Skip to main content

Local Alignment of RNA Sequences with Arbitrary Scoring Schemes

  • Conference paper
Book cover Combinatorial Pattern Matching (CPM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4009))

Included in the following conference series:

Abstract

Local similarity is an important tool in comparative analysis of biological sequences, and is therefore well studied. In particular, the Smith-Waterman technique and its normalized version are two established metrics for measuring local similarity in strings. In RNA sequences however, where one must consider not only sequential but also structural features of the inspected molecules, the concept of local similarity becomes more complicated. First, even in global similarity, computing global sequence-structure alignments is more difficult than computing standard sequence alignments due to the bi-dimensionality of information. Second, one can view locality in two different ways, in the sequential or structural sense, leading to different problem formulations.

In this paper we introduce two sequentially-local similarity metrics for comparing RNA sequences. These metrics combine the global RNA alignment metric of Shasha and Zhang [16] with the Smith-Waterman metric [17] and its normalized version [2] used in strings. We generalize the familiar alignment graph used in string comparison to apply also for RNA sequences, and then utilize this generalization to devise two algorithms for computing local similarity according to our two suggested metrics. Our algorithms run in \(\mathcal{O}(m^2 n \lg n)\) and \(\mathcal{O}(m^2 n \lg n+n^2m)\) time respectively, where mn are the lengths of the two given RNAs. Both algorithms can work with any arbitrary scoring scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alliali, J., Sagot, M.-F.: A new distance for high level RNA secondary structure comparison. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2(1), 4–14 (2005)

    Article  Google Scholar 

  2. Arslan, A.N., Eǧecioğlu, Ö., Pevzner, P.A.: A new approach to sequence alignment: normalized sequence alignment. Bioinformatics 17(4), 327–337 (2001)

    Article  Google Scholar 

  3. Backofen, R., Will, S.: Local sequence-structure motifs in RNA. Journal of Bioinformatics and Computational Biology (JBCB) 2(4), 681–698 (2004)

    Article  Google Scholar 

  4. Chartrand, P., Meng, X.-H., Singer, R.H., Long, R.M.: Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. Current Biology 9, 333–336 (1999)

    Article  Google Scholar 

  5. Chen, S., Wang, Z., Zhang, K.: Pattern matching and local alignment for RNA structures. In: International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS), pp. 55–61 (2002)

    Google Scholar 

  6. Couzin, J.: Breakthrough of the year. Small RNAs make big splash. Science 298(5602), 2296–2297 (2002)

    Article  Google Scholar 

  7. Currey, K.M., Sasha, D., Shapiro, B.A., Wang, J., Zhang, K.: An algorithm for finding the largest approxemately common substructure of two trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 889–895 (1998)

    Article  Google Scholar 

  8. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An O(n 3)-time algorithm for tree edit distance. Technical Report arXiv:cs.DS/0604037, Cornell University (2006)

    Google Scholar 

  9. Efraty, N., Landau, G.M.: Sparse normalized local alignment. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 333–346. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Giegerich, R., Höchsmann, M., Kurtz, S., Töller, T.: Local similarity in RNA secondary structures. In: Computational Systems Bioinformatics (CSB), pp. 159–168 (2003)

    Google Scholar 

  11. Guignon, V., Chauve, C., Hamel, S.: An edit distance between RNA stem-loops. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 335–347. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Computer Science and Computational Biology. Press Syndicate of the University of Cambridge (1997)

    Google Scholar 

  13. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA structures. Journal of Computational Biology 9(2), 371–388 (2002)

    Article  Google Scholar 

  14. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 91–102. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Moore, P.B.: Structural motifs in RNA. Annual review of biochemistry 68, 287–300 (1999)

    Article  Google Scholar 

  16. Shasha, D., Zhang, K.: Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Smith, T.F., Waterman, M.S.: The identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)

    Article  Google Scholar 

  18. Wang, J., Zhang, K.: Identiffying consensus of trees through alignment. Information Sciences 126, 165–189 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zuker, M.: On finding all suboptimal foldings of an RNA molecule. Science 244(4900), 48–52 (1989)

    Article  MathSciNet  Google Scholar 

  20. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9(1), 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Backofen, R., Hermelin, D., Landau, G.M., Weimann, O. (2006). Local Alignment of RNA Sequences with Arbitrary Scoring Schemes. In: Lewenstein, M., Valiente, G. (eds) Combinatorial Pattern Matching. CPM 2006. Lecture Notes in Computer Science, vol 4009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780441_23

Download citation

  • DOI: https://doi.org/10.1007/11780441_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35455-0

  • Online ISBN: 978-3-540-35461-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics