
Realizability criteria for compositional MSC?

Arjan Mooij, Judi Romijn, and Wieger Wesselink

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{a.j.mooij,j.m.t.romijn,j.w.wesselink}@tue.nl

Abstract. Synthesizing proper implementations for scenario-based spec-
ifications is often impossible, due to the distributed nature of imple-
mentations. To be able to detect problematic specifications, realizability
criteria have been identified, such as non-local choice.
In this work we develop a formal framework to study realizability of com-
positional MSC [GMP03]. We use it to derive a complete classification
of criteria that is closely related to the criteria for MSC from [MGR05].
Comparing specifications and implementations is usually complicated,
because different formalisms are used. We treat both of them in terms
of a single formalism. Thereto we extend the partial order semantics of
[Pra86,KL98] with a way to model deadlocks and with a more sophisti-
cated way to address communication.

1 Introduction

For scenario-based specifications of distributed systems (e.g. in terms of Message
Sequence Chart, MSC), it is often impossible to synthesize an implementation
with exactly the same behavior. This is caused by the distributed nature of
implementations. The best-known phenomenon leading to problems is non-local
choice [BAL97], but also other criteria [HJ00,Gen05,MGR05] have been proposed
to determine realizability of specifications in practice [MG05]. In this work we
develop a formal framework to study such criteria for the MSC extension that
is called compositional MSC [GMP03,MM01].

Most realizability criteria seem to be tricky formalizations of intuitions about
realizability. In contrast, we formally study under what circumstances specifica-
tions are trace equivalent to their implementations, and derive a condition that
is both necessary and sufficient. From this condition, we derive a complete clas-
sification of realizability criteria for compositional MSC. The resulting formal
criteria can easily be related to our intuitive criteria in [MGR05].

Several kinds of semantics have been proposed for MSC specifications (e.g.
[KL98,Ren99,Hey00,UKM03]), while implementations are typically expressed in
terms of finite state machines. To compare specifications and implementations,
two different formalisms must then be related, usually via execution traces (in

? This research is supported by the NWO under project 016.023.015: “Improving the
Quality of Protocol Standards”.

2

alt

msc

YX

c

ex3msc

YX

ex2

d(
c

)seq

ex1

a

msc

YX

e2e1

e3 e6

e7

e4

e5

e8
e10
e11
e12

e
b

b

c

e9

e13

Fig. 1. Running example

fact a third formalism). We prefer to use one single formalism for both implemen-
tations and specifications, and we want to stay close to the MSC specification
formalism. Therefore we use a partial order semantics [Pra86] for our study, and
sketch the relation with operational formalisms. In addition to the partial or-
der model in [Pra86,KL98], we introduce a way to model deadlocks and a more
sophisticated way to deal with communication.

Overview In Section 2 we introduce our partial order model, which we extend
with communication in Section 3. These two sections are rather independent
from MSC, but they are the basis of the semantics of compositional MSC in Sec-
tion 4. In Section 5 we define the typical way of synthesizing an implementation;
trace equivalence between specifications and such implementations is studied in
Section 6. Finally in Section 7 we classify various realizability criteria. The con-
clusions and further work are presented in Section 8. In the appendix, proofs are
listed for the interested reader.

2 Extended partial order model

In this section we define a partial order model and extend it with deadlocks, to
make it suitable for studying realizability criteria.

2.1 Running example

We illustrate our techniques using a running example. Figure 1 contains a (high-
level) MSC consisting of the three basic MSCs ex1, ex2 and ex3. It specifies
the behavior of process instances X and Y , such that first the behavior of ex1
occurs, followed by either the behavior of ex2 or the behavior of ex3. For reference
purposes we have included arbitrary event names (e1 to e13) in the basic MSCs.

2.2 LATERs: LAbeled Transitive Event Relations

As a semantic model of behavior, we introduce the notion of a later, which is an
acronym for labelled transitive event relation. A later (E, <, l) is a triple that
consists of an event set E, a transitive causality relation <: < ⊆ E × E and a

3

labeling function l : E → L for a given set of labels L. The behavior of a later
is such that any event e : e ∈ E models a single action with label l.e; the event
can occur at most once and it may only occur after all events f : f < e have
already occurred. The notion of an event is used to handle multiple occurrences
of an action with the same label. Compared to the partial orders in [Pra86], a
later is an lposet in which the partial order constraint has been weakened.

In our running example, let laters p1, p2 and p3 correspond to the basic MSCs
ex1, ex2 and ex3, such that only the causalities per instance (on each vertical
axis) are considered, i.e. without communication. So, p1 = ({e1, e2, e3}, {e2 <

e3}, l1) and as we will see later on l1 = {e1 7→!(a, X, Y), e2 7→?(a, X, Y), e3 7→

!(b, Y, X)}. The structure of p1 can be visualized as e1 e2 e3 such
that relation < corresponds to the transitive closure of relation →.

In an interleaved execution model where the events are labeled with atomic
actions, the maximal behaviors of a partially ordered later are its linearizations.
The linearizations of a later (E, <, l) are the execution traces e1 · . . . ·en such that
ei ∈ E for each index i, and for each two indices i and j both ei = ej ⇒ i = j

and ei < ej ⇒ i < j. The linearizations of later p1 are e1 · e2 · e3, e2 · e1 · e3 and
e2·e3·e1. We prefer to reason about partial orders, because they are better related
to MSC and they avoid decomposing each partial order into several over-specific
total orders. Another advantage is that true concurrency can be modeled.

The most elementary laters are the empty later, with no events, and the
singleton laters, with only one event with a label k : k ∈ L. We introduce the
following abbreviations for them:

[ε] = (∅, ∅, ∅)
[k] = ({e}, ∅, {[e 7→ k]}) for k : k ∈ L and arbitrary e

2.3 Isomorphism

The event set of a later is abstract in the sense that a consistent renaming of the
events yields a later with the same behavior. This is formalized in the following
notion of isomorphism. Laters (E, <, l) and (E ′, <′, l′) are isomorphic, denoted
(E, <, l) ' (E′, <′, l′), if there is a bijection ∼: ∼⊆ E × E ′ such that both

– (∀e, e′ :: e ∼ e′ ⇒ l.e = l′.e′)
– (∀e, f, e′, f ′ :: e ∼ e′ ∧ f ∼ f ′ ⇒ (e < f ≡ e′ <′ f ′))

Relation ' is an equivalence relation. In what follows we will hardly mention
' explicitly, and implicitly assume that where necessary ' has been exploited
to obtain suitable laters, e.g. ones that are event disjoint. This conforms to the
style used in [KL98].

2.4 Elementary later operators

We often need to relate events to the instance (i.e. computational unit or process)
in which they occur. We assume a fixed set of instance names I , and a function1

1 For a later (E, <, l), [HJ00] uses the slightly different function φ′ : E → I, which
can be obtained from our later-independent φ as follows: φ′.e = φ.(l.e) .

4

φ : L → I that maps labels to the instance in which the actions with that label
occur. To construct larger laters from the elementary laters, we use the following
elementary operators on event disjoint laters (i.e. Ep ∩ Eq = ∅):

(Ep, <p, lp) ‖ (Eq , <q , lq) = (Ep ∪ Eq , <p ∪ <q, lp ∪ lq)

(Ep, <p, lp) ◦S (Eq , <q , lq) = (Ep ∪ Eq , <p ∪ <◦S
∪ <q, lp ∪ lq)

where <◦S
= Ep × Eq

(Ep, <p, lp) ◦W (Eq , <q, lq) = (Ep ∪ Eq , (<p ∪ <◦W
∪ <q)

+, lp ∪ lq)
where <◦W

= {(e, f) | e, f : e ∈ Ep ∧ f ∈ Eq ∧ φ.(lp.e) = φ.(lq .f)}

Operator ‖ denotes parallel composition, and operators ◦S and ◦W denote strong
and weak sequential composition, respectively. These operators are associative
and they have unit element [ε]. Since parallel composition is also commutative,
we can use ‖ as a quantifier.

In our running example, φ.(!(a, X, Y)) = X and φ.(?(a, X, Y)) = Y . Let
laters p4 and p5 be defined as p4 = p1 ◦W p2 and p5 = p1 ◦W p3. The structure of
p5 is visualized as e1 e9 e10 e11 e12 e2 e3 e8 e13 .

2.5 Deadlocks

A later (E, <, l) contains a deadlock if there is an event e : e ∈ E such that
e < e. Conversely, a later is deadlock-free if the (transitive) causality relation is
a strict partial order, i.e. the conjunction of the following holds:

– irreflexive: (∀e :: ¬(e < e))
– asymmetric: (∀e, f :: ¬(e < f ∧ f < e))

– transitive: (∀e, f, g :: e < f ∧ f < g ⇒ e < g)

The definitions of deadlock and deadlock-free are consistent, since asymmetry
implies irreflexivity, and transitivity plus irreflexivity implies asymmetry. In par-
ticular, all laters that can be obtained from the elementary laters using the
elementary later operators are deadlock-free.

For example, consider later p′5 (to be defined in Section 3) with the following

structure: e1 e2 e3 e8 e9 e10 e11 e12 e13 . In this
later there is a circular dependency between events e10 and e11. From the tran-
sitivity of relation < it follows that e10 < e10, hence e10 is a deadlock.

The interpretation of the causality relation is such that the set of events
“behind any deadlock” cannot occur either. We define the set of deadlocked
events ∆ for a later (E, <, l) as follows:

∆.(E, <, l) = {f | e, f : e ∈ E ∧ f ∈ E ∧ e < e ∧ e < f}

In our example we obtain ∆.p′5 = {e10, e11, e12, e13}, and hence events e1, e2, e3,
e8 and e9 are the only events that can occur in later p′

5.

5

2.6 Prefix

A natural way to compare laters is to compare their possible behaviors. If all
possible behaviors of a later p are contained2 in the possible behaviors of a later
q, we call p a prefix of q. To determine whether p is a prefix of q, we only need to
consider the deadlock-free part of p. If p is a prefix of q, then (1) p may contain
fewer events than q, (2) on this smaller event set, p may contain more causalities
than q, (3) q’s labeling of events is respected by p, and (4) for each event that
is in both p and q, all events that precede the event in q are also in p.

Formally, later p is a prefix of later q, denoted p � q, if for some laters
(Ep, <p, lp) ' p and (Eq , <q, lq) ' q the following four conditions hold:

1. Ep ⊆ Eq

2. <q ∩(Ep × Ep) ⊆ <p

3. lp ∩ (Ep × L) = lq ∩ (Ep × L)
4. (∀e, f :: e <q f ∧ f ∈ Ep ⇒ e ∈ Ep)

where Ep = Ep\∆.(Ep, <p, lp)

In the running example several prefix relations hold, such as p1 � p4 and p1 � p5.
As a corollary of p � q, we have Ep ⊆ Eq for Eq = Eq\∆.(Eq , <q, lq). Prefix

order � is a pre-order (i.e. reflexive and transitive) with smallest element [ε].
Some typical prefixes are p � p‖q, q � p‖q, p � p ◦S q and p � p ◦W q.
In comparison with [KL98], our definition is more explicit, it can deal with
deadlocks and it allows <q ∩(Ep × Ep) to be strictly smaller than <p.

Parallel composition is monotonic in both arguments, while both kinds of se-
quential composition are only monotonic in their second argument (since dead-
locks are invisible). In general, sequential composition is not monotonic in its
first argument. For example, let p = [ε], q = ({e}, {e < e}, {e 7→ k}) and r = [k′]
such that φ.k = φ.k′. Using φ.k = φ.k′, both kinds of sequential composition
yield p ◦ r = r and q ◦ r

.
= q. Although p � q, we do not have p ◦ r � q ◦ r,

because r 6� q. This observation has directed our study in Section 6.2 towards
an action-prefix alike operator instead of a full sequential composition operator.

A special kind of prefix is a causality extension:

< ⊆ <′ ⇒ (E, <′, l) � (E, <, l)

As an example consider later p′5, which is a causality extension of later p5.

2.7 Projection

To restrict the set of events of a later, we define a projection operator π that
restricts a later to the events in instance i as follows:

πi.(E, <, l) = (F, < ∩(F × F), l ∩ (F × L))
where F = {e | e : e ∈ E ∧ φ.(l.e) = i}

Its relation with parallel composition is p � (‖i : i ∈ I : πi.p), and it is
monotonic with respect to causality extensions:

< ⊆ <′ ⇒ πi.(E, <′, l) � πi.(E, <, l)

2 In an interleaved execution model this corresponds to trace inclusion.

6

2.8 Sets of laters

Usually a single later cannot describe all possible behavior of a system. Thereto
we study a set of laters (which is the notion of process in [Pra86], and pomset
in [KL98]), which represents the set of behaviors of the individual laters. We lift
each elementary later operator ⊕ and the projection operator π as follows:

P ⊕ Q = {p ⊕ q | p, q : p ∈ P ∧ q ∈ Q}
πi.P = {πi.p | p : p ∈ P}

To lift the prefix order �, we define order v as follows:

P v Q ≡ (∀p : p ∈ P : (∃q : q ∈ Q : p � q))

Order v is a pre-order with smallest element ∅. Like before, parallel composition
is monotonic in both arguments, while both kinds of sequential composition are
only monotonic in their second argument. Relation

.
= defined as

P
.
= Q ≡ P v Q ∧ Q v P

is an equivalence relation. Equivalence P
.
= Q denotes that P and Q have the

same sets of deadlock-free prefixes, which means that they are trace equivalent.

3 Asynchronous communication

In this section we develop an operator that introduces in a later the causalities
that correspond to asynchronous message communication. To model distributed
systems with communication via message passing, some labels are used to denote
sending or receiving a message. The most liberal causalities are obtained by
matching sends and receipts in their order of occurrence. This does not require
that messages with identical names are communicated in FIFO order.

3.1 Label-wise trichotomy

To match events properly, we need to determine the order in which events with
identical labels occur. For simplicity reasons, we assume for each label that the
events with that label are totally ordered; at least, in the deadlock-free part of
the later. Since this deadlock-free part is strict partially ordered, we only need
trichotomy (or comparability) for events with identical labels. For notational
convenience, we require this property for the whole later and for all labels.

The label-wise trichotomy property T is defined as follows:

T.P ≡ (∀p : p ∈ P : T.p)
T.(E, <, l) ≡ (∀e, f :: l.e = l.f ⇒ e = f ∨ e < f ∨ f < e)

As we will see in Section 4, this only imposes a few, acceptable restrictions
to MSCs. This property is maintained under causality extensions and event
restrictions, it holds for the elementary laters, and it is maintained under se-
quential composition; only for a parallel composition (Ep, <p, lp) ‖ (Eq , <q, lq)
label-disjointness is required, i.e. (∀e, f : e ∈ Ep ∧ f ∈ Eq : lp.e 6= lq.f).

7

3.2 Communication causalities

We define operator Γ.p, which introduces the communication causalities in a
later p. For compositional MSC, we must also address communication between
two sequentially composed laters. Thereto we introduce an extra parameter t to
denote the entire preceding behavior of later p in terms of a later.

For each message m, we must ensure that each receipt event (with label ?m)
is preceded by the corresponding/matching send event (with label !m). In case
there are more receive events than send events, these remaining receipt events
are turned into deadlocks. Thus we obtain (provided T.t and T.P hold):

Γ t.P = {Γ t.p | p : p ∈ P}
Γ t.(E, <b, l) = (E, (<b ∪ <c)

+∪ <d, l)
where <c=<′

c ∩ (E × E) and <d=<′
d ∩ (E × E)

and (E′, <′, l′) = t ◦W (E, <b, l) and E′ = E′\∆.(E′, <′, l′)
and <′

c= {(e, f) | e, f, m : e ∈ E ′ ∧ f ∈ E′ ∧ l′.e =!m ∧ l′.f =?m ∧
(#g :: g <′ e ∧ l′.g =!m) = (#g :: g <′ f ∧ l′.g =?m)}

and <′
d= {(f, f) | f, m : f ∈ E′ ∧ l′.f =?m ∧

(#g :: g ∈ E′ ∧ l′.g =!m) ≤ (#g :: g <′ f ∧ l′.g =?m)}

In this definition, first an auxiliary later (E ′, <′, l′) is computed as the sequential
composition of t and (E, <b, l). Then causalities <′

c are defined for the matching
communications, and causalities <′

d are defined for the deadlocked receipt events.
Finally, only the causalities on events E (i.e. not on events from previous behavior
t) are added to later (E, <b, l).

For the running example, we define later p′4 = Γ ∅.p4 and p′5 = Γ ∅.p5. When
visualizing p′4 and p′5, we add the additional communication causalities according
to <′

c with dashed arrows, and the additional deadlock causality for unmatched
receipts (<′

d) with a dotted arrow as follows:

p′4:

e1 e4 e5

e2 e3 e6 e7 p′5:

e1 e9 e10 e11 e12

e2 e3 e8 e13

For p′4 this then boils down to: e1 e2 e3 e4 e5 e6 e7 .
For p′5, the result was already visualized in Section 2.

The role of parameter t of Γ is illustrated in the following important property
of sequential composition (see also Section 6):

Γ t.({p} ◦W Q)
.
= Γ t.({p} ◦W Γ t◦W p.Q)

Since Γ is a causality extension, it maintains predicate T . However, Γ can in-
troduce deadlocks. The following are some other properties of Γ :

(shrinking) Γ t.p � p

(idempotence) Γ t.p = Γ t.(Γ t.p)
(monotonicity) p � q ⇒ Γ t.p � Γ t.q

These properties can even be generalized to sets of laters.

8

4 Semantics of compositional MSC

Using the preceding concepts, we define a semantics of compositional MSC as
an extension of the MSC semantics of [KL98]. For simplicity reasons, we delay
the introduction of the communication causalities; in Section 6 we will show how
they can be introduced earlier (like in [KL98]). We start by giving the semantics
of basic MSC, then the semantics of high-level MSC, and finally we complete
this semantics by including the communication causalities.

4.1 Basic MSC

The semantics (without communication) of basic MSC B in instance-oriented
textual representation [Ren99] is defined as a later M

bmsc
[[B]] as follows:

M
bmsc

[[〈 〉]] = [ε]
M

bmsc
[[inst i; S endinst; B]] = M

inst
[[S]](i) ‖ M

bmsc
[[B]]

M
inst

[[〈 〉]](i) = [ε]
M

inst
[[a; S]](i) = M

inst
[[a]](i) ◦S M

inst
[[S]](i)

M
inst

[[in n from j]](i) = [?(n, j, i)]
M

inst
[[out n to j]](i) = [!(n, i, j)]

M
inst

[[local b]](i) = [b(i)]
M

inst
[[co 〈 〉 endco]](i) = [ε]

M
inst

[[co a; C endco]](i) = M
inst

[[a]](i) ‖ M
inst

[[co C endco]](i)

Function φ can then be defined as follows: φ.(?(n, j, i)) = i, φ.(!(n, i, j)) = i and
φ.(b(i)) = i . By construction, each later M

bmsc
[[...]] is a strict partial order.

To ensure that predicate T is satisfied, we assume that no instance name
occurs more than once per bMSC [Ren99], and we require that in each co-region
the events are label disjoint. The interest in co-regions is usually very limited
(they are completely excluded in [HJ00,GMP03]), so this is no severe restriction.
The unrealistic assumption that for each message name there is at most one send
event and at most one receipt event per bMSC [KL98], is not required here.

4.2 High-level MSC

The semantics (without communication) of high-level MSC A in textual repre-
sentation is defined as a set of laters M

hmsc
[[A]] as follows:

M
hmsc

[[empty]] = {[ε]}
M

hmsc
[[msc name; B endmsc]] = {M

bmsc
[[B]]}

M
hmsc

[[A seq B]] = M
hmsc

[[A]] ◦W M
hmsc

[[B]]
M

hmsc
[[A alt B]] = M

hmsc
[[A]] ∪ M

hmsc
[[B]]

By construction, each later in M
hmsc

[[...]] is a strict partial order, and satisfies
predicate T . We do not explicitly address iteration, since it is just repeated
sequential composition.

9

4.3 MSC

Finally we introduce the causalities imposed by communication:

M
msc

[[A]] = M∅
msc

[[A]]
M t

msc
[[A]] = Γ t.M

hmsc
[[A]]

This is a proper definition since M
hmsc

[[A]] satisfies predicate T . By construction,
predicate T also holds for M t

msc
[[A]]. Note that the application of Γ t may introduce

deadlocks, which violate the strict partial order property. This illustrates one of
the reasons for our extended partial order semantics.

Using the example laters from Sections 2 and 3, the semantics of the MSC
in Figure 1 corresponds to Γ ∅.({p1} ◦W ({p2} ∪ {p3})), which simplifies via
{Γ ∅.(p1 ◦W p2), Γ ∅.(p1 ◦W p3)} into {p′4, p

′
5}. These two laters represent the

possibility of either performing ex1 followed by ex2, or ex1 followed by ex3.
In [GMP03] there is a restriction that receive events in bMSCs may not be

matched to send events in future bMSCs. In [MM01] an extension is proposed
that drops this restriction. We consider the extension, since the original restric-
tion conflicts with elegant rules, like sequential composition of two bMSCs being
equal to simply connecting the instance axis [Ren99].

5 Implementations

In this section we explain how specifications are implemented. The difference
between a specification and an implementation is that a specification describes
behavior in terms of all instances, while an implementation describes behavior
in terms of each individual instance. Thus an implementation for an instance
can be represented by a set of laters that contain events of that instance only.

To synthesize an implementation, the specification is decomposed according
to the instances. The joint execution behavior of an implementation is obtained
by recomposing the instances. We do not consider the unusual implementation
with message parameters proposed in [Gen05], which effectively boils down to
renaming the messages and shifting the moments of choice. In such an imple-
mentation, additional parameters in a request message are sometimes used to
fix the choice that should made by the receiver of the request.

5.1 Decomposition

The typical decomposition D of a set of laters M to its instances is:

D.M = {[i 7→ πi.M] | i : i ∈ I}

In this set, each instance name is mapped to the corresponding projection of M .
Since projection is an event restriction, predicate T is maintained.

For our running example, the decomposition of the laters, D.{p′
4, p

′
5}, yields

the following: { [X 7→ { e1 e4 e5 , e1 e9 e10 e11 e12 }],

[Y 7→ { e2 e3 e6 e7 , e2 e3 e8 e13 }] }.

10

Let us briefly investigate what might be lost by decomposition. For a singleton
set {(E, <, l)}, note that E and l are partitioned per instance, and hence only
the causalities between different instances are lost. For each later in a larger set
M , also the link between its projections in the different instances is lost.

5.2 Recomposition

To study the joint execution behavior of the decompositions, the decomposition
has to be recomposed. Using the definition from the previous section, the typical
recomposition R of a decomposition becomes:

Rt.{[i 7→ πi.M] | i : i ∈ I} = Γ t.(‖i : i ∈ I : πi.M)

This is a proper definition provided T.M holds, since T is maintained under
parallel composition with disjoint labels. The projections are label-disjoint, since
for each label k all events with that label belong to one instance, viz. φ.k .

We emphasize that Rt ◦ D, where ◦ denotes function composition, is not
monotonic with respect to v. For causality extensions like Γ t, we have:

(Rt ◦ D).(Γ t.P) v (Rt ◦ D).P

5.3 Implementations in operational formalisms

Using our later representation, implementations in operational formalisms can
easily be obtained. In an interleaved execution model where the labels denote
atomic actions, the maximal behaviors of a single later are the linearizations of
the maximal deadlock-free prefix. The set of maximal behaviors of a set of laters
is the union of the linearizations of the individual laters. In turn, linearizations
can easily be transformed to process algebraic expressions using the delayed
choice operator [BM95]. The implementation of our running example corresponds
to the following CSP-style implementation:

X : !a · (?b · !c + ?d)
Y : ?a · !b · (?c + !d · ?c)

6 Relation between specification and implementation

In this section, we investigate whether compositional MSC specifications are
trace equivalent to their implementations, i.e. for all A and t:

M t
msc

[[A]]
.
= (Rt ◦ D).M t

msc
[[A]]

11

6.1 The implementation contains the specification

In this section we show that the specification is contained in the implementation,
i.e. for all A and t: M t

msc
[[A]] v (Rt ◦ D).M t

msc
[[A]]. It can be proved as follows:

(Rt ◦ D).M t
msc

[[A]]
= {definition of Rt ◦ D}

Γ t.(‖i : i ∈ I : πi.M
t
msc

[[A]])
w {property of π and ‖; monotonicity of Γ}

Γ t.M t
msc

[[A]]
= {definition of M t

msc
[[A]]; idempotence of Γ}

M t
msc

[[A]]

6.2 The specification contains the implementation

In this section we derive conditions under which the implementation is contained
in the specification, i.e. for all A and t: (Rt ◦D).M t

msc
[[A]] v M t

msc
[[A]]. We will set

up an inductive argument based on the structure of the high-level MSC. Thereto
we assume that the following rewrite rules have been applied:

(empty) seq C → C

(A seq B) seq C → A seq (B seq C)
(A alt B) seq C → (A seq C) alt (B seq C)

These rules do not change the occurrences of choice, but they ensure that the first
argument of sequential composition is just a single bMSC. Using the property
of Γ and ◦W in Section 3, we derive an alternative characterization of M t

msc
[[...]]

in which communication is addressed earlier (like in [KL98]):

M t
msc

[[msc name; A endmsc]] = M t
msc

[[msc name; A endmsc seq empty]]
M t

msc
[[empty]] = {[ε]}

M t
msc

[[msc name; A endmsc seq B]]
.
= Γ t.({M

bmsc
[[A]]} ◦W M t ◦W M

bmsc
[[A]]

msc
[[B]])

M t
msc

[[A alt B]] = M t
msc

[[A]] ∪ M t
msc

[[B]]

Empty This is the base case, which has a very simple proof:
(Rt ◦ D).M t

msc
[[empty]]

= {alternative characterization}
(Rt ◦ D).{[ε]}

= {calculus}
{[ε]}

= {alternative characterization}
M t

msc
[[empty]]

Sequential composition This inductive case can be proved as follows:

12

(Rt ◦ D).M t
msc

[[msc name; A endmsc seq B]]
.
= {alternative characterization}

(Rt ◦ D).(Γ t.({M
bmsc

[[A]]} ◦W M t◦W M
bmsc

[[A]]
msc

[[B]]))
v {monotonicity}

(Rt ◦ D).({M
bmsc

[[A]]} ◦W M t◦W M
bmsc

[[A]]
msc

[[B]])
.
= {• see below}

Γ t.({M
bmsc

[[A]]} ◦W (Rt◦W M
bmsc

[[A]] ◦ D).M t◦W M
bmsc

[[A]]
msc

[[B]])
.
= {induction hypothesis, monotonicity of Γ and ◦W }

Γ t.({M
bmsc

[[A]]} ◦W M t◦W M
bmsc

[[A]]
msc

[[B]])
.
= {alternative characterization}

M t
msc

[[msc name; A endmsc seq B]]
The step marked • follows from the following rule, where m denotes a later that
does not order events in different instances, and M denotes a set of laters:

(Rt ◦ D).({m} ◦W M)
.
= Γ t.({m} ◦W (Rt ◦W m ◦ D).M)

Alternative composition This inductive case can be proved as follows:
(Rt ◦ D).M t

msc
[[A alt B]]

= {alternative characterization}
(Rt ◦ D).(M t

msc
[[A]] ∪ M t

msc
[[B]])

v {N see below}
(Rt ◦ D).M t

msc
[[A]] ∪ (Rt ◦ D).M t

msc
[[B]]

.
= {induction hypothesis (twice)}

M t
msc

[[A]] ∪ M t
msc

[[B]]
= {alternative characterization}

M t
msc

[[A alt B]]
The step marked N is not only a sufficient condition, but also a necessary one.
Since it does not hold for each MSC, we will study it further.

6.3 Safe choice

In Section 7 we will relate various realizability criteria to condition N before. In
this section, we first strengthen this condition into a more convenient one. By
definition of Rt ◦ D, it is equivalent to:

Γ t.(‖i :: πi.(M
t
msc

[[A]]∪M t
msc

[[B]])) � Γ t.(‖i :: πi.M
t
msc

[[A]]) ∪ Γ t.(‖i :: πi.M
t
msc

[[B]])

Or formulated differently, for each function f :: [I → (M t
msc

[[A]] ∪ M t
msc

[[B]])]
representing the chosen later per instance, (at least) one of the following holds
(where g and h denote functions):

(∃g : g :: [I → M t
msc

[[A]]] : Γ t.(‖i :: πi.fi) � Γ t.(‖i :: πi.gi))

(∃h : h :: [I → M t
msc

[[B]]] : Γ t.(‖i :: πi.fi) � Γ t.(‖i :: πi.hi))

Checking this condition is quite involved in practice, since arbitrary com-
binations of projected laters (i.e. from both M t

msc
[[A]] and M t

msc
[[B]]) need to be

13

considered. To reduce the number of combinations, we strengthen3 this condi-
tion for non-empty set I into what we call the safe choice property: there exists
an instance k such that for each instance j : j 6= k both

– ∀ g :: [I → M t
msc

[[A]]], n : n ∈ πj .M
t
msc

[[B]] ∧ {n} 6v πj .M
t
msc

[[A]]:

Γ t.((‖i : i 6= j : πi.gi) ‖ n) � Γ t.(‖i : i 6= j : πi.gi)

– ∀ h :: [I → M t
msc

[[B]]], m : m ∈ πj .M
t
msc

[[A]] ∧ {m} 6v πj .M
t
msc

[[B]]:

Γ t.((‖i : i 6= j : πi.hi) ‖ m) � Γ t.(‖i : i 6= j : πi.hi)

Later n : n ∈ πj .M
t
msc

[[B]] ∧ {n} 6v πj .M
t
msc

[[A]] of instance j denotes a later from
MSC B that is no prefix of any behavior on the other side of the choice, i.e. from
any later from MSC A. Note that behaviors occuring both in MSC A and MSC
B are no problem for the choice between A and B.

The advantage of this condition is that in the left-hand side of the �, the
combinations of projected laters contain only one later n from B, while all other
laters are from A. Furthermore, it is less symmetric due to instance k and con-
dition j 6= k, see non-local choice below. Finally, we stress that this condition is
stronger than the previous one, see non-deterministic choice below.

7 Realizability criteria

The safe choice property of the previous section implies that the specification and
the implementation are trace equivalent; otherwise the specification may not be
realizable. In this section we convert the realizability criteria from [MGR05] to
high-level MSCs with binary choice, and generalize them to compositional MSC
with co-regions. We first depict how the criteria are classified in comparison with
safe choice and the original derived condition from the previous section:

derived condition safe choice
¬ non-local choice
propagating choice

¬ non-deterministic choice

¬ race choice

7.1 Non-local choice

A choice between two MSCs is local if at most one instance has initiative in these
MSCs; otherwise several instances can independently start executing different
MSCs. An instance has initiative in an MSC if some first event of the instance
is labeled with either an internal action, or sending a message, or receiving a
message that was sent before the choice. The choice in our running example is
non-local, since due to events e4 and e8 both X and Y have initiative.

Non-local choice follows naturally from safe choice, and in particular from
its �-terms. Observe that a later n is likely to be problematic if for each label-
disjoint later x we have Γ t.(x‖n) 6� Γ t.x. This condition follows from Γ t.n 6� [ε],

3 The proof of this strengthening step is quite involved.

14

which means that later n contains an initiating event. Due to condition j 6= k

in the definition of safe choice, only instance k may have initiative, i.e. no two
different instances, say i and j, may have initiative. This leads to the non-local

choice criterion:

(∃i, j, m, n :: i 6= j ∧ m ∈ πi.M
t
msc

[[A]] ∧ {m} 6v πi.M
t
msc

[[B]] ∧ Γ t.m 6� [ε]
∧ n ∈ πj .M

t
msc

[[B]] ∧ {n} 6v πj .M
t
msc

[[A]] ∧ Γ t.n 6� [ε])

The difference with other variants of non-local choice in [BAL97,HJ00,MGR05]
is in our first two conjuncts on both m and n, where we ensure that safe choice
is violated.

7.2 Propagating choice

Absence of non-local choice is not sufficient to guarantee safe choice. It does
guarantee that there is at most one instance that determines the choice, viz.
instance k in the definition of safe choice. The other instances j have no initiative
and hence their chosen laters n are characterized by Γ t.n � [ε]. What remains
to guarantee safe choice is that the other instances can resolve the choice, which
is characterized by the propagating choice property (see also [MGR05]): for each
instance j both

– ∀ g :: [I → M t
msc

[[A]]], n : n ∈ πj .M
t
msc

[[B]] ∧ {n} 6v πj .M
t
msc

[[A]] ∧ Γ t.n � [ε]:

Γ t.((‖i : i 6= j : πi.gi) ‖ n) � Γ t.(‖i : i 6= j : πi.gi)

– ∀ h :: [I → M t
msc

[[B]]], m : m ∈ πj .M
t
msc

[[A]] ∧ {m} 6v πj .M
t
msc

[[B]]∧ Γ t.m � [ε]:

Γ t.((‖i : i 6= j : πi.hi) ‖ m) � Γ t.(‖i : i 6= j : πi.hi)

7.3 Non-deterministic choice

Propagating choice is an important property, but it is not easy to apply. A simple
case that violates it is when the MSCs contain behaviors m and n that are
different, although they share a common prefix p, i.e. p � m and p � n. In case
such a prefix p starts with a receipt behavior, instance j cannot resolve the choice
using one of its initial events. This is characterized by the non-deterministic

choice criterion (see also [MGR05]):

(∃j, m, n, p :: p � m ∧ p � n ∧
m ∈ πj .M

t
msc

[[A]] ∧ {m} 6v πj .M
t
msc

[[B]] ∧ Γ t.m � [ε]
∧ n ∈ πj .M

t
msc

[[B]] ∧ {n} 6v πj .M
t
msc

[[A]] ∧ Γ t.n � [ε]
∧ (∃g, h : g :: [I → M t

msc
[[A]]] ∧ h :: [I → M t

msc
[[B]]] :

(Γ t.((‖i : i 6= j : πi.gi) ‖ p) 6� Γ t.(‖i : i 6= j : πi.gi)
∨ Γ t.((‖i : i 6= j : πi.hi) ‖ p) 6� Γ t.(‖i : i 6= j : πi.hi))))

This criterion can be made more syntactic by weakening the inner existential
quantification into condition p 6� [ε]. Although non-deterministic choice violates
safe choice, it does not guarantee that the derived condition in Section 6 is
violated; so safe choice has been a real strengthening.

15

M1msc

DBA C

m2

DBA

msc M2

m1

m3
m4

m7

m5
m6

Fig. 2. Example from [HJ00]

7.4 Race choice

Absence of non-deterministic choice is not sufficient to guarantee propagating
choice. It does guarantee that each instance j can resolve the choice when no
initiating receipt event can end up receiving a message intended for a non-initial
receipt event in another MSC. The other cases are characterized by the race

choice criterion (see also [MGR05], compare race conditions):

(∃j :: (∃g, n :: g :: [I → M t
msc

[[A]]]
∧ n ∈ πj .M

t
msc

[[B]] ∧ {n} 6v πj .M
t
msc

[[A]] ∧ Γ t.n � [ε]
∧ Γ t.((‖i : i 6= j : πi.gi) ‖ n) 6� Γ t.(‖i : i 6= j : πi.gi)
∧ (∀p : p � n ∧ {p} v πj .M

t
msc

[[A]] :
Γ t.((‖i : i 6= j : πi.gi) ‖ p) � Γ t.(‖i : i 6= j : πi.gi)))

∨ (∃h, m :: h :: [I → M t
msc

[[B]]]
∧ m ∈ πj .M

t
msc

[[A]] ∧ {m} 6v πj .M
t
msc

[[B]] ∧ Γ t.n � [ε]
∧ Γ t.((‖i : i 6= j : πi.hi) ‖ m) 6� Γ t.(‖i : i 6= j : πi.hi)
∧ (∀p : p � m ∧ {p} v πj .M

t
msc

[[B]] :
Γ t.((‖i : i 6= j : πi.hi) ‖ p) � Γ t.(‖i : i 6= j : πi.hi))))

In [HJ00] the reconstructible choice criterion is proposed in order to guarantee
realizability, and it is mentioned explicitly that the communication channels
are not assumed to be order preserving. However, this claim contradicts their
example of a reconstructible MSC [HJ00, Figure 15].

To illustrate our race choice criterion, we have copied the bMSCs from this
example into Figure 2. The high-level MSC (which contains iteration) can be
characterized as the smallest solution of:

M : M = (M1 seq M) alt (M2 seq M)

Implementations allow behaviors that start as depicted in Figure 3, but prefix
!(m1, A, D) · !(m5, A, D) · ?(m5, A, D) shows that this behavior is not part of the
specified behavior.

In terms of our classification, this example suffers from race choice. Possible
witnesses of the existential quantifications in its definition are characterized by

j : j = D

n : πj .Mmsc
[[M2 seq M1]] � n

g : (∀i : i 6= j : M
msc

[[M1 seq M2]] � g.i)

16

BA C D
m1

m5

m7

m3
m4

m2

first M2, then M1first M1, then M2

m6

Fig. 3. Execution behavior of the example from [HJ00]

8 Conclusions and further work

We have developed a denotational semantics for compositional MSC through our
extension of pomsets with deadlocks. In this formalism we have studied realiz-
ability, especially of the choice construct. We have discussed various proposed
realizability criteria and shown completeness of our classification in [MGR05].

Realizability problems can also be detected by verifying the implementation
[UKM03]. However, it is far more effective to have criteria for specifications, and
to develop ways to make specifications realizable [HJ00]. For the latter, we plan
to evaluate our proposals in [MG05,MGR05] using the current framework, and
to automate them.

A possible extension is to explore other realizability criteria, especially since
safe choice is a real strengthening. In addition, more syntactical criteria would
better allow automation. Also the realizability of other MSC constructs may be
studied, of which parallel composition is a challenging one.

References

[BAL97] H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and
non-local choice in Message Sequence Charts. In Proceedings of TACAS’97,
volume 1217 of LNCS, pages 259–274. Springer, 1997.

[BM95] J.C.M. Baeten and S. Mauw. Delayed choice: an operator for joining Message
Sequence Charts. In Formal Description Techniques, pages 340–354, 1995.

[Gen05] B. Genest. Compositional Message Sequence Charts (CMSCs) are better to
implement than MSCs. In Proceedings of TACAS’05, volume 3440 of LNCS,
pages 429–440. Springer, 2005.

[GMP03] E.L. Gunter, A. Muscholl, and D.A. Peled. Compositional Message Sequence
Charts. International Journal on Software Tools for Technology Transfer,
5(1):78–89, November 2003. An earlier version appeared at TACAS’01.

[Hey00] S. Heymer. A semantics for MSC based on Petri-Net components. In Pro-

ceedings of SAM’00: 2nd Workshop on SDL and MSC, 2000.

17

[HJ00] L. Hélouët and C. Jard. Conditions for synthesis of communicating automata
from HMSCs. In Proceedings of 5th FMICS Workshop, 2000.

[KL98] J.-P. Katoen and L. Lambert. Pomsets for Message Sequence Charts. In
Proceedings of SAM’98: 1st Workshop on SDL and MSC, 1998.

[MG05] A.J. Mooij and N. Goga. Dealing with non-local choice in IEEE 1073.2’s
standard for remote control. In Proceedings of SAM’04: 4th Workshop on

SDL and MSC, volume 3319 of LNCS, pages 257–270. Springer, 2005.
[MGR05] A.J. Mooij, N. Goga, and J.M.T. Romijn. Non-local choice and beyond:

Intricacies of MSC choice nodes. In Proceedings of FASE’05, volume 3442 of
LNCS, pages 273–288. Springer, 2005.

[MM01] P. Madhusudan and B. Meenakshi. Beyond message sequence graphs. In
Proceedings of FASE’01, LNCS 2245, pages 256–267. Springer, 2001.

[Pra86] V. Pratt. Modelling concurrency with partial orders. International Journal

of Parallel Programming, 15(1):33–71, 1986.
[Ren99] M.A. Reniers. Message Sequence Chart: Syntax and Semantics. PhD thesis,

Technische Universiteit Eindhoven, June 1999.
[UKM03] S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral models from

scenarios. IEEE Transactions on Software Engineering, 29(2):99–115, 2003.

18

A Proofs about the prefix order on laters

A.1 Corollary of the definition

We first prove that Ep ⊆ Eq is a corollary of (Ep, <p, lp) � (Eq , <q, lq).

Ep ⊆ Eq

≡ {set calculus; definition of Eq}
(∀f : f ∈ Ep : f ∈ Eq ∧ f 6∈ ∆.(Eq , <q, lq))

≡ {definition of ∆}
(∀f : f ∈ Ep : f ∈ Eq ∧ (∀e : e <q e : ¬(e <q f)))

⇐ {condition 1; condition 4: f ∈ Ep ∧ e 6∈ Ep ⇒ ¬(e <q f)}
(∀e : e <q e : e 6∈ Ep)

≡ {proof by contradiction; definition of Ep}
(∀e : e <q e ∧ e ∈ Ep : e ∈ ∆(Ep, <p, lq))

≡ {condition 2 gives e <p e; definition of ∆}
true

A.2 Variants of the definition

To simplify some future proofs, we prove that exploiting condition 4, condition 2
is equivalent to the stronger condition <q ∩(Ep × Ep) ⊆ <p.

<q ∩(Ep × Ep) ⊆ <p

⇐ {condition 2}
<q ∩(Ep × Ep) ⊆ <q ∩(Ep × Ep)

≡ {set calculus}
<q ∩(Ep × Ep) ⊆ (Ep × Ep)

≡ {set calculus; condition 4}
true

After strengthening condition 2, condition 4 is equivalent to the weaker con-
dition (∀e, f : e <q f ∧ f ∈ Ep : e ∈ Ep). We prove it by showing how it can be
used to prove condition 4:

(∀e, f : e <q f ∧ f ∈ Ep : e ∈ Ep)
≡ {weak condition 4 gives e ∈ Ep; definition of Ep}

(∀e, f : e <q f ∧ f ∈ Ep ∧ e ∈ Ep : e 6∈ ∆.(Ep, <p, lp))
⇐ {strong condition 2}

(∀e, f : e <p f ∧ f ∈ Ep : e 6∈ ∆.(Ep, <p, lp))
≡ {trading; definition of Ep}

(∀e, f : e <p f ∧ e ∈ ∆.(Ep, <p, lp) : f ∈ ∆.(Ep, <p, lp))
≡ {definition of ∆; transitivity of <p}

true

If Eq ⊆ Ep then weak condition 4 reduces to true.

19

A.3 Transitivity

We prove transitivity of � by assuming that (Ep, <p, lp) � (Eq , <q, lq) and
(Eq , <q, lq) � (Er, <r, lr). Using the definition of � we thus have:

1pq: Ep ⊆ Eq 1qr: Eq ⊆ Er

2pq: <q ∩(Ep × Ep) ⊆ <p 2qr: <r ∩(Eq × Eq) ⊆ <q

3pq: lp ∩ (Ep × L) = lq ∩ (Ep × L) 3qr: lq ∩ (Eq × L) = lr ∩ (Eq × L)

4pq: (∀e, f : e <q f ∧ f ∈ Ep : e ∈ Ep) 4qr: (∀e, f : e <r f ∧ f ∈ Eq : e ∈ Eq)

Then we show (Ep, <p, lp) � (Er, <r, lr) by proving the four conjuncts cor-
responding to the definition of �:

Ep ⊆ Er

⇐ {1qr}
Ep ⊆ Eq

≡ {corollary Ep ⊆ Eq}
true

<r ∩(Ep × Ep) ⊆ <p

⇐ {2pq}
<r ∩(Ep × Ep) ⊆ <q ∩(Ep × Ep)

≡ {set calculus}
<r ∩(Ep × Ep) ⊆ <q

⇐ {2qr}
<r ∩(Ep × Ep) ⊆ <r ∩(Eq × Eq)

≡ {set calculus}
<r ∩(Ep × Ep) ⊆ (Eq × Eq)

≡ {corollary Ep ⊆ Eq}
true

lp ∩ (Ep × L) = lr ∩ (Ep × L)
≡ {3pq}

lq ∩ (Ep × L) = lr ∩ (Ep × L)

⇐ {corollary Ep ⊆ Eq}
lq ∩ (Eq × L) = lr ∩ (Eq × L)

≡ {3qr}
true

(∀e, f : e <r f ∧ f ∈ Ep : e ∈ Ep)
⇐ {4pq}

(∀e, f : e <r f ∧ f ∈ Ep : e <q f)

⇐ {corollary Ep ⊆ Eq}
(∀e, f : e <r f ∧ f ∈ Eq : e <q f)

⇐ {2qr}
(∀e, f : e <r f ∧ f ∈ Eq : e ∈ Eq)

≡ {4qr}
true

20

A.4 Monotonicity with respect to both sequential compositions

Let m = (Em, <m, lm), p = (Ep, <p, lp) and m ◦W p = (Emp, <mp, lmp), where
Emp = Em ∪ Ep, <mp= (<m ∪ <◦mp

∪ <p)
+ and lmp = lm ∪ lp. We assume

that the event sets are such that Em ∩ Ep = ∅ and Em ∩ Eq = ∅. To eliminate
the transitive closure in the definition of <mp, we can use that the event sets of
Em and Ep are disjoint, <m and <p are transitive, and <◦mp

⊆ Em ×Ep. Thus
d <mp g is equivalent to:

d <m g ∨ d <p g ∨ (∃e, f :: (d <m e ∨ d = e) ∧ e <◦mp
f ∧ (f = g ∨ f <p g))

Assuming p � q, we show m ◦ p � m ◦ q by proving the four conjuncts of the
definition of � (strong second, weak fourth). We will use that Emp ⊆ Em ∪Ep

holds since ◦ only adds causalities.

Emp ⊆ Emq

⇐ {Emp ⊆ Em ∪ Ep}{Emq = Em ∪ Eq}
(Em ∪ Ep) ⊆ Em ∪ Eq

≡ {by definition Em ⊆ Em}{condition 1: Ep ⊆ Eq}
true

d <mp g

≡ {definition of <mp}
d <m g ∨ d <p g ∨

(∃e, f :: (d <m e ∨ d = e) ∧ e <◦mp
f ∧ (f = g ∨ f <p g))

⇐ {strong condition 2}
d <m g ∨ (g ∈ Ep ∧ ((d ∈ Ep ∧ d <q g) ∨

(∃e, f :: (d <m e ∨ d = e) ∧ e <◦mp
f ∧ (f = g ∨ f <q g))))

⇐ {condition 4: f ∈ Ep}{property of ◦, use condition 3: lp.f = lq .f}
d <m g ∨ (g ∈ Ep ∧ ((d ∈ Ep ∧ d <q g) ∨

(∃e, f :: (d <m e ∨ d = e) ∧ e <◦mq
f ∧ (f = g ∨ f <q g))))

⇐ {Emp = Em ∪ Ep}{Emp ⊆ Em ∪ Ep}{use Em ∩ Eq = ∅}
d ∈ Emp ∧ g ∈ Emp ∧ (d <m g ∨ d <q g ∨

(∃e, f :: (d <m e ∨ d = e) ∧ e <◦mq
f ∧ (f = g ∨ f <q g)))

≡ {definition of <mq}
d ∈ Emp ∧ g ∈ Emp ∧ d <mq g

lmp ∩ (Emp × L) = lmq ∩ (Emp × L)
≡ {lmp = lm ∪ lp}{lmq = lm ∪ lq}{set calculus}

lp ∩ (Emp × L) = lq ∩ (Emp × L)
⇐ {Emp ⊆ Em ∪ Ep}{Em ∩ Ep = ∅} {Em ∩ Eq = ∅}

lp ∩ (Ep × L) = lq ∩ (Ep × L)
≡ {condition 3}

true

21

d ∈ Emp

≡ {definition of Emp}
d ∈ Em ∨ d ∈ Ep

⇐ {weak condition 4}
d ∈ Em ∨ (∃g :: g ∈ Ep ∧ d <q g)

⇐ {Emp ⊆ Em ∪ Ep, Em ⊆ Em, and Em ∩ Eq = ∅}
(∃g :: g ∈ Emp ∧ (d <m g ∨ d <q g ∨

(∃e, f :: (d <m e ∨ d = e) ∧ e <◦mq
f ∧ (f = g ∨ f <q g))))

≡ {definition of <mq}
(∃g :: g ∈ Emp ∧ d <mq g)

B Proofs about communication operator Γ

B.1 Idempotence

Let p = (E, <, l), Γ t.p = (E′, <′, l′) and Γ t.(Γ t.p) = (E′′, <′′, l′′). Since Γ is a
causality extension, E ′ = E′′, <′⊆<′′ and l′ = l′′, and hence we only need to
prove <′′⊆<′ to show that Γ is idempotent.

Using the label-wise trichotomy properties of t and p, all causalities that
are added via <′′

c are already present in <′
c. For the causalities in <′′

d we must
consider a receipt event that has a matching send event in <′

c but not in <′′
c . In

Γ t.p this send event is behind a deadlock, and hence also this receipt event is
behind a deadlock. Hence this receipt event is not in <′′

d . So <′⊆< is guaranteed.

B.2 Monotonicity

Assuming p � q, we will prove Γ t.p � Γ t.q by considering the four conditions for
�. Let p = (Ep, <p, lp), q = (Eq , <q, lq), Γ t.p = (Eγ

p , <γ
p , lγp) and Γ t.q = (Eγ

q , <γ
q

, lγq). Since Γ t is a causality extension, we have E
γ
p ⊆ Ep and Eq = Eγ

q . This
observation completes the proof of conditions 1 and 3. What remains are strong
condition 2 and weak condition 4. Since they are maintained under shrinking Ep

to E
γ
p and extending <p to <γ

p , we only need to consider an order d <γ
q g for

g ∈ E
γ
p while ¬(d <q g). We consider the two extensions:

– adding <qc
and applying the transitive closure: then there exists an inter-

leaving of steps from <q and <qc
that witnesses d <γ

q g. Thanks to strong

condition 2, each step e <q f for f ∈ E
γ
p (and hence f ∈ Ep) guarantees

e <p f , and hence by definition we have e ∈ E
γ
p . Since p � q, each step

e <qc
f for f ∈ E

γ
p guarantees e <pc

f and hence by definition we have

e ∈ E
γ
p . Hence we can conclude d <γ

p g, which establishes strong condition 2
and weak condition 4.

– adding <qd
: then d = g and weak condition 4 clearly holds. Since g is a

receipt event, g ∈ E
γ
p and p � q, also d <γ

p g is added, which establishes
strong condition 2.

22

B.3 Property regarding sequential composition

We split the proof of
.
= in its two directions:

Γ t.({p} ◦W Γ t◦W p.Q) v Γ t.({p} ◦W Q)
⇐ {monotonicity of Γ}

{p} ◦W Γ t◦W p.Q v {p} ◦W Q

⇐ {monotonicity of ◦W }
Γ t◦W p.Q v Q

≡ {shrinking Γ}
true

Γ t.({p} ◦W Q) v Γ t.({p} ◦W Γ t◦W p.Q)
≡ {idempotence of Γ}

Γ t.(Γ t.({p} ◦W Q)) v Γ t.({p} ◦W Γ t◦W p.Q)
⇐ {monotonicity of Γ}

Γ t.({p} ◦W Q) v {p} ◦W Γ t◦W p.Q

⇐ {calculus}
(∀q : q ∈ Q : Γ t.(p ◦W q) � p ◦W Γ t◦W p.q)

For the remaining �, note that the event sets and the labeling are identical,
and hence we only need to consider strong condition 2. Since ◦W is associative,
(E′, <′, l′) is identical in both Γ ’s. Since the events of q are contained in the
events of p ◦W q, the orders introduced by Γ in the right term are a subset of
the orders introduced by Γ in the left term.

B.4 Deadlock extension rule

Provided laters x and y are label disjoint and y = (Ey , <y, ly):

Ey ⊆ ∆.(Γ t.(x‖y)) ≡ Γ t.(x‖y) � Γ t.x

⇐ follows from condition 1 of �. For ⇒ we consider the four conditions for
�. Condition 1 is guaranteed, and hence also condition 3 is guaranteed. Weak
condition 4 is guaranteed since the events in x are contained in the events in
x‖y.

