
The Linear Algebra of UTP

Bernhard Möller

Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany
moeller@informatik.uni-augsburg.de

Abstract. We show that the well-known algebra of matrices over a
semiring can be used to reason conveniently about predicates as used
in the Unifying Theories of Programming (UTP). This allows a simpli-
fied treatment of the designs of Hoare and He and the prescriptions of
Dunne. In addition we connect the matrix approach with the theory of
test and condition semirings and the modal operators diamond and box.
This allows direct re-use of the results and proof techniques of Kleene
algebra with tests for UTP as well as a connection to traditional wp/wlp
semantics. Finally, we show that matrices of predicate transformers al-
low an even more streamlined treatment and removal of a restricting
assumption on the underlying semirings.

1 Introduction

In the Unifying Theories of Programming (UTP) [5] the termination behaviour
of programs is modelled using two special variables ok and ok ′ that express
whether a program has been started and has terminated, respectively. Programs
are identified with predicates that relate the initial values v of variables with
their final values v′; moreover, ok and ok ′ may occur freely in such predicates.

The aim of the present paper is to present a calculationally more workable
form of the theory of predicates and designs that does no longer mention the
“unobservable” variables ok and ok ′; in fact it is even completely variable-free
and hence, in particular, does not need to work with substitutions. This makes
calculations not only simpler, but also safer. Truly hiding the unobservables is
important, since their unchecked use can lead to inconsistencies and paradoxes
such as the Dead Variable Paradox.

The remainder of this paper is organised as follows. Section 2 presents the
basic idea of the matrix model of UTP predicates, while Section 3 deals with the
special predicate class of UTP designs. In Section 4 we abstract from the concrete
case of predicates over program variables to that of matrices over semirings; next
to greater generality this yields a more compact notation. In Section 5 designs
are discussed in this more general setting, while Section 6 gives an algebraic
formulation of the healthiness conditions that distinguish designs. Designs were
introduced to model total correctness, in particular, non-miraculous programs.
Section 7 deals with another subclass of UTP predicates, the prescriptions, that
model the view of general correctness and may show miraculous behaviour. Sec-
tion 8 contains a more detailed treatment of conditions, i.e., predicates that only

depend on input values of variables, and the related concept of tests in semirings.
This allows direct re-use of the results and proof techniques of Kleene algebra
with tests for UTP. Sections 9 and 10 employ tests and conditions to establish
the link with traditional wlp/wp semantics. However, at a certain point the con-
nection is not as smooth as one may wish. This is remedied in Section 11 using
“higher-level” predicate transformers. Section 12 presents a brief conclusion.

To keep the overall structure of the paper clearer, some technicalities are
deferred an appendix.

2 A Matrix View of UTP

Our main aim is to get rid of explicit uses of the special variables ok and ok ′.
We achieve this by recording, for each combination of possible values of these
two variables, the residual predicate that depends only on the proper program
variables. To emphasise the dependence of a general UTP predicate on ok and
ok ′ we use the notation R(ok , ok ′). The basic idea of our matrix calculus is now
to represent R by a 2× 2-matrix. The rows are indexed by the values of ok and
the columns by those of ok ′; the entries are the residual predicates in which ok
and ok ′ do not occur, i.e.,

R =
(

R(false, false) R(false, true)
R(true, false) R(true, true)

)
.

In this view, a predicate P not depending on ok and ok ′ corresponds to the
constant matrix (

P P
P P

)
.

The matrix representation may seem a complication at first. But let us look
at sequential composition of UTP predicates, defined as

R ; S ⇔df ∃ ok0, v0 : R[ok0, v0/ok ′, v′] ∧ S[ok0, v0/ok , v] ,

where v (also with index or prime) stands for the list of all proper program
variables. We emphasise again the dependence on ok and ok ′. To this end we also
split the existential quantifier into the parts concerning the unobservables and
the proper variables; afterwards the proper part can be folded into a composition
of its own:

(R ; S)(ok , ok ′) ⇔df ∃ ok0 : ∃ v0 : R(ok , ok0)[v0/v′] ∧ S(ok0, ok ′)[v0/v]
⇔ ∃ ok0 : R(ok , ok0) ; S(ok0, ok ′) .

This now has a convenient matrix interpretation. As in graph algorithms such
as Warshall’s, we can view ∃ ok0 as summation over all possible values of ok0

and ; as elementwise multiplication. With this interpretation the above formula
gives just the entries for the product of the matrices R and S, i.e., R ;S = R ·S.

2

The advantage of this view is that composition can now be treated in a
completely component-free manner and existential quantification and substitu-
tion disappear. Moreover, the pseudo-variables ok and ok ′ need no longer be
mentioned explicitly at all. If for some reason we need to reason about them
explicitly, we can represent them as

ok =
(

false false
true true

)
, ok ′ =

(
false true
false true

)
.

Next to composition, the matrix algebra supports the Boolean operations:
negation, conjunction and disjunction all are defined componentwise. Setting
R ⇒ S ⇔df R ∨ S = S, also implication works componentwise.

3 Designs

As a subclass of the general UTP predicates, Hoare and He introduce designs,
that reflect an assumption/commitment style of specification, of the form

P ` Q ⇔df ok ∧ P ⇒ ok ′ ∧ Q ,

where ok and ok ′ are not allowed to occur in P or Q. The informal meaning is:
if a computation allowed by the design has started in a state that satisfies the
precondition P it will eventually terminate in a state that satisfies the postcon-
dition Q. By plugging in the possible combinations of the values of ok and ok ′

we obtain the matrix representation

P ` Q =
(

true true
P P ∨ Q

)
. (1)

To show a first example of the matrix calculus at work, let us derive this repre-
sentation algebraically:

ok ∧ P ⇒ ok ′ ∧ Q

=
(

false false
true true

)
∧

(
P P
P P

)
⇒

(
false true
false true

)
∧

(
Q Q
Q Q

)
=

(
false false
P P

)
∨

(
false Q
false Q

)
=

(
true true
P P

)
∨

(
false Q
false Q

)
=

(
true true
P P ∨ Q

)
.

We defer further calculations till we obtain a more compact notation in the
next section.

3

4 Abstracting to Semirings

Again, as in certain graph algorithms, it is useful to base the treatment not on
the concrete model of matrices over predicates but on matrices over semirings.
Semirings provide the basic operations of choice and sequential composition un-
der the notations + and · as well as a basic set of algebraic laws for these. A
weak semiring is a structure (S, +, ·, 0, 1) such that

– (S, +, 0) is a commutative monoid,
– (S, ·, 1) is a monoid,
– operation · distributes over + in both arguments
– and 0 is a left annihilator, i.e., 0 · a = 0.

