Skip to main content

Sub-sampling for Efficient Spectral Mesh Processing

  • Conference paper
Advances in Computer Graphics (CGI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4035))

Included in the following conference series:

Abstract

In this paper, we apply Nyström method, a sub-sampling and reconstruction technique, to speed up spectral mesh processing. We first relate this method to Kernel Principal Component Analysis (KPCA). This enables us to derive a novel measure in the form of a matrix trace, based soly on sampled data, to quantify the quality of Nyström approximation. The measure is efficient to compute, well-grounded in the context of KPCA, and leads directly to a greedy sampling scheme via trace maximization. On the other hand, analyses show that it also motivates the use of the max-min farthest point sampling, which is a more efficient alternative. We demonstrate the effectiveness of Nyström method with farthest point sampling, compared with random sampling, using two applications: mesh segmentation and mesh correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: NIPS, pp. 857–864 (2002)

    Google Scholar 

  2. Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: ICCV, pp. 975–982 (1999)

    Google Scholar 

  3. Caelli, T., Kosinov, S.: An eigenspace projection clustering method for inexact graph matching. IEEE Trans. on PAMI 26(4), 515–519 (2004)

    Google Scholar 

  4. Carcassoni, M., Hancock, E.R.: Spectral correspondence for point pattern matching. Pattern Recognition 36, 193–204 (2003)

    Article  MATH  Google Scholar 

  5. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: SIGGRAPH 2000, pp. 279–286 (2000)

    Google Scholar 

  6. Liu, R., Zhang, H.: Segmentation of 3d meshes through spectral clustering. In: Proc. Pacific Graphics, pp. 298–305 (2004)

    Google Scholar 

  7. Jain, V., Zhang, H.: Robust 3d shape correspondence in the spectral domain. In: Shape Modeling International (to appear, 2006)

    Google Scholar 

  8. Isenburg, M., Lindstrom, P.: Streaming meshes. IEEE Visualization, 231–238 (2005)

    Google Scholar 

  9. Zhang, H., Liu, R.: Mesh segmentation via recursive and visually salient spectral cuts. In: Vision, Modeling, and Visualization (2005)

    Google Scholar 

  10. Kolluri, R., Shewchuk, J.R., O’Brien, J.F.: Spectral surface reconstruction from noisy point clouds. In: Eurographics SGP, pp. 11–21 (2004)

    Google Scholar 

  11. Zigelman, G., Kimmel, R., Kiryati, N.: Texture mapping using surface flattening via multidimensional scaling. IEEE TVCG 8(2), 198–207 (2002)

    Google Scholar 

  12. Press, W., Tekolsky, S., Vetterling, W., Flannery, B.: Numerical Recipies in C. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  13. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the nyström method. IEEE Trans. PAMI 26, 214–225 (2004)

    Google Scholar 

  14. de Silva, V., Tenenbaum, B.: Sparse multidimensional scaling using landmark points. Technical report, Stanford University (2004)

    Google Scholar 

  15. Sorkine, O.: Laplacian mesh processing. In: Eurographics State-of-the-Art Report (2005)

    Google Scholar 

  16. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: CVPR, pp. 731–737 (1997)

    Google Scholar 

  17. Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 183–196. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Williams, C., Seeger, M.: Using the nyström method to speed up kernel machines. In: Advances in Neural Information Processing Systems, pp. 682–688 (2001)

    Google Scholar 

  19. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  20. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3d models. In: ACM SIGGRAPH (2004)

    Google Scholar 

  21. Shapiro, L.S., Brady, J.M.: Feature based correspondence: An eigenvector approach. Image and Vision Computing 10(5), 283–288 (1992)

    Article  Google Scholar 

  22. Garland, M.: Qslim simplification software — qslim 2.1

    Google Scholar 

  23. Shamir, A.: A formalization of boundary mesh segmentation. In: Proc. 2nd Int’l Symposium on 3D Data Processing, Visualization, and Transmission, pp. 82–89 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, R., Jain, V., Zhang, H. (2006). Sub-sampling for Efficient Spectral Mesh Processing. In: Nishita, T., Peng, Q., Seidel, HP. (eds) Advances in Computer Graphics. CGI 2006. Lecture Notes in Computer Science, vol 4035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784203_15

Download citation

  • DOI: https://doi.org/10.1007/11784203_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35638-7

  • Online ISBN: 978-3-540-35639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics