.

In standard treatments of the discipline of sequential programming, the class
of programs considered is the class of while programs; it has long been ac-
cepted that arbitrary goto programs are undesirable. But, whilst theoretically
expressive enough, while programs are inadequate to express many elegant
and well-known recursive programs, like quicksort. On the other hand, arbitrary
recursion is also undesirable. Restriction to a more limited class of recursive
programs is desirable for a sound discipline of datatype-generic programming.

The programs in the class on which our discipline is based are called hy-
lomorphisms. The fact that many recursively defined functional programs are
hylomorphisms was identified by Fokkinga, Meijer and Paterson [25], the name
having been coined by Meijer [26]. Unlike [25], however, the current paper is not
restricted to functional programs.

Definition 1 (Hylos). Let R and S be relations and F a relator. An
equation in X of the form X = R ·F.X ·S is said to be a hylo equation or hylo
program.
2

Space does not allow us to give detailed examples of hylo programs here.
Briefly, the hylo recursion scheme offers substantial freedom in designing pro-
grams because the solution strategy is a parameter of the scheme. The solution
strategy is encapsulated in the relator, F . For instance relator 〈X :: I+X〉 en-
capsulates repetition, 〈X :: I+X×X〉 encapsulates a divide and conquer strat-
egy, and 〈X ::F.(I×X)〉 encapsulates primitive recursion. A first step in the de-
sign of hylo programs is the choice of the relator [11]. Extending hylo programs
to allow relations as components is also a significant advance on the functional
paradigm. Relations on strings, like the prefix, suffix, subsequence and segment
relations are easy to express as hylo equations, as can quite complex problems
like context-free language recognition (even in the most general case) [5].

Crucial to developing a discipline of hylo programming is that the meaning
of a hylo equation is well-understood, both as a specification of a relation, and
operationally as a program that can be executed. The operational meaning de-
mands an understanding of how hylo equations are executed, including when
they are guaranteed to terminate. This is discussed in section 4.2. The specifica-
tional meaning can be understood in several ways. One is to extrapolate from the
now well-understood notion of a catamorphism on an initial F -algebra. This is
captured by theorem 1, below. The definition of a “relational initial F -algebra”
is needed first.

Definition 2. Assume that F is an endorelator. Then (I , in) is a relational
initial F -algebra iff in has type I←F.I (and thus is an F -algebra), and there
is a mapping ([]) defined on all F -algebras such that

([R]) :: A← I if R has type A←F.A , (9)

([in]) = idI , and (10)

([R]) · ([S])∪ = 〈µX :: R · F.X · S∪〉 . (11)

That is, ([R]) · ([S])∪ is the smallest solution of the equation in X ,
R · F.X · S∪ ⊆ X .
2

Definition 2 makes use of the “banana brackets”, ([]) , introduced by Malcolm
[23, 24] to denote a functional/relational catamorphism. In categorical terms,
catamorphisms are the unique arrows from the initial object in the category
of F -algebras; in programming terms, catamorphisms are programs defined by
structural induction on a datatype. The definition extends the categorical notion
of an initial F -algebra to allegories in a way that is made precise by the hylo
theorem below. Recall that Map(A) denotes the sub-category of functions in
the allegory A . For clarity, we distinguish between the endorelator F and the
corresponding endofunctor, F ′ , defined on Map(A) .

Theorem 1 (Hylo Theorem [6]). Suppose F is an endorelator on a locally-
complete, tabular allegory A . Let F ′ denote the endofunctor obtained by re-
stricting F to the objects and arrows of Map(A) . Then, in is an initial F ′ -
algebra equivales it is a relational initial F -algebra. 2

Note that the hylo theorem states an equivalence between two definitions.
Considering first the implication (loosely speaking, an initial F -algebra is a
relational initial F -algebra), property (11) is the property that is most often
understood as the “hylo theorem”. Property (9) is a necessary prerequisite; es-
sentially it states that catamorphisms are well-defined on relations given that
they are well-defined on functions. Property (10) is the key to proving Lam-
bek’s lemma that an initial F -algebra is an isomorphism between its source
and its target. A consequence of the opposite implication (a relational initial
F -algebra is an initial F -algebra) is that catamorphisms on functions are the
unique solutions of their defining equations.

4.2 Reductivity

A discipline of programming should always provide the programmer with
straightforward-to-use techniques for guaranteeing termination of programs. For
datatype-generic programs this is provided by the theory of so-called “reductiv-
ity” [11, 12] . The major innovatory aspect of this concept is that it is parame-
terised by a relator, making it possible to explore how properties of termination
are induced by properties of datatypes and (natural) transformations between
datatypes.

A hylo program, X = R ·F.X ·S , is executed by first unfolding the equation
and then computing the argument for the recursive call by executing S . This
procedure is repeated until a base case is reached and no further unfoldings are
necessary. Then the output is computed by executing R as often as the equation
was unfolded. Assuming R and S are both guaranteed to terminate, termina-
tion of the recursion is thus dependent only on S , and not on R . Furthermore, if
S is nondeterministic, a demonic semantics demands termination irrespective of
which output from the unfoldings of S is chosen. This is the familiar execution
scheme applied by the implementations of imperative and functional languages.
Because of this execution scheme, the computed input-output relation is the
least solution of the hylo program.

Suppose that execution begins in a state described by the coreflexive A , and
suppose B describes the “safe set” of the hylo program: the maximal set of states
from which execution is guaranteed to terminate. Then, execution of S must
guarantee that recursive calls begin from a state in B . That is, (S ·A)< ⊆ F.B ,
or, equally, A⊆S\F.B . Since, B is the maximal set of such states, A , and
since the semantics defines the input-ouput relation to be the least solution of
the hylo equation, the safe set of program X = R ·F.X ·S is the coreflexive
〈µA :: S\F.A〉 . Termination is guaranteed if this is the identity relation on the
domain of S . Hence, the definition of reductivity:

Definition 3 (F -reductivity). Relation S of type F.I← I is said to be
F -reductive if and only if 〈µA :: S\F.A〉 = idI . 2

Let us now check that the notion of F -reductivity is compatible with more
familiar accounts of program termination.

A programmer proves termination by using well-founded relations: they prove
that the argument of every recursive call is “smaller” than the original argument.
For program X = R ·F.X ·S this means that all values stored in an output F -
structure of S have to be smaller than the corresponding input of S . More
formally, with x〈mem〉y standing for “ x is a member of F -structure y ” (or,
x is a value stored in F -structure y ”), we need for all x and z

〈∀y :: x〈mem〉y ∧ y〈S〉z ⇒ x≺ z〉 ,

for some well-founded ordering ≺ . That is, a relation S is F -reductive if and
only if there is a well-founded relation ≺ such that whenever an F -structure is
related by S to some y , it is the case that every value stored in the F -structure
is related to y by ≺ .

To make this statement precise we need to formalise the concept of “values
stored in an F -structure”. Hoogendijk and De Moor [18, 17] have shown that
this is possible for so-called “container types”. For the relators from this class,
one can define a membership relation, say mem . For example, for the list relator
this relation holds between a point of the universe and a list precisely when the
point is in the list. For product, the relation holds between x and (x,y) and
also between y and (x,y).

A precise characterisation of the membership relation of a relator is the
following :

Definition 4 (Membership). Relation mem :: I←F.I is a membership
relation of relator F if and only if F.A = mem\A for all coreflexives A ,
A⊆ I . 2

Using this definition of membership we get a precise relationship between
reductivity and well-foundedness. Indeed, for coalgebra S with carrier I and
coreflexive A below I , we have:

S \ F.A

= { definition 4 }

S\ (mem\A)

= { factors (2) }

(mem ·S)\A .

Now, well-foundedness of relation R of type I←I is the condition that the
least prefix point of the function 〈A :: R\A〉 is I [10], whereas reductivity
of S :: F.I← I is the condition that the least prefix point of the function

〈A :: S \ F.A〉 is I . So, for coalgebra S :: F.I← I , the statement that S is F -
reductive is equivalent to the statement that mem ·S is well-founded. Formally,

S is F -reductive ≡ mem ·S is well-founded .