A semiring is a weak semiring in which 0 is also a right annihilator, i.e., a·0 = 0.
Sometimes for emphasis we write “full semiring” instead of just “semiring”.

A (weak) semiring is idempotent if + is idempotent, i.e., a + a = a. In this
case the relation a ≤ b ⇔df a+ b = b is a partial order, called the natural order
on S. It has 0 as its least element. Moreover, + and · are isotone w.r.t. ≤ and
a + b is the least upper bound or join of a and b w.r.t. ≤.

A (weak) idempotent semiring is Boolean if it also has a greatest-lower-bound
or meet operation ∧ , such that + and ∧ distribute over each other, and a
complement operation that satisfies de Morgan’s laws as well as a∧ a = 0 and
a + a = >, where > = 0 is the greatest element. In other words, a Boolean
semiring is a Boolean algebra with a sequential composition operation. To save
parentheses we use the convention that ∧ binds tighter than + but equally tight
as · does. We will freely use the implication operator a → b =df a + b and its
standard laws. We use ∧ rather than u for the meet to avoid a clash of notation
between semiring theory and the theory of UTP. To disambiguate the formulas
we use a larger ∧ for meta-logical conjunction.

An important property is multiplicative idempotence of >:

> · > = > . (2)

The direction (≤) is trivial, since > is the greatest element. The converse direc-
tion follows by neutrality and isotonicity: > = > · 1 ≤ > · >.

From now on we assume S to be a full idempotent Boolean semiring.
In the previous section we have already used the Boolean semiring of UTP

predicates with ; as composition. Another important semiring is REL(M), the
algebra of binary relations under union and composition over a set M , of which
the predicates form a special instance.

Many other examples exist but will not be used here except for the ma-
trix semiring. Let (S, +, ·, 0, 1) be a semiring and M be a finite set. Then
the set SM×M of functions from M × M to S can be viewed as the set of
|M | × |M | matrices with indices in M and elements in S. Consider the struc-
ture MAT(M,S) = (SM×M ,+, ·,0,1) where + and · are the usual operations of
matrix addition and multiplication, and 0 and 1 are the zero and unit matrices.
Then MAT(M,S) again forms a semiring, the matrix semiring over M and S.

4

MAT(M,S) is idempotent if S is. In this case, the natural order is the compo-
nentwise one. If S is Boolean, so is MAT(M,S), with componentwise meet.

Taking S to be the two-element Boolean semiring of truth values yields the
usual Boolean matrix representation of REL(M) as MAT(M,S) in terms of ad-
jacency matrices.

For abstractly representing predicates that depend on two Boolean variables
ok and ok ′ we use 2 × 2-matrices with elements from a Boolean semiring S as
entries. The element 1 represents the predicate skip ⇔df v = v′. We will use
the identifiers false, skip and true instead of 0, 1 and > when appropriate.

For convenience we define

ok =df

(
0 0
> >

)
, ok ′ =df

(
0 >
0 >

)
.

5 The Algebra of Designs

Generalising formula (1), we set for elements a, b ∈ S of a Boolean semiring S

a ` b =df

(
> >
a a + b

)
, (3)

with + now playing the role of disjunction or choice.
We want to calculate the behaviour of designs under + and ·. First,

(a ` b) + (c ` d) =
(
> >
a a + b

)
+

(
> >
c c + d

)
=(

> >
a + c a + b + c + d

)
=

(
> >

(c∧ a) (c∧ a) + b + d

)
= (c∧ a) ` (b + d) .

In particular, the design > ` 0, which is the same as ok , is a neutral element
w.r.t. +. Moreover, we obtain

(a ` b) ≤ (c ` d) ⇔ (a ` b)+(c ` d) = (c ` d) ⇔ (c ≤ a) ∧ (c∧ b ≤ d) (4)

and

(a ` b) = (c ` d) ⇔ a = c ∧ a + b = c + d ⇔ a = c ∧ (a∧ b = c∧ d) . (5)

For composition we obtain, using (2),

(a ` b) · (c ` d)

=
(
> >
a a + b

)
·
(
> >
c c + d

)
=

(
> · >+> · c > · >+> · (c + d)

a · >+ (a + b) · c a · >+ (a + b) · (c + d)

)
=

(
> >

a · >+ a · c + b · c a · >+ a · (c + d) + b · c + b · d

)

5

=
(

> >
a · >+ b · c a · >+ b · c + b · d

)
=

(> >
a · >∧ b · c a · >∧ b · c + b · d

)
= (a · >∧ b · c) ` (b · d) .

Summarised,
(a ` b) · (c ` d) = (a · >∧ b · c) ` (b · d) . (6)

In particular, within the set of designs both ok = > ` 0 and true =df

(
> >
> >

)
are left zeros and II =df > ` 1 is a left-neutral element w.r.t. composition.

6 Healthiness Conditions

In [5] the UTP predicates are classified according to certain healthiness condi-
tions. In matrix terminology, designs are characterised by two properties:

(H1) The first row must be constantly >.
(H2) Both rows must be increasing w.r.t ≤.

Clearly every design of the form (3) satisfies (H1) and (H2). Conversely, if a ≤ b

then
(
> >
a b

)
=

(
> >
a a + b

)
= a ` b, so that

(
> >
a b

)
is a design.

Clearly, matrix A satisfies (H1) iff A =
(
> >
0 0

)
+ A = ok → A (see also

Theorem 3.1.4 in [5]).
This type of characterisation by a fixpoint property is particularly useful if

the underlying Boolean semiring (and hence the matrix semiring over it) is even
a complete lattice, since Tarski’s fixpoint theorem then implies that the set of
all (H1) predicates forms a complete sublattice.

Next we show how the fixpoint characterisation of (H2) given in Example
4.1.21(1) of [5] can be derived in a systematic way in our matrix calculus. First
we observe that(

a b
c d

)
satisfies (H2) ⇔ a+b = b ∧ c+d = d ⇔

(
a b
c d

)
=

(
a a + b
c c + d

)
.

So if we manage to generate the latter matrix from the original one by an isotone
function defined in terms of the algebra we are done.

In linear algebra this type of transformation is known as a shearing and can
be described by the multiplication(

a a + b
c c + d

)
=

(
a b
c d

)
·
(

1 1
0 1

)
.

The shearing matrix can be decomposed as follows:(
1 1
0 1

)
=

(
> >
0 >

)
∧

(
1 1
1 1

)
= (> ` >)∧

(
1 1
1 1

)
.

Therefore we have the following result.

6

Lemma 6.1 A satisfies (H2) iff A = A ·B where

B = (> ` >)∧
(

1 1
1 1

)
.

This is indeed a fixpoint characterisation with an isotone generating func-
tion, and so the set of all (H2)-matrices forms a complete lattice (provided the
underlying semiring S is complete).

The further healthiness conditions (H3) and (H4) serve to characterise the
designs for which > ` 0 and > ` 1 are also a right zero and a right-neutral
element w.r.t. ·, respectively. They are directly given as algebraic conditions:

(H3) A · II = A.
(H4) A · true = true.

By distributivity and associativity it is immediate that each of the classes (H3)
and (H4) is closed under addition and composition.

We only work these properties out for the case where A is a design. Here it
is easier to work directly with the matrices than going through the composition
formula for designs. For (H3) we calculate

(a ` b) · II =
(
> >
a a + b

)
·
(
> >
0 1

)
=

(
> >

a · > a · >+ a + b

)
,

so that a ` b satisfies (H3) iff a · > = a ⇔ a · > ≤ a.
This means that a has to be a right ideal (in UTP also known as a condition).

In the semiring REL of relations this is equivalent to a itself being a right ideal,
since by Schröder’s law

a · > ≤ a ⇔ a · >̆ ≤ a ⇔ a · > ≤ a .

In general semirings this need not be the case.
Following [3], we call matrices satisfying (H3) normal. For normal designs we

obtain the simplified composition formula (see also Theorem 3.2.4 in [5])

(a ` b) · (c ` d) = (a∧ b · c) ` (b · d) . (7)

Various authors have noticed that (H3) implies (H2). In matrix algebra this
can be verified as follows:(

a b
c d

)
· II =

(
a · > a · >+ b
c · > c · >+ d

)
.

The matrix on the right-hand side clearly is (H2). So if A is (H3), i.e., if A = A·II,
it is also (H2).

For (H4) we calculate

(a ` b) · true =
(
> >
a a + b

)
·
(
> >
> >

)
=

(
> >

(a + b) · > (a + b) · >

)
,

7

so that a ` b satisfies (H4) iff

(a + b) · > = > .

Matrices satisfying (H4) are called feasible in [5].
Let ND(S) be the set of all normal designs over S. Collecting the stated

algebraic properties, we obtain

Lemma 6.2 The structure (ND(S),+, ·, ok, II) is a weak semiring.

There is no analogous result for the feasible normal designs, since there is not
even a neutral element w.r.t. addition. This can be shown as follows. A neutral
element t ` a would have to be least w.r.t. the natural semiring order, i.e., would
need to satisfy, for all s, t,

t ` a ≤ s ` b ⇔ s ≤ t ∧ s∧ a ≤ b .

Setting s = > we obtain t = > and the residual requirement that a ≤ b for all
b. So the only candidate would be > ` 0 = ok which, however, is not feasible.

7 The Algebra of Prescriptions

Whereas (feasible) designs reflect the semantic view of total correctness, in [3]
Dunne models the view of general correctness as introduced in [11–13] that also
allows miraculous program behaviour. To this end Dunne introduces prescrip-
tions of the form

P `̀ Q ⇔df (ok ∧ P ⇒ ok ′) ∧ (ok ′ ⇒ Q ∧ ok) .

By investigating the four possible combinations of the values of ok and ok ′, or
by a calculation analogous to the one for designs in Section 2, one obtains the
matrix representation

P `̀ Q ⇔
(

true false
P Q

)
.

Since the first row of our matrices corresponds to the case ok = false, this
yields immediately Dunne’s healthiness condition (HP): A matrix A represents
a prescription iff its first row coincides with that of ok ′.

The generalisation to Boolean semirings reads

a `̀ b =df

(
> 0
a b

)
.

From this it is immediate that, unlike designs, prescriptions can uniquely be
decomposed into their constituents:

(a `̀ b) = (c `̀ d) ⇔ a = c ∧ b = d . (8)

8

Moreover, since the natural order on matrices works componentwise,

(a `̀ b) ≤ (c `̀ d) ⇔ c ≤ a ∧ b ≤ d . (9)

Let us now see how addition and composition of prescriptions work out. First,

(a `̀ b) + (c `̀ d) =
(
> 0
a b

)
+

(
> 0
c d

)
=

(
> 0

a∧ c b + d

)
= a∧ c `̀ b + d .

Second, since we assume S to be a full semiring,

(a `̀ b) · (c `̀ d) =
(
> 0
a b

)
·
(
> 0
c d

)
=

(
> · >+ 0 · c > · 0 + 0 · d
a · >+ b · c a · 0 + b · d

)
=

(> 0
a · >∧ b · c b · d

)
= (a · >∧ b · c) `̀ (b · d) .

Summarised,
(a `̀ b) · (c `̀ d) = (a · >∧ b · c) `̀ (b · d) . (10)

So, in particular, the set of prescriptions is closed under choice and composition.
The formulas for addition and composition coincide with the ones for designs.

The following prescriptions are of particular importance (see Dunne [3] and
Nelson [13]):

loop =df 0 `̀ 0 =
(
> 0
> 0

)
= ok ′ ,

fail =df > `̀ 0 =
(
> 0
0 0

)
= ok ∧ ok ′ ,

chaos =df 0 `̀ > =
(
> 0
> >

)
= ok ′ → ok ,

havoc =df > `̀ > =
(
> 0
0 >

)
= ok ↔ ok ′ ,

skip =df > `̀ 1 =
(
> 0
0 1

)
.

Since the composition rule for prescriptions is the same as for designs, it is clear
that skip (which corresponds to the design II) is a left identity and fail (which
corresponds to the design ok) is a left annihilator w.r.t. composition. Moreover,
fail is an identity w.r.t. addition.

Analogously to the case of designs, the normal and feasible prescriptions are
the ones for which skip is also a right identity and fail is also a right annihilator
w.r.t. composition. The componentwise algebraic transcriptions of these notions
are the same as for designs.

Let NP(S) be the set of normal prescriptions over a semiring S. Then we
have

Lemma 7.1 The structure (NP(S),+, ·, fail, skip) is a weak semiring.

9

The identity in algebraic structure is used in the companion paper [4] to give
a uniform treatment of normal designs t ` a and normal prescriptions t `̀ a as
pairs (a, t) consisting of a transition part a and a termination condition part t.

For normal prescriptions we obtain again a simplified composition formula
that is isomorphic to (7):

(a `̀ b) · (c `̀ d) = (a∧ b · c) `̀ (b · d) . (11)

Finally, we want to relate designs and prescriptions. Following [3], we define

relax (a `̀ b) =df a `̀ (a + b) =
(
> 0
a a + b

)
.

Except for the 0 entry this is the representation of a design. We can form a
proper design representation by adding one of the matrices(

0 >
0 0

)
= ok ∧ ok ′ = chaos or

(
> >
0 0

)
= ok .

This is summarised in part 1. of the following lemma.

Lemma 7.2 1. a ` b = chaos → relax (a `̀ b) = ok → relax (a `̀ b).
2. relax (a `̀ b) = (a ` b)∧ chaos = (a ` b)∧ ok.

Part 2. follows from part 1. by straightforward Boolean algebra.

8 Conditions, Tests and Iteration

As a preparation for our treatment of predicate transformers in the next section,
we now show how to algebraically model state predicates that describe sets of
states. To keep the framework uniform, state predicates have to be embedded
into the general set of predicates or relations. If M is the set of all states then
in REL(M) there are three basic methods of representing state predicates, i.e.,
to characterise subsets N ⊆ M , as special predicates or relations:

1. Use predicates that do not depend on the output values of variables, corre-
sponding to right-universal relations N ×M . In a semiring with > they are
abstractly characterised as right ideals, i.e., as elements a with a ·> = a.

2. Use predicates that do not depend on the input values of variables, corre-
sponding to left-universal relations M × N . In a semiring with > they are
abstractly characterised as left ideals, i.e., as elements a with >· a = a.

3. Use sub-predicates of skip corresponding to partial identity relations of the
form {(s, s) : s ∈ N}. In an idempotent semiring they are abstractly charac-
terised as elements a with a ≤ 1.

Each of these approaches has its advantages and disadvantages. Classical
UTP uses variant 1, while variant 3 is used in test and modal semirings. Since
we are going to import some results from the third framework, we will show some
connections between variants 1 and 3 (we do not need variant 2 in the present
paper, but the treatment for it would be symmetrical). We only give a summary
of the necessary theory; a more thorough treatment can be found in [4].

10

1. A (weak) condition semiring is a pair (S, cond(S)), where S is a (weak)
idempotent semiring with a greatest element > and cond(S) ⊆ S is a Boolean
subalgebra of the set of right ideals of S with 0,> ∈ cond(S) and such
that the join operation in cond(S) coincides with + and for every element
a ∈ S and every condition t ∈ cond(S) the meet t∧ a, called the input
restriction of a by t, exists and satisfies (t + u)∧ a = (t∧ a) + (u∧ a) as well
as t∧ (a + b) = t∧ a + t∧ b. We have the correspondences false ↔ 0 and
true ↔ >. The negation of t, i.e., its complement relative to > in cond(S), is
denoted by t. An example is again REL(M), with the right-universal relations
as conditions.

2. A (weak) test semiring [8] is a pair (S, test(S)), where S is a (weak) idem-
potent semiring and test(S) ⊆ [0, 1] is a Boolean subalgebra of the interval
[0, 1] of S such that 0, 1 ∈ test(S) and join and meet in test(S) coincide with
+ and · . The negation of test p, i.e., its complement relative to 1 in test(S),
is denoted by ¬p. We have the correspondences false ↔ 0 and true ↔ 1. In
a test semiring, for p ∈ test(S) and a ∈ S, the products p · a and a · p are
the input and output restrictions of a to those pre-/post-states that satisfy
p. An important example is REL(M) with the partial identities as tests.

We will use the letters a, b, c, . . . for semiring elements, p, q, r, . . . for tests
and s, t, u, . . . for conditions. It should be noted that 0 and > are always right
(and left) ideals. For 0 this follows from its left annihilation property, while for
> this is property (2).

By associativity of · and property (2) one has (p ·>) ·> = p · (>·>) = p ·>,
i.e., the element p ·> is indeed a right ideal. In fact it is easy to show that the
right ideals in a semiring S with > are exactly the products a ·> for a ∈ S.

It can be shown [4] that cond(S) and the set CS(S) =df {t∧ 1 : t ∈ cond(S)}
of condition subidentities are order-isomorphic. Hence every (weak) condition
semiring S can be made into a test (weak) semiring using test(S) =df CS(S).

To prepare an example of the use of tests we add an operator for finite
iteration. A left-inductive Kleene algebra[7] is a structure (S, ∗) such that S
is an idempotent semiring and the star operation ∗ : S → S satisfies, for all
a, b, c ∈ S, the left unfold and left induction axioms

1 + a · a∗ ≤ a∗ , b + a · c ≤ c ⇒ a∗b ≤ c .

By these axioms, a∗ · b is the least solution of the fixpoint equation x = b+ a ·x.
In particular, the star operator is isotone w.r.t. the natural semiring order. In [4]
we have shown that the design and prescription semirings can be made into
left-inductive Kleene algebras (and even ω-algebras with infinite iteration aω).

Assume now a test semiring S that also is a left-inductive Kleene algebra.
For test p and arbitrary element a one can define the loop “while p do a” in
UTP notation as [8]

p ∗ a =df (p · a)∗ · ¬p .

The general unfold and induction axioms yield the laws

¬p + (p · a)∗ · (p ∗ a) ≤ p ∗ a (uf) , ¬p + (p · a) · c ≤ c ⇒ t ∗ a ≤ c (in) .

11

With them we show the loop merge law L5 in Section 5.5. of [5]:

(p ∗ a) · ((p + q) ∗ a) = ((p + q) ∗ a) .

We show this as two inequations. Abbreviate the right hand side by d. For (≤)
we have by ¬p ≤ 1, isotony of star and (uf), unfold

(p · a)∗ · ¬p · d ≤ (p · a)∗ · d ≤ ((p + q) · a)∗ · d ≤ d .

The direction (≥) reduces by (in), Boolean algebra (p + q = p + ¬p · q) and
distributivity to the three inequations

¬(p+q) ≤ (p∗a) ·d , p ·a ·(p∗a) ·d ≤ (p∗a) ·d , ¬p ·q ·a ·(p∗a) ·d ≤ (p∗a) ·d .

The first of these holds by (uf) twice, since by Boolean algebra ¬(p + q) =
¬p · ¬(p + q). The second one follows directly from (uf). For the third one we
have by the above inequation (≤) and (uf)

¬p · q · a · (p ∗ a) · d ≤ ¬p · q · a · d ≤ (p ∗ a) · (p + q) · a · d ≤ (p ∗ a) · d ≤ d ,

which finishes the proof.
Since we will show below that designs and prescriptions form condition and

test semirings, this general result also applies to them, showing the mentioned
law L5. Unfortunately, an analogous treatment using conditions instead of tests
is a bit more cumbersome.

9 Domain and Predicate Transformers

Next we want to characterise the domain of a semiring element a, i.e., the set of
states from which corresponding output states may be reached under a. Again,
such sets can be modelled by tests or by conditions.

A simple equational axiomatisation for the case of test semirings has been
presented in [2]. We repeat it and give a corresponding axiomatisation for the
case of condition semirings in parallel.

The domain operations are

p : S → test(S) pp : S → cond(S)

with the respective axioms

a ≤ pa · a (td1) a ≤ ppa∧ a (cd1)
p(p · a) ≤ p (td2) pp(t∧ a) ≤ t (cd2)
p(a · pb) ≤ p(a · b) (td3) pp(a · ppb) ≤ pp(a · b) (cd3)

According to [2] (td1) ∧ (td2) is equivalent to

pa ≤ p ⇔ a ≤ p · a . (12)

12

By analogous reasoning we obtain that (cd1) ∧ (cd2) is equivalent to

ppa ≤ t ⇔ a ≤ t∧ a ⇔ a ≤ t . (GCc)

This property has the form of a Galois connection which corresponds to the one
for the case of a test semiring with > (see e.g. [1] and again [2]):

pa ≤ p ⇔ a ≤ p ·> . (GCt)

By the Galois connections, the domain operations are unique if they exist.
Moreover, one obtains the following consequences.

Lemma 9.1.

1. pa ≤ 0 ⇔ a ≤ 0 , ppa ≤ 0 ⇔ a ≤ 0 .

2. p(a + b) = pa + pb , pp(a + b) = ppa + ppb .
3. a ≤ b ⇒ pa ≤ pb , a ≤ b ⇒ ppa ≤ ppb .
4. pp = p , ppt = t .

5. p(pa) = pa , pp(ppa) = ppa .
6. a = pa · a , a = ppa∧ a .

7. p(p · a) = p · pa , pp(t∧ a) = t∧ ppa .

8. p(a · b) ≤ p(a · pb) , pp(a · b) ≤ pp(a · ppb) .

9. p(a ·>) = pa , pp(a ·>) = ppa .

10. p(a · b) ≤ pa , pp(a · b) ≤ ppa .
11. p1 = 1 , pp1 = > .

For the proofs in the condition semiring case see [4].
With the help of domain we now define predicate transformers such as wlp

and wp that map sets of states to sets of states, both denoted by state predicates.
This will allow a more perspicuous representation of the terms involved in the
formulas for composition of designs and prescriptions and later the introduction
of wlp and wp in the semirings of designs and prescriptions.

The forward modal operators diamond and box are given by

〈a〉p =df
p(a · p) , 〈〈a〉〉t =df

pp(a · t) ,

[a]p =df ¬〈a〉¬p , [[a]]t =df 〈〈a〉〉t .

Thus 〈a〉p/〈〈a〉〉t characterise those states for which some a-successor state sat-
isfies p/t, whereas [a]p/[[a]]t characterise those states for which all a-successor
states satisfy p/t. The box operators are the abstract counterparts of the wlp
operator [13].

From these definitions the following properties are straightforward [2, 4].

〈0〉p =0 , 〈〈0〉〉t =0 ,
〈a〉(p + q) = 〈a〉p + 〈a〉q , 〈〈a〉〉(t + u) = 〈〈a〉〉t + 〈〈a〉〉u ,
〈a + b〉p = 〈a〉p + 〈b〉p , 〈〈a + b〉〉t = 〈〈a〉〉t + 〈〈b〉〉t ,
〈p · a〉q = p · 〈a〉q , 〈〈t∧ a〉〉u = t∧ 〈〈a〉〉u ,
〈1〉p = p , 〈〈1〉〉t = t ,

〈a · b〉p = 〈a〉〈b〉p , 〈〈a · b〉〉t = 〈〈a〉〉〈〈b〉〉t .

13

Hence 〈a〉 and 〈〈a〉〉 are isotone. Moreover, both diamonds are isotone in their
first arguments. If the underlying semiring is full, we obtain additionally

〈a〉0 = 0 〈〈a〉〉0 = 0

The box operators enjoy dual laws which we omit, since we will mainly work
with diamonds. Because of the importance of modal operators, we call a (weak)
test or condition semiring with domain modal.

Now we study the special case of the relation semiring. A (weak) semiring S
with > is ideal-closed, briefly id-closed, if its set RI(S) of right ideals is a Boolean
algebra. The relation semiring REL(M) is id-closed, whereas the semiring of
formal languages over an alphabet, under union and concatenation, is not.

We quote the following result from [4]:

Lemma 9.1 For an id-closed weak semiring S, the pair (S, RI(S)) can uniquely
be made into a weak domain semiring by setting

ppa =df a · > .

Hence over an id-closed semiring

〈〈a〉〉t = a · t , [[a]]t = a · t .

It should be noted that in [5] the notation a wp t is used for [[a]]t, although
really it ought to be a wlp t. We will give a proper definition of wp for designs
and prescriptions in the next section.

With the above representation of [[a]]t in id-closed weak semirings we see
that the subterm b · c occurring in the formulas (6) and (10) for composition of
designs and prescriptions can be folded into [[b]]c. In the case of a normal design or
description, by (7) and (11) the antecedent of the composition therefore simplifies
to a∧ [[b]]c.

10 Predicate Transformers for Matrices

Since we have seen that normal designs and prescriptions form weak semirings,
we can try to even make them into weak modal semirings. To this end we first
need to find out what the potential conditions or tests are in each case. Since,
as stated, the condition and test based approaches are isomorphic, we treat only
the condition case in the main text, since it is the one used in UTP, and defer
the test case to the Appendix.

First we determine the conditions in the design semiring. The greatest (nor-
mal) design and also the greatest matrix overall is true. So matrix A is an ideal
iff A · true = A. Now(

a b
c d

)
·
(
> >
> >

)
=

(
(a + b) · > (a + b) · >
(c + d) · > (c + d) · >

)
=

(
a b
c d

)

14

iff
a = (a + b) · > = b ∧ c = (c + d) · > = d .

Hence the ideals are exactly the row-constant matrices with ideals of S as entries.
Therefore a normal design t ` a is an ideal iff t+a = t, i.e., iff a ≤ t. Such a row-

constant design
(
> >
t t

)
has the relative complement

(
> >
t t

)
within the

set of normal designs. Moreover, such a matrix corresponds also to the simpler
design t ` 0. The order on the ideals is characterised by s ` 0 ≤ t ` 0 ⇔ s ≤ t.
Therefore we have

Theorem 10.1 If (S, cond(S)) is a weak condition semiring, then

(NP(S), {t ` 0 : t ∈ cond(S)})

is weak condition semiring. If cond(S) = RI(S) then it is id-closed.
If (S, cond(S)) is a modal semiring then NP(S) is a weak modal semiring with
domain operation pp(t ` a) = (t∧ ppa) ` 0.

Proof. The first claim is immediate from the above remarks. For the second
claim, we work out what (GCc) means for normal designs: By (4), shunting,
lattice algebra, (GCc), 2. and 4. of Lemma 9.1, and Boolean algebra:

(t ` a) ≤ (s ` 0)
⇔ s ≤ t ∧ s∧ a ≤ 0
⇔ t ≤ s ∧ a ≤ s
⇔ t + a ≤ s

⇔ pp(t + a) ≤ s
⇔ t + ppa ≤ s

⇔ s ≤ t∧ ppa .

Now we check (cd3). By definition of pp, (5), (7), definition of pp, Boolean algebra
and distributivity, since a ·ppb ≤ pp(a ·ppb) and hence pp(a · ppb) ≤ (a · ppb), by modality,
definition of pp, and (7):

pp((s ` a) · pp(t ` b))

= pp((s ` a) · (t∧ ppb ` 0))

= pp((s ` a) · (t∧ ppb ` ppb))

=
pp
(s∧ a · t∧ ppb ` a · ppb))

= (s∧ a · t∧ ppb∧ pp(a · ppb)) ` 0

= (s∧ a · t∧ a · ppb∧ pp(a · ppb)) ` 0

= (s∧ a · t∧ pp(a · ppb)) ` 0
= (s∧ a · t∧ pp(a · b)) ` 0
= pp(s∧ a · t ` a · b)
= pp((s ` a) · (t ` b)) .

15

ut

Let us work out the box operator for the case of a modal underlying S: By
the definitions, complement of ideal, (5), (7), definition, since a · s ≤ pp(a · s),
hence pp(a · s) ≤ a · s, definition,

[[t ` a]](s ` 0)

= pp((t ` a) · s ` 0))
= pp((t ` a) · (s ` 0))
= pp((t ` a) · (s ` s))

= pp(t∧ a · s) ` a · s)
= t∧ a · s∧ pp(a · s) ` 0

= t∧ pp(a · s) ` 0
= t∧ [[a]]s ` 0 .

This corresponds precisely to the definition of the wp operator in [13]. That wp
is just the wlp of another semiring seems first to have been noted in [10] for a
test-based approach.

For the case of prescriptions things work much in the same way. Again we
have t `̀ a ≤ skip ⇔ t = > ∧ a ≤ 1. The ideals have to satisfy (t `̀ a) · chaos =
(t `̀ a), which works out to

a · > = a ∧ a ≤ t .

Hence we can choose the sets of tests and conditions as in the case of designs
and obtain a (non-id-closed) weak modal semiring NP(S).

11 Matrices of Predicate Transformers

In this section we show that the matrix calculus can be extended to predicate
transformers, which will allow a lifting of the results of Sections 5 and 7 to
predicate transformer algebras. Doing this, we obtain the simplified composition
formulas for normal designs with less complicated calculations, while at the same
time removing the need for the underlying semiring to be id-closed.

First we show that the diamond operators over a condition semiring form a
condition semiring again.

Lemma 11.1 Set, for U ⊆ S in a weak modal condition semiring (S, cond(S)),

〈〈U〉〉 =df {〈〈a〉〉 : a ∈ U} .

1. The structure 〈〈S〉〉 =df (〈〈S〉〉,+, ◦, 〈〈0〉〉, 〈〈1〉〉) is a (weak) semiring with great-
est element 〈〈>〉〉 under the operations

〈〈a〉〉+ 〈〈b〉〉 =df 〈〈a + b〉〉 , 〈〈a〉〉 ◦ 〈〈b〉〉 =df 〈〈a · b〉〉 .

16

2. For s, t ∈ cond(S) we have 〈〈t∧u〉〉 = 〈〈t〉〉∧ 〈〈u〉〉, where the meet of diamonds
is defined pointwise.

3. For t ∈ cond(S) we have 〈〈t〉〉 = 〈〈t〉〉.
4. {〈〈a〉〉 : a ∈ RI(S)} ⊆ RI(〈〈S〉〉).

Proof. 1. This is immediate from the diamond properties.
2. We calculate, for u ∈ cond(S), using Lemma 9.1.7,

〈〈s∧ t〉〉u = s∧ t∧ 〈〈>〉〉u = s∧ 〈〈>〉〉u∧ t∧ 〈〈>〉〉u = 〈〈s〉〉u∧ 〈〈t〉〉u .

3. First, 〈〈t〉〉+ 〈〈t〉〉 = 〈〈t+ t〉〉 = 〈〈>〉〉. Second, by 2., 〈〈t〉〉∧ 〈〈t〉〉 = 〈〈t∧ t〉〉 = 〈〈0〉〉.
The laws of involution and de Morgan are also easily checked.

4. a ∈ RI(S) ⇔ a = a · > ⇒ 〈〈a〉〉 = 〈〈a · >〉〉 = 〈〈a〉〉 ◦ 〈〈>〉〉. ut

In the remainder we will mostly omit the composition operator ◦.
We now define a property that relaxes the one of id-closedness (see Section 9).

We call a (weak) modal condition semiring S Tarskian if it satisfies

〈〈>〉〉u = > ⇐ u ∈ cond(S)\{0} . (MTARt)

By Lemma 9.1.9, (MTARt) is equivalent to

pp(> · u · >) = > ⇐ u ∈ cond(S)\{0} .

This is a modal analogue of the Tarski rule > · a · > = > ⇐ a 6= 0 of the
relational calculus, whence our terminology.

Property (MTARt) holds in REL(M), but also in many other semirings that,
contrary to REL(M), are not id-closed, e.g. in the semirings of languages of finite
and infinite words under concatenation and under fusion product.

We obtain another useful equivalent characterisation:

Lemma 11.2 S is Tarskian iff 〈〈t〉〉u = t for all t, u ∈ cond(S) with u 6= 0.

Proof. (⇒) 〈〈t〉〉u = t∧ 〈〈>〉〉u = t∧> = t.
(⇐) Set t = >. ut

Lemma 11.3 Assume a Tarskian modal condition semiring (S, cond(S)).
1. For all a ∈ S we have 〈〈a〉〉〈〈>〉〉 = 〈〈ppa〉〉.
2. RI(〈〈S〉〉) = {〈〈t〉〉 : t ∈ cond(S)}.
3. (〈〈S〉〉,RI(〈〈S〉〉)) is an id-closed and Tarskian modal condition semiring with

pp〈〈a〉〉 = 〈〈ppa〉〉.

Proof. 1. Since we assume a semiring and not just a weak semiring,

〈〈a〉〉〈〈>〉〉0 = 〈〈a〉〉0 = 0 = 〈〈ppa〉〉0 .

For u 6= 0 we calculate, using Lemma 11.2,

〈〈a〉〉〈〈>〉〉u = 〈〈a〉〉> = ppa = 〈〈ppa〉〉u .

17

2. By 1. we have 〈〈a〉〉 ∈ RI(〈〈S〉〉) ⇔ 〈〈a〉〉 = 〈〈a〉〉〈〈>〉〉 ⇔ 〈〈a〉〉 = 〈〈ppa〉〉.
3. Immediate from 2.,1. and Lemma 9.1. ut

Given these results we can now use(
〈〈>〉〉 〈〈>〉〉
〈〈t〉〉 〈〈t + a〉〉

)
and

(
〈〈>〉〉 〈〈0〉〉
〈〈t〉〉 〈〈a〉〉

)
as predicate transformer representations of normal design t ` a and prescription
t `̀ a, resp., over a Tarskian modal semiring. For the lower left corner element of
both (t ` a) · (u ` b) and (t `̀ a) · (u `̀ b) we obtain

〈〈t〉〉〈〈>〉〉+ 〈〈a〉〉〈〈u〉〉 = 〈〈t〉〉+ 〈〈a〉〉〈〈u〉〉 = 〈〈t〉〉∧ [[〈〈a〉〉]]〈〈u〉〉 ,

so that things work now smoothly even for non-id-closed underlying semiring S.

12 Conclusion and Outlook

The matrix calculus has proved to be a convenient vehicle for reasoning about
general UTP predicates as well as designs and prescriptions. Their modal semir-
ing structure allows re-use of the large existing body of results about Kleene/ω al-
gebra with tests and modal Kleene/ω algebra. Recently it has also been shown [6]
that designs and prescriptions form a demonic refinement algebra in the sense
of von Wright [14], so that that framework can be re-used, too.

It remains to be seen whether a similar approach can be followed when further
observation variables are added.

Acknowledgements: I am grateful to Walter Guttmann, Peter Höfner, Kim
Solin and the anonymous referees for helpful discussions and remarks.

References

1. C.J. Aarts: Galois connections presented calculationally. M.S. thesis, Department
of Mathematics and Computing Science, Eindhoven University of Technology 1992

2. J. Desharnais, B. Möller, G. Struth: Kleene algebra with domain. ACM TOCL
2006 (to appear)

3. S. Dunne: Recasting Hoare and He’s unifying theory of programs in the context of
general correctness. In A. Butterfield, G. Strong, C. Pahl (eds.): 5th Irish Workshop
on Formal Methods. EWiC, The British Computer Society, 2001

4. W. Guttmann, B. Möller: Modal design algebra. Institut für Informatik, Univer-
sität Augsburg, Report 2005-15. Revised version in S. Dunne, B. Stoddart(eds.):
UTP 2006 — Proc. First International Symposium on Unifying Theories of Pro-
gramming, Walworth Castle, County Durham, UK, 5–7 Feb. 2006. LNCS 4010.
Springer 2006, 236–256 (in press)

5. C.A.R. Hoare, J. He: Unifying theories of programming. Prentice Hall 1998
6. P. Höfner, B. Möller, K. Solin: Omega Algebra, Demonic Refinement Algebra and

Commands. Institute of Computer Science, University of Augsburg, Technical Re-
port 2006-11, March 2006

18

7. D. Kozen: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110:2, 366–390 (1994)

8. D. Kozen: Kleene algebra with tests. ACM TOPLAS 19:427–443 (1997)
9. B. Möller, G. Struth: Algebras of modal operators and partial correctness. Theo-

retical Computer Science 351, 221–239 (2006)
10. B. Möller, G. Struth: wp is wlp. In W. MacCaull, M. Winter and I. Düntsch (eds.):

Relational Methods in Computer Science. LNCS 3929. Springer 2006, 200–211 (in
press)

11. C. Morgan: Data Refinement by Miracles. Inf. Process. Lett. 26, 243-246 (1988)
12. J.M. Morris, Laws of data refinement, Acta Informatica (26), 287-308 (1989)
13. G. Nelson: A generalization of Dijkstra’s calculus. ACM TOPLAS 11, 517–561

(1989)
14. J.von Wright: Towards a refinement algebra. Science of Computer Programming

51, 23–45 (2004)

A Appendix: Test-Based Predicate Transformers

First we determine the tests in the semiring of designs. The multiplicative iden-
tity is II = > ` 1 and by (4) we obtain

t ` a ≤ II ⇔ (> ≤ t) ∧ (>∧ a ≤ 1) .

So the subidentities are of the form > ` p with p ≤ 1. Moreover,

(> ` p) + (> ` q) = (> ` p + q)

and, by (6),
(> ` p) · (> ` q) = (> ` p · q) .

Hence, if p ≤ 1 has the relative complement q ≤ 1 w.r.t. 1 then > ` q is the
complement of > ` p relative to II. This shows

Lemma A.1 If (S, test(S)) is a weak test semiring, then so is

(ND(S), {> ` p : p ∈ test(S)}) .

We use the characterisation (12) of domain to find out whether we can even
make ND(S) into a weak domain semiring if S is one: By (7) and lattice algebra,
(4), shunting, lattice algebra, distributivity and (12), and lattice algebra and
additivity of domain:

t ` a ≤ (> ` p) · (t ` a)
⇔ t ` a ≤ p · t ` p · a
⇔ p · t ≤ t ∧ p · t∧ a ≤ p · a
⇔ t ≤ p · t ∧ a ≤ p · t + p · a
⇔ t ≤ p · t ∧ t + a ≤ p · t + p · a
⇔ pt ≤ p ∧ p(t + a) ≤ p

⇔ p(t + a) ≤ p .

19

So setting
p(t ` a) =df > ` p(t + a)

we satisfy (td1) and (td2); a straightforward calculation shows that also (td3)
holds. Altogether we have shown

Theorem A.2 If (S, test(S), p) is a weak modal semiring, then ND(S) can be
made into a weak modal semiring.

For the case of prescriptions things work much in the same way. Again we
have t `̀ a ≤ skip ⇔ t = > ∧ a ≤ 1. Hence we can choose the set of tests as in
the case of designs and obtain a test-based weak modal semiring NP(S).

Next, as in the case of conditions, we investigate the semiring structure of
the test-based diamond operators.

Lemma A.3 Consider a (weak) modal test semiring (S, test(S)) and set, for
U ⊆ S,

〈U〉 =df {〈a〉 : a ∈ U} .

1. The structure 〈S〉 =df (〈S〉,+, ◦, 〈0〉, 〈1〉) is a (weak) semiring with greatest
element 〈>〉 under the operations

〈a〉+ 〈b〉 =df 〈a + b〉 , 〈a〉 ◦ 〈b〉 =df 〈a · b〉 .

2. For p, q ∈ test(S) we have 〈p · q〉 = 〈p〉∧ 〈q〉.
3. For a ∈ S we obtain 〈a〉 ≤ 〈1〉 ⇔ 〈a〉 = 〈pa〉.
4. For p ∈ test(S) one has 〈¬p〉 = ¬〈p〉.
5. {〈a〉 : a ∈ RI(S)} ⊆ RI(〈S〉).

Proof. 1. This is shown in [9].
2. We calculate, for r ∈ test(S),

〈p · q〉r = p · q · r = p · r · q · r = 〈p〉r ∧ 〈q〉r .

3. By isotony of the diamond we only need to show (⇒). Consider an arbitrary
p ∈ test(S).

〈pa〉p = pa · p = p · pa = p · p(a · p + a · ¬p) = p · p(a · p) + p · p(a · ¬p)
= p · 〈a〉p + p · 〈a〉¬p = 〈a〉p + 0 = 〈a〉p ,

since by assumption 〈a〉p ≤ p and 〈a〉¬p ≤ ¬p.
4. First, 〈p〉+〈¬p〉 = 〈p+¬p〉 = 〈1〉. Second, by 2., 〈p〉∧ 〈¬p〉 = 〈p·¬p〉 = 〈0〉.

The laws of involution and de Morgan are also easily checked.
5. a ∈ RI(S) ⇔ a = a · > ⇒ 〈a〉 = 〈a · >〉 = 〈a〉 ◦ 〈>〉. ut

In the remainder we will again mostly omit the composition operator. Lem-
ma A.3.3 allows us to define domain on diamonds:

Theorem A.4 Setting p〈a〉 =df 〈pa〉 makes (〈S〉, 〈test(S)〉) into a modal test
semiring.

20

Proof. By the previous lemma 〈test(S)〉 is a test algebra. So we only need to
check the domain axioms.
(cd1) p〈a〉 ◦ 〈a〉 = 〈pa〉 ◦ 〈a〉 = 〈pa · a〉 = 〈a〉.
(cd2) p(〈p〉 ◦ 〈a〉) = p〈p · a〉 = 〈p(p · a)〉 ≤ 〈p〉.
(cd3) p(〈a〉 ◦ 〈b〉) = p〈a · b〉 = 〈p(a · b)〉 = 〈p(a · pb)〉 = p(〈a〉 ◦ 〈pb〉) = p(〈a〉 ◦ p〈b〉). ut

We conclude by relating the test and condition based approaches. A (weak)
modal test semiring S is Tarskian if satisfies

〈>〉q = 1 ⇐ q ∈ test(S)\{0} , (MTARc)

or, equivalently,
p(> · q · >) = 1 ⇐ q ∈ test(S)\{0} .

We define the set of test ideals of S as TI(S) =df {p · > : p ∈ test(S)}.
From [2] we know that p · > = ¬p · > and p · > ≤ q · > ⇔ p ≤ q. Using test
ideals we obtain another characterisation of the Tarskian property:

Lemma A.5 S is Tarskian iff 〈p · >〉q = p for all p, q ∈ test(S) with q 6= 0.

Proof. (⇒) 〈p · >〉q = 〈p〉〈>〉q = 〈p〉1 = p.
(⇐) Set p = 1. ut

Lemma A.6 Assume a Tarskian modal test semiring (S, test(S)).

1. For all a ∈ S we have 〈a〉〈>〉 = 〈pa · >〉.
2. RI(〈S〉) = 〈TI(S)〉.
3. (〈S〉, 〈TI(S)〉) is an id-closed and Tarskian modal condition semiring with

pp〈a〉 = 〈〈pa〉〉.

Proof. 1. Since we assume a semiring and not just a weak semiring,

〈a〉〈>〉0 = 〈a〉0 = 0 = 〈pa〉0 .

For q 6= 0 we calculate, using Lemma A.5,

〈a〉〈>〉q = 〈a〉1 = pa = 〈pa · >〉q .

2. By 1., 〈a〉 ∈ RI(〈S〉) ⇔ 〈a〉 = 〈a〉〈>〉 ⇔ 〈a〉 = 〈pa · >〉.
3. Immediate from 2.,1. and Lemma 9.1. ut

Therefore we can, over a Tarskian modal test semiring, represent normal
designs and prescriptions also in the forms

p ` a =df

(
〈>〉 〈>〉

〈¬p · >〉 〈¬p · >+ a〉

)
and p `̀ a =df

(
〈>〉 〈0〉

〈¬p · >〉 〈a〉

)
For the lower left corner element of both (p ` a) · (q ` b) and (p `̀ a) · (q `̀ b) we
now obtain, with the test ideal t =df p · > and arbitrary test ideal u,

〈t〉+ 〈a〉〈u〉 = ¬(〈t〉∧ [〈a〉]〈u〉) ,

and things work again smoothly even for non-id-closed underlying semiring S.

21

