
ar
X

iv
:c

s/
05

06
02

5v
1 

 [
cs

.I
T

] 
 8

 J
un

 2
00

5

Dynamic Asymmetric Communication

Travis Gagie

Department of Computer Science
University of Toronto

travis@cs.toronto.edu

STUDENT PAPER

Abstract. In Adler and Maggs’ asymmetric communication problem, a
server with high bandwidth tries to help clients with low bandwidth send
it messages. We give four new asymmetric communication protocols and
show they are robust with respect to changes in the messages’ distribu-
tion. Three of our protocols require only one round of communication
for each message.

1 Introduction

Internet users usually download more than they upload, and many technologies
have asymmetric bandwidth — greater from servers to clients than from clients
to servers. Adler and Maggs [1] considered whether a server can use its greater
bandwidth to help clients send it messages. They proved it can, assuming it
knows the messages’ distribution. We argue that assumption is often unwar-
ranted and, fortunately, unnecessary.

Suppose a number of clients want to send messages to a server; each client
only knows its own messages but, at any point, the server knows all the messages
it has already received. Adler and Maggs assumed the server, after receiving a
sample of messages, can accurately estimate the distribution of all the messages.
They proved it can use that knowledge to reduce the average number of bits each
of the remaining clients sends, to roughly the entropy of the distribution. Their
work has been improved and extended by several authors, whose results are
summarized in Table 1, and used in MIT’s Infranet anti-censorship project [5,6].
However, while implementing Infranet, Wang [17] found the messages’ distribu-
tion changed over time — the sample was unreliable.

In this paper we present and analyze four asymmetric communication proto-
cols that deal with changing distributions using techniques from data compres-
sion; our results are summarized in Table 2. In Section 2 we give a dynamic ver-
sion of Watkinson, Fich and Adler’s Bit-Efficient Split protocol [18]. We present
and analyze our TreeQuery and ListQuery protocols in Section 3. For the former,
we reduce the number of rounds to 1 at the cost of increasing the number of
bits the server sends and then, for the latter, we reduce the number the server
sends at the cost of increasing the number the clients send. Finally, in Section 4
we show how Bentley, Sleator, Tarjan and Wei’s Move-to-Front compression al-
gorithm [2] can be turned into an elegant asymmetric communication protocol,
which we call Move-to-Front-and-Truncate. Our protocols can be implemented
so that each party’s computation is proportional to the number of bits it sends
and receives.

http://arxiv.org/abs/cs/0506025v1


2 Travis Gagie

References Bits sent by Server Bits sent by Client Rounds

[1,13] 3(⌊logN⌋+ 1) 1.09H + 1 1.09H + 1
[1] O(logN) O(H + 1) O(1)
[18] (H + 2)(⌊logN⌋ + 1) H + 2 H + 2
[18] O(2kH logN) H + 2 (H + 1)/k + 2
[10] kH(⌊logN⌋ + 1) + 1 H logk−1 k + 1 H/ log k + 1

[3] (k + 2)(⌊logN⌋+ 1) H log(k+2)
log(k+2)−1

+ log(k + 2) H
log(k+2)−1

+ 1

Table 1. Suppose a server tries to help a client send it one ofN messages, chosen
according to a distribution with entropyH that is known to the server but not the
client. Adler and Maggs [1], Watkinson, Adler and Fich [18], Ghazizadeh, Ghodsi
and Saberi [10] and Bose, Krizanc, Langerman and Morin [3] gave protocols for
this problem, whose expected-case upper bounds appear above; the last three
protocols take a parameter k ≥ 1. This table is based on one given by Bose et

al.; we use some new notation.

Algorithm Bits sent by Server Bits sent by Client Rounds

DBES (H +O(1)) logN H + n logN
m

+O(1) H +O(1)

TreeQuery 2N − 1 H + n logN
m

+O(1) 1

ListQuery ⌊N1/k⌋(⌊logN⌋ + 1) kH + n logN
m

+O(1) 1

MFT ⌊N1/k⌋(⌊logN⌋ + 1) kH + n logN
m

+O(1) 1

Table 2. Suppose a server tries to help clients send it m messages whose dis-
tribution — known to neither the server nor the clients — has entropy H ; of N
possible distinct messages, n occur. We present four protocols for this problem
and prove upper bounds on the average cost of sending each message, which
appear above; the last two protocols take a parameter k > 1.

2 Dynamic Bit-Efficient Split

Let S = s1, . . . , sm be a sequence of messages some clients want to send a server.
Let N be the number of possible distinct messages and let n be the number that

occur in S. Let H =
∑

a∈S
#a(S)

m log m
#a(S) , where a ∈ S means message a occurs

in S, #a(S) is a’s frequency in S and log means log2; that is, H is the entropy
of the messages’ distribution, also called the 0th-order empirical entropy of S.

For the moment, assume the server knows the messages’ distribution be-
forehand. For Watkinson, Adler and Fich’s Bit-Efficient Split protocol [18], the
server uses a linear-time algorithm due to Mehlhorn [14] to build a leaf-oriented
binary search tree T on the distinct messages in S; the jth leaf of T stores the

jth lexicographically largest message a ∈ S, at depth at most
⌈

log m
#a(S)

⌉

+ 1;

each internal node has exactly two children (i.e., T is strictly binary) and stores
the lexicographically largest message in its left subtree.



Dynamic Asymmetric Communication 3

For each message si, the server starts at the root of T and descends to the
leaf v of T storing si. At each proper ancestor u of v, the server sends the client
the message a stored at u; if a ≥ u, then the client responds with 0 and the
server descends to u’s left child; if a > u, then the client responds with 1 and
the server descends to u’s right child.

Without loss of generality, assume messages are ⌊logN⌋ + 1 bits long; oth-
erwise, we use their indices in lexicographic order. Straightforward calculation
shows that, on average, each message takes fewer than H + 2 rounds, during
which the server sends fewer than (H +2)(⌊logN⌋+1) bits and the client sends
fewer than H + 2 bits.

Dynamic Bit-Efficient Split (DBES) does not require the server to know
the distribution beforehand. Next, we give a simple but slow implementation of
DBES; for each message, the server sends (H+O(1)) logN bits, on average, but
performs O(N) computations. It is possible to reduce the number of computa-
tions the server makes to O((H +1) logN), using a data structure developed for
dynamic alphabetic coding [9] and sorting low-entropy sequences [8].

For each message si, the server builds a leaf-oriented binary search tree Ti on
all possible distinct messages; the jth leaf of Ti stores the jth lexicographically

largest possible message a, at depth at most
⌈

log i
#a(s1,...,si−1)+1/N

⌉

+1. (Notice
∑

a #a(s1, . . . , si−1) = i − 1, so
∑

a

(

#a(s1, . . . , si−1) + 1/N
)

= i.)
The server starts at the root of Ti and descends to the leaf v storing si. If v is

high in the tree, the server descends as in Bit-Efficient Split; however, once the
server has descended below depth ⌈log i⌉+1, it knows the client’s message must
be one it has not seen before. In the latter case, the server signals the client by
sending the same message twice (notice it never does this for Bit-Efficient Split);
the client responds with si.

Our analysis relies on the following technical lemma (see [9]), a proof of which
appears as an appendix.

Lemma 1.

m
∑

i=1

log
i

max
(

#si(s1, . . . , si−1), 1
) ≤ (H +O(1))m .

Using Lemma 1, it is easy to bound the number of bits the server sends, the
number the clients send and the number of rounds in DBES.

Theorem 1. Suppose some clients send S to a server using DBES. On av-

erage, each message takes H + O(1) rounds, during which the server sends

(H +O(1)) logN bits and the client sends H + n logN
m +O(1) bits.

Proof. There is one round for each level the server descends in a tree. For each
message si, the server descends at most

max

(⌈

log
i

#si(s1, . . . , si−1)

⌉

+ 1, ⌈log i⌉+ 2

)

< log
i

max
(

#si(s1, . . . , si−1), 1
) + 2



4 Travis Gagie

times, by Lemma 1, there are H+O(1) rounds. The server sends ⌊logN⌋+1 bits
during each round. If si has occurred before, then the client sends 1 bit during
each round; otherwise, it sends 1 bit during each except the last, when it may
send ⌊logN⌋+ 1 bits. ⊓⊔

As an aside, we note DBES can easily be modified so the trees are only
based on the distribution of recent messages — a data compression technique
for increasing robustness. The server maintains a queue of messages; for each
message si, it builds a tree based on the distribution of messages in the queue;
after receiving si, it dequeues one message and enqueues si. Knuth [12] discusses
“sliding windows” such as this.

3 TreeQuery and ListQuery

Our next protocol, TreeQuery, is a simple modification of DBES. Instead of
querying each client repeatedly to find a path in a tree, the server encodes and
sends the whole tree; the client finds the path and sends back all of what would
have been its responses. To encode the tree, the server performs a preorder traver-
sal, recording each internal node as a 1 and each leaf as a 0. Since Mehlhorn’s
algorithm is linear, both the server and the client perform O(N) computations.

Theorem 2. Suppose some clients send S to a server using TreeQuery. For

each message, the server sends 2N − 1 bits and, on average, the client sends

H + n logN
m +O(1) bits.

Proof. For each message, the server encodes and sends a strict binary tree on N
leaves, which takes 2N − 1 bits; the number of bits the clients send is bounded
as in Theorem 1. ⊓⊔

As an aside, we note we can modify TreeQuery to slightly reduce the average
number of bits a client sends, at the cost of possibly again increasing the number
of bits the server sends. The server maintains a dynamic Huffman tree [11] and,
for each round, encodes and sends the tree’s current state; the client responds
with the codeword for its message; the server updates the Huffman tree as it
would in dynamic Huffman coding [12,16] . The server uses at most 2n− 1 bits
to encode the shape of the tree and at most n(⌊logN⌋ + 1) bits to encode the
assignment of messages to leaves; on average, the client sends about H + R +
n(⌊logN⌋+3)

m + 1 or H + R + n(⌊logN⌋+3)
m + 2 bits, depending on which dynamic

Huffman coding algorithm is used [16,15], where R is the redundancy achieved
by Huffman coding on S.

Adler and Maggs showed any protocol that uses a single round per message
must have a large bound on either the number of bits the server sends, or the
number the clients send. TreeQuery is an extreme case — the number of bits
the server sends is very large and the number of bits the clients send is nearly
minimum — but we can obtain tradeoffs with another protocol, ListQuery.

For ListQuery, the server keeps a list of the possible messages, in non-
increasing order by their frequency in the prefix of S it has received so far.



Dynamic Asymmetric Communication 5

It uses an data structure due to Knuth [12] for maintaining a list of integers
in non-increasing order, with O(1)-time increments. For each message si, the
server sends the client the first ⌊N1/k⌋ messages in the list, where k > 1 is a
parameter. If si is the rth in this sublist, the client responds with 1 followed by
the codeword for r in the delta code [4]; if si is not in this sublist, it responds
with 0 followed by the message.

Theorem 3. Suppose some clients send S to a server using ListQuery with

parameter k > 1. For each message, the server sends at most ⌊N1/k⌋(⌊logN⌋+1)
bits and, on average, the client sends kH + n logN

m +O(1) bits.