For strong condition 2 we need to show that each causality a < b from
Γ t.x such that b 6∈ ∆.(Γ t.(x‖y)) is also in Γ t.(x‖y). This holds trivially for
the causalities from x. Thanks to label-disjointness of x and y, it holds for the
causalities that are introduced via <c. Finally, it holds for the causalities that
are introduced via <d by using b 6∈ ∆.(Γ t.(x‖y)) and Ey ⊆ ∆.(Γ t.(x‖y)).

B.5 Multiple deadlock extension rule

Provided laters x, y and z are label disjoint:

Γ t.(x‖y) � Γ t.x ∧ Γ t.(x‖z) � Γ t.x ≡ Γ t.(x‖y‖z) � Γ t.x

23

⇐ follows from monotonicity. For ⇒ we can use the deadlock extension rule
by showing that all events from y‖z are in ∆.(Γ t.(x‖y‖z)). Applying the deadlock
extension rule to the left-hand side gives that the events from y and z are in
∆.(Γ t.(x‖y)) and ∆.(Γ t.(x‖z)) respectively. Hence all possibly first events in y

and z are receipts that are not provided by Γ t.x alone. This ensures that all
events from y and z are in ∆.(Γ t.(x‖y‖z)).

B.6 Elimination rule

Provided laters x, y and z are label disjoint:

Γ t.(x‖y‖z) � Γ t.(x‖y) ⇒ Γ t.(x‖z) � Γ t.x

Using the deadlock extension rule, it is sufficient to show that all events from
z are in ∆.(Γ t.(x‖z)). Applying the deadlock extension rule to the antecedent
gives that the events from z are in ∆.(Γ t.(x‖y‖z)). Hence all possibly first events
in z are receipts that are not provided by Γ t.(x‖y) alone. Since Γ t.x � Γ t.(x‖y),
all events from z are in ∆.(Γ t.(x‖z)).

As a corollary (x := [ε]) we have Γ t.(y‖z) � Γ t.y ⇒ Γ t.z � [ε].

C Proofs about implementations

C.1 Monotonicity of (Rt
◦ D) with respect to causality extensions

We prove:

(Rt ◦ D).(Γ t.M) v (Rt ◦ D).M
≡ {definition of Rt ◦ D}

Γ t.(‖i : i ∈ I : πi.(Γ
t.M)) v Γ t.(‖i : i ∈ I : πi.M)

⇐ {monotonicity of Γ}
(‖i : i ∈ I : πi.(Γ

t.M)) v (‖i : i ∈ I : πi.M)
⇐ {property of ‖}

(∀i : i ∈ I : πi.(Γ
t.M) v πi.M)

⇐ {calculus}
(∀i, m : i ∈ I ∧ m ∈ M : πi.(Γ

t.m) � πi.m)
≡ {property of �, π and causality extension Γ t}

true

C.2 Distribution of ◦W over (Rt
◦ D)

For m a later that does not order events in different instances, and M a set of
laters, we prove:

24

(Rt ◦ D).({m} ◦W M)
= {definition of R ◦ D}

Γ t.(‖i : i ∈ I : πi.({m} ◦W M))
= {distribution}

Γ t.(‖i : i ∈ I : πi.{m} ◦W πi.M)
= {distribution, since m does not order events in different instances}

Γ t.({m} ◦W (‖i : i ∈ I : πi.M))
.
= {property of Γ and ◦W }

Γ t.({m} ◦W Γ t◦W m.(‖i : i ∈ I : πi.M))
= {definition of R ◦ D}

Γ t.({m} ◦W (Rt◦W m ◦ D).M)

This proof uses that sequential composition is weak. In view of the graphical
syntax of MSC, it would be more natural to define sequential composition as
strong. However, the above rule only holds for weak sequential composition. If
we would start from the top of the above proof to replace ◦W by ◦S, then after
the third step we get stuck and need ◦W again. Although this does not prove
that strong sequential composition is infeasible, it is at least an indication that
weak sequential composition might be the strongest one that is realizable.

C.3 Safe choice

We simplify and strengthen the derived condition for choice in two steps. We
first concentrate on the first disjunct:

Γ t.(‖i :: πi.fi) � Γ t.(‖i :: πi.gi)
⇐ { monotonicity }

Γ t.(‖i :: πi.fi) � Γ t.(‖i : πi.fi � πi.gi : πi.gi)
⇐ { domain split; monotonicity }

Γ t.((‖i : πi.fi � πi.gi : πi.gi) ‖ (‖i : πi.fi 6� πi.gi : πi.fi))
� Γ t.(‖i : πi.fi � πi.gi : πi.gi)

≡ { property of Γ (multiple deadlock extension rule) }
(∀j : πj .fj 6� πj .gj :
Γ t.((‖i : πi.fi � πi.gi : πi.gi) ‖ πj .fj) � Γ t.(‖i : πi.fi � πi.gi : πi.gi))

⇐ { property of Γ (elimination rule) }
(∀j : πj .fj 6� πj .gj :
Γ t.((‖i : i 6= j : πi.gi) ‖ πj .fj) � Γ t.(‖i : i 6= j : πi.gi))

Let us abbreviate Γ t.((‖i : i 6= j : πi.gi) ‖ πj .fj) � Γ t.(‖i : i 6= j : πi.gi) as
P.g.j.fj . Then we can prove the remainder as follows:

25

(∀f ::
(∃g :: (∀j : πj .fj 6� πj .gj : P.g.j.fj)) ∨
(∃h :: (∀j : πj .fj 6� πj .hj : P.h.j.fj)))

⇐ { strengthening for later use }
(∀f :: (∃k ::

(∃g :: πk.fk � πk.gk ∧ (∀j : πj .fj 6� πj .gj : P.g.j.fj)) ∨
(∃h :: πk.fk � πk.hk ∧ (∀j : πj .fj 6� πj .hj : P.h.j.fj))))

≡ { case j = k follows from left conjunct }
(∀f :: (∃k ::

(∃g :: πk.fk � πk.gk ∧ (∀j : πj .fj 6� πj .gj ∧ j 6= k : P.g.j.fj)) ∨
(∃h :: πk.fk � πk.hk ∧ (∀j : πj .fj 6� πj .hj ∧ j 6= k : P.h.j.fj))))

⇐ { use (∀f, k ::
(∃g :: πk.fk � πk.gk ∧ (∀j : πj .fj 6� πj .gj : {πj .fj} 6v πj .M

t
msc

[[A]])) ∨
(∃h :: πk.fk � πk .hk ∧ (∀j : πj .fj 6� πj .hj : {πj .fj} 6v πj .M

t
msc

[[B]]))) }
(∀f :: (∃k ::

(∀g, j : {πj .fj} 6v πj .M
t
msc

[[A]] ∧ j 6= k : P.g.j.fj) ∧
(∀h, j : {πj .fj} 6v πj .M

t
msc

[[B]] ∧ j 6= k : P.h.j.fj)))
⇐ { quantifier shunting }

(∃k :: (∀j : j 6= k :
(∀f, g : {πj .fj} 6v πj .M

t
msc

[[A]] : P.g.j.fj) ∧
(∀f, h : {πj .fj} 6v πj .M

t
msc

[[B]] : P.h.j.fj)))
≡ { dummy renaming }

(∃k :: (∀j : j 6= k :
(∀g, n : n ∈ πj .M

t
msc

[[B]] ∧ {n} 6v πj .M
t
msc

[[A]] : P.g.j.n) ∧
(∀h, m : m ∈ πj .M

t
msc

[[A]] ∧ {m} 6v πj .M
t
msc

[[B]] : P.h.j.m)))