Conversely,
R is well-founded ≡ mem\R is F -reductive .

Summarising, we have:

Theorem 2. Suppose mem is the membership relation for relator F . Then
the functions 〈S ::mem ·S〉 and 〈R ::mem\R〉 form a Galois connection between
the F -reductive relations, S , and the well-founded relations, R . 2

Bird and De Moor [8, chapter 6] avoid the introduction of the notion of reduc-
tivity by always requiring that mem ·S is well-founded whenever F -reductivity
of S is required. The main advantage of defining termination in terms of re-
ductivity instead of well-foundedness and membership is that it is possible to
formulate theorems relating reductivity of one type to reductivity of another
type. The rules presented in section 5 are of this nature.

5 A calculus of reductive relations

Theorem 3. The converse of an initial F -algebra is F -reductive.

Proof Let in :: I←F.I be an initial F -algebra and A an arbitrary core-
flexive of type I←I . We must show that

I⊆A ⇐ in∪\ F.A ⊆ A .

We start with the antecedent and derive the consequent:

in∪\ F.A ⊆ A

= { for function f and coreflexive B , f\B = f∪ ·B · f ,

in∪ is a function and F.A is a coreflexive }

in ·F.A · in∪ ⊆ A

⇒ { hylo theorem }

([in]) · ([in])∪ ⊆ A

= { identity rule: (10), in :: I←F.I is an initial F -algebra }

I⊆A .

2

Theorem 4. Let Q be G -reductive and S be a natural transformation of
type F←↩ Id , where Id denotes the identity relator. Then F.Q ·S is (F ◦G)-
reductive.

Proof We prove the stronger:

〈µA :: Q\ G.A〉 ⊆ 〈µA :: (F.Q ·S)\ F.(G.A)〉 .

First, we observe a general fact about natural transformations α of type
F←↩H , namely, for all objects I and all coreflexives A such that A⊆ I ,

H.A ⊆ αI \ F.A , (12)

since

H.A ⊆ αI \ F.A

= { factors: (2) }

(αI ·H.A)< ⊆ F.A

= { domains: (1) }

F.A ·αI ·H.A = αI ·G.A

= { α has type F←↩H . Thus, F.A ·αI ⊇ αI ·H.A .

A is a coreflexive, so H.A ·H.A = H.A }

F.A ·αI ·H.A ⊆ αI ·H.A

= { F.A⊆ idF.I }

true .

The theorem follows, by monotonicity of the fixpoint operator µ , from the fact
that, for all A ,

(F.Q ·S)\ F.(G.A)

= { factors: (2) }

S \ (F.Q\ F.(G.A))

⊇ { factors: (2) }

S \ F.(Q\ G.A)

⊇ { S has type F←↩ Id , (12) }

Q\ G.A .

2

6 Generic Unification

In this section, we apply the notion of F -reductivity to a key lemma in the
proof of correctness of a generic unification algorithm. Such an algorithm was
first formulated by Jeuring and Jansson [19] and is further elaborated in [7]. The

algorithm is “generic” in the sense that it is parameterised by a relator F that
specifies the structure of expressions to be unified.

Here, we show that the “occurs-properly-in” relation on expressions is well-
founded. Particularly remarkable about our proof is that it is very simple. This
is a result of its not requiring the definition of a size function on expressions
in any way, the key to the proof being instead the fact that the converse of an
initial F -algebra is F -reductive.

(The reader is invited to compare the proof presented here with the one
given in [7]. Although the one presented here was the first to be developed, it
was considered expedient at the time not to burden the reader of [7] with too
many new ideas, and to present a more conventional proof instead.)

In its generic form, unification is expressed as follows. A parameter is a relator
F . A second parameter is a type V , elements of which are called variables. Given
these two, we may define a relator FV which maps relation X to F.X + idV .
Then we assume that in is an initial FV -algebra with carrier F ?V . That is,

in :: F ?V ← F.F ? V +V .

The relator F ? (together with appropriately defined unit and multiplier) is a
monad which, as the Kleene-star-like notation suggests, is obtained by repeated
application of the relator F . Elements of F ?V are called expressions; the pa-
rameter F limits the way that new expressions are built up out of subexpres-
sions. Substitution of an expression for a variable can now be defined in such a
way that the composition of substitutions is Kleisli composition in the monad.
The ordering “more general than” on substitutions is defined in the usual way.
Generic unification is then the problem of finding a substitution that unifies two
expressions and is more general than any other unifier.

A fundamental lemma in a proof of correctness of unification is to show that
if a variable occurs in an expression then the variable and expression are not
unifiable. The way to do this is to define an “occurs-properly-in” relation between
expressions, show that this relation is well-founded (and thus is irreflexive) and
finally show that it is preserved by substitution. Here we will just show the first
two of these steps as an illustration of the reductivity calculus.

Suppose mem is the membership relation of the relator F . Let inlA,B denote
the injection function of type A+B←A . (We will drop subscripts from now
on for simplicity.) Then we can define the relation occurs properly in of type
F ?V ←F ?V by

occurs properly in = (mem · (in·inl)∪)+ .

Informally, the relation (in·inl)∪ (which has type F.(F ?V)← F ?V) destructs
an element of F ?V into an F -structure and then mem identifies the data
stored in that F -structure. Thus mem · (in·inl)∪ destructs an element of F ?V
into a number of immediate subcomponents. Application of the transitive-closure
operation repeats this process thus breaking the structure down into all its sub-
components.

The occurs properly in relation has a very simple structure. We ought to be
able to see that it is well-founded almost directly just from that structure. Indeed
this is what the reductivity calculus allows us to do. The lemma and its proof
follow. The first step involves a well-known property of well-founded relations.
Otherwise, every non-trivial step uses the reductivity calculus.

Theorem 5. The relation occurs properly in is well-founded.

Proof

occurs properly in is well-founded

= { definition of occurs properly in ,

R is well-founded ≡ R+ is well-founded }

mem · (in·inl)∪ is well-founded

⇐ { mem ·R is well-founded ≡ R is F -reductive }

(in·inl)∪ is F -reductive

= { (in·inl)∪ = inl∪ · in∪ , }

inl∪ · in∪ is F -reductive

⇐ { theorem 4 }

in∪ is FV -reductive ∧ inl∪ :: F←↩ FV

⇐ { theorem 3, definition of ←↩ }

true ∧ 〈∀R :: F.R · inl∪J ⊇ inl∪I · FV .R〉

= { FV .A = F.A+ idV , converse and defn. of inl }

true .

2

Note that the proof is entirely algebraic and does not involve any notion of the
“size” of expressions. Many well-foundedness arguments are based on defining
a variant function with range the natural numbers and exploiting their well-
foundedness. The above proof is based on the basic reductivity theorem that the
converse of an initial F -algebra is F -reductive, a consequence of which theorem
is that the natural numbers are well-founded. Introducing the natural numbers
into the proof would be introducing unnecessary detail.

Acknowledgements

This work was supported by EPSRC grant GR/S27085/01, Data-type generic
programming.

References

1. Jeuring, J., Jansson, P.: Polytypic programming. In Launchbury, J., Meijer, E.,
Sheard, T., eds.: Proceedings of the Second International Summer School on Ad-
vanced Functional Programming Techniques, Springer-Verlag (1996) 68–114 LNCS
1129.