Proof. Suppose the client’s message si appears rth in the sublist it receives from
the server; then #si(s1, . . . , si−1) ≤ (i − 1)/r. The codeword for r in the delta
code has length ⌊log r⌋+2⌊log(log r+1)⌋+1 which, since k > 1, is bounded by
k log r +O(1). Thus, the client sends

k log
i− 1

#si(s1, . . . , si−1)
+O(1)

bits. Now suppose si does not appear in the sublist; then #si(s1, . . . , si−1) ≤
(i− 1)/N1/k. Thus, the client sends

min

(

k log
i− 1

#si(s1, . . . , si−1)
, logN

)

+O(1)

bits.
Therefore, by Lemma 1 and straightforward calculation, the average number

of bits a client sends is kH + n logN
m +O(1). ⊓⊔

As an aside, we note each tree or list the server sends can be viewed as encod-
ing an approximation of the messages’ distribution so far. From this perspective,
TreeQuery and ListQuery are applications of results in compressing probability
distributions [7].

4 Move-to-Front-and-Truncate

ListQuery is reminiscent of Bentley, Sleator, Tarjan and Wei’s Move-to-Front
(MTF) compression algorithm [2]. To encode S, MTF keeps a list of the possible
messages, in increasing order by the time since their last occurrence. For each
message si, if si is the rth message in the list, then MTF records the codeword
for r in the delta code and moves si to the front of the list. Bentley et al. proved
MTF encodes S using (H + o(H))m + n logN bits. In fact, if the messages’
distribution changes, MTF may use significantly fewer than H bits.

Inspired by MTF, we modify ListQuery to obtainMove-to-Front-and-Truncate

(MFT). The server keeps a list of the ⌊N1/k⌋ most recent distinct messages,
where k > 1 is a parameter, in increasing order by the time since their last
occurrence. For each message si, the server sends the client the list. If si is the



6 Travis Gagie

rth in the list, the client responds with 1 followed by the codeword for r in the
delta code [4]; if si is not in the list, it responds with 0 followed by the message.
The server then moves si to the front of the list and, if that lengthens the list,
deletes the last element.

Theorem 4. Suppose some clients send S to a server using MFT with param-

eter k > 1. For each message, the server sends ⌊N1/k⌋(⌊logN⌋+1) bits and, on
average, the client sends kH + n logN

m +O(1) bits.

Proof. Suppose the client’s message si is the first occurrence of that distinct
message a in S; then it responds with logN + O(1) bits. Now suppose si is
not the first occurrence of a and let sh be the preceding occurrence; the client
responds with log(i− h) + 2 log log(i− h) +O(1) bits; since k > 1, this number
is bounded by k log(i− h) +O(1).

Let si1 , . . . , si#a(S)
be the occurrences of a in S. The clients send a total of

logN +

#a(S)
∑

j=2

k log(ij − ij−1) +O(#a(S))

≤ logN +#a(S)k log
m

#a(S)
+O(#a(S))

bits to communicate these messages. Summing over the distinct elements in S,
the clients send kHm+n logN +O(m) bits in total; the average number of bits
a client sends is kH + n logN

m +O(1). ⊓⊔

5 Conclusions

We have shown Watkinson, Adler and Fich’s Bit-Efficient Split protocol [18] can
easily be extended to situations when the messages’ distribution changes over
time. We have also given three dynamic asymmetric communication protocols
which require only one round of communication for each message. We feel the last
of the three, MFT, is likely the most practical for situations when the number
of possible messages is not too large and the number of rounds must be as small
as possible.

We leave as future work investigating if other asymmetric communication
protocols can be made dynamic. We are particularly interested whether there is
a way to keep the number of bits the server sends small, while neither increasing
the number of rounds for each message to more than a constant nor increasing
any party’s computation to more than proportional to the number of bits it sends
and receives nor making assumptions about how the messages are generated.



Dynamic Asymmetric Communication 7

References

1. M. Adler and B. M. Maggs. Protocols for asymmetric communication channels.
Journal of Computer and System Sciences, 64(4):573–596, 2001.

2. J.L. Bentley, D.D. Sleator, R.E. Tarjan, and V.K. Wei. A locally adaptive data
compression scheme. Communications of the ACM, 29(4):320–330, 1986.

3. P. Bose, D. Krizanc, S. Langerman, and P. Morin. Asymmetric communication
protocols via hotlink assignments. Theory of Computing Systems, 36(6):655–661,
2003.

4. P. Elias. Universal codeword sets and representations of the integers. IEEE Trans-

actions on Information Theory, 21(2):194–203, 1975.
5. N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and D. Karger. Infranet:

Circumventing web censorship and surveillance. In Proceedings of the 11th USENIX

Security Symposium, pages 247–262, 2002.
6. N. Feamster, M. Balazinska, W. Wang, H. Balakrishnan, and D. Karger. Thwarting

web censorship with untrusted messenger discovery. In Proceedings of the 3rd

International Workshop on Privacy Enhancing Technologies, pages 125–140, 2003.
7. T. Gagie. Compressing probability distributions. Submitted.
8. T. Gagie. Sorting a low-entropy sequence. Submitted to this conference.
9. T. Gagie. Dynamic Shannon coding. In Proceedings of the 12th European Sympo-

sium on Algorithms, pages 359–370, 2004.
10. S. Ghazizadeh, M. Ghodsi, and A. Saberi. A new protocol for asymmetric com-

munication channels: Reaching the lower bounds. Scientia Iranica, 8(4):297–302,
2001.

11. D. A. Huffman. A method for the construction of minimum redundancy codes.
Proceedings of the IERE, 40(9):1098–1101, 1952.

12. D.E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6(2):163–180, 1985.
13. E.S. Laber and L.G. Holanda. Improved bounds for asymmetric communication

protocols. Information Processing Letters, 83(4):205–209, 2002.
14. K. Mehlhorn. A best possible bound for the weighted path length of binary search

trees. SIAM Journal on Computing, 6(2):235–239, 1977.
15. R.L. Milidiú, E.S. Laber, and A.A. Pessoa. Bounding the compression loss of the

FGK algorithm. Journal of Algorithms, 32(2):195–211, 1999.
16. J.S. Vitter. Design and analysis of dynamic Huffman codes. Journal of the ACM,

34(4):825–845, 1987.
17. W. Wang. Implementation and analysis of the Infranet anti-censorship system.

Master’s thesis, Massachusetts Institute of Technology, 2003.
18. J. Watkinson, M. Adler, and F. Fich. New protocols for asymmetric communi-

cation channels. In Proceedings of the 8th International Colloquium on Structural

Information and Communication Complexity, pages 337–350, 2001.



8 Travis Gagie

A Proof of Lemma 1

Lemma 1.

m
∑

i=1

log

(

i− 1

max
(

#si(s1, . . . , si−1), 1
)

)

≤ (H +O(1))m .

Proof. Let

C =

m
∑

i=1

log

(

i− 1

max
(

#si(s1, . . . , si−1), 1
)

)

< log(m!)−

m
∑

i=1

logmax
(

#si(s1, . . . , si−1), 1
)

.

If si is the jth occurrence of a in S, then

logmax
(

#si(s1, . . . , si−1), 1
)

=

{

0 if j = 1,
log(j − 1) if j > 1;

thus,

C < log(m!)−
∑

a∈S

#a(S)
∑

j=2

log(j − 1)

= log(m!)−
∑

a∈S

log(#a(S)!) +
∑

a∈S

log#a(S)

≤ log(m!)−
∑

a∈S

log(#a(S)!) + n log
m

n

= log(m!)−
∑

a∈S

log(#a(S)!) +O(m) .

By Stirling’s Formula,

x log x− x ln 2 < log(x!) ≤ x log x− x ln 2 +O(log x) ,

so

C ≤ m logm−m ln 2−
∑

a∈S

(

#a(S) log#a(S)−#a(S) ln 2
)

+O(m) .

Since
∑

a∈S #a(S) = m,

C ≤
∑

a∈S

#a(S) log
m

#a(S)
+O(m) = (H +O(1))m .

⊓⊔


	Dynamic Asymmetric Communication