2. Hinze, R.: Polytypic values possess polykinded types. Science of Computer Pro-
gramming 43(2-3) (2002) 129–159

3. Hinze, R., Jeuring, J., Löh, A.: Type-indexed data types. Science of Computer
Programming 51(1-2) (2004) 117–151

4. Löh, A., Clarke, D., Jeuring, J.: Dependency-style Generic Haskell. In Shivers,
O., ed.: Proceedings of the International Conference, ICFP’03, ACM Press (2003)
141–152

5. Doornbos, H., Backhouse, R.: Induction and recursion on datatypes. In Möller, B.,
ed.: Mathematics of Program Construction, 3rd International Conference. Volume
947 of LNCS., Springer-Verlag (1995) 242–256

6. Doornbos, H.: Reductivity arguments and program construction. PhD thesis,
Eindhoven University of Technology, Department of Mathematics and Computing
Science (1996)

7. Doornbos, H., Backhouse, R.: Reductivity. Science of Computer Programming
26(1–3) (1996) 217–236

8. Jansson, P., Jeuring, J.: Functional pearl: Polytypic unification. Journal of Func-
tional Programming (1998)

9. Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic programming. An
introduction. In Swierstra, S., ed.: 3rd International Summer School on Advanced
Functional Programming, Braga, Portugal, 12th-19th September, 1998. Volume
LNCS 1608., Springer Verlag (1999) 28–115

10. Hoare, C., He, J.: The weakest prespecification. Fundamenta Informaticae 9 (1986)
51–84, 217–252

11. Freyd, P., Ščedrov, A.: Categories, Allegories. North-Holland (1990)
12. Backhouse, R.: Naturality of homomorphisms. Lecture notes, International Sum-

mer School on Constructive Algorithmics, vol. 3, 1989 (1989)
13. Backhouse, R., Bruin, P.d., Malcolm, G., Voermans, T., Woude, J.v.d.: Relational

catamorphisms. In B., M., ed.: Proceedings of the IFIP TC2/WG2.1 Working Con-
ference on Constructing Programs from Specifications, Elsevier Science Publishers
B.V. (1991) 287–318

14. Backhouse, R., Woude, J.v.d.: Demonic operators and monotype factors. Mathe-
matical Structures in Computer Science 3(4) (1993) 417–433

15. Bird, R.S., de Moor, O.: Algebra of Programming. Prentice-Hall International
(1996)

16. Backhouse, R., Bruin, P.d., Hoogendijk, P., Malcolm, G., Voermans, T., Woude,
J.v.d.: Polynomial relators. In Nivat, M., Rattray, C., Rus, T., Scollo, G., eds.:
Proceedings of the 2nd Conference on Algebraic Methodology and Software Tech-
nology, AMAST’91, Springer-Verlag, Workshops in Computing (1992) 303–326

17. Reynolds, J.: Types, abstraction and parametric polymorphism. In Mason, R.,
ed.: IFIP ’83. Elsevier Science Publishers (1983) 513–523

18. Wadler, P.: Theorems for free! In: 4’th Symposium on Functional Programming
Languages and Computer Architecture, ACM, London. (1989)

19. Hoogendijk, P.: A Generic Theory of Datatypes. PhD thesis, Department of
Mathematics and Computing Science, Eindhoven University of Technology (1997)

20. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: FPCA ’91: Functional Programming Lan-
guages and Computer Architecture. Number 523 in LNCS, Springer-Verlag (1991)
124–144

21. Meijer, E.: Calculating Compilers. PhD thesis, University of Nijmegen (1992)
22. Backhouse, R., Doornbos, H.: Mathematics of recursive program construction.

Internet publication available from http://www.cs.nott.ac.uk/ rcb/MPC/papers
(2001)

23. Malcolm, G.: Algebraic data types and program transformation. PhD thesis,
Groningen University (1990)

24. Malcolm, G.: Data structures and program transformation. Science of Computer
Programming 14(2–3) (1990) 255–280

25. Backhouse, R., Hoogendijk, P.: Final dialgebras: From categories to allegories.
Theoretical Informatics and Applications 33(4/5) (1999) 401–426

26. Hoogendijk, P., de Moor, O.: Container types categorically. Journal of Functional
Programming 10(2) (2000) 191–225

27. Doornbos, H., Backhouse, R., van der Woude, J.: A calculation approach to math-
ematical induction. Theoretical Computer Science 179 (1997) 103–135

28. Jansson, P., Jeuring, J.: PolyP - a polytypic programming language extension.
In: POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ACM Press (1997) 470–482

