
Skeleton-Driven Animation Transfer Based
on Consistent Volume Parameterization

Yen-Tuo Chang1, Bing-Yu Chen2, Wan-Chi Luo1, and Jian-Bin Huang1

National Taiwan University, Taiwan
1{draphix, maggie, azar}@cmlab.csie.ntu.edu.tw,

2robin@ntu.edu.tw

Abstract. To edit or create the animation of a 3D character model has
always been an important but time-consuming task, since the animator
usually needs to set up the character’s skeleton, paint its binding weights,
and adjust its key-poses. Hence, we propose an animation transfer system
in this paper to take a well-edited character animation as the input.
Then, the system can transfer the skeleton, binding weights, and other
attributes of the given character model to another static model with
only few corresponding feature points specified. The transferring process
is based on a mapping between the space around two character meshes.
In this paper, the mapping is called consistent volume parameterization,
which inherits consistent surface parameterization. Hence, the animator
can start to create a skeleton-driven animation for the new character
model without any prior setting. Moreover, our system is also capable
of cloning a skeleton-driven animation to several other character models
which can be used in a crowd animation.

1 Introduction

3D virtual characters are getting widely used in movies with special visual effects,
computer generated animations, computer games, etc. Animator brings a 3D
character model to life by making plausible and lifelike motions, and one of the
common solutions is to set up the character’s skeleton, paint its binding weights
on the surface, and adjust its key-poses. The skeleton of a character model
consists of a set of bones, which connect each other with a set of joints. Its
binding weights define the binding relationship between its skin (surface of the
model) and the skeleton. This relationship specifies the degree of dependencies
of each vertex on the surface to a set of bones of the skeleton. After the skeleton
and binding weights are well set up, the animator can edit the key-poses by
adjusting the skeleton, then the mesh surface of the character model is deformed
with the adjusted skeleton according to the binding weights. By interpolating
the key-poses, a skeleton-driven animation is generated.

Besides creating an animation of one 3D character model, a crowd animation,
which includes vast amount of 3D character models in a scene, is also widely
used, such as hundreds of guests dancing simultaneously in a royal hall, or hun-
dreds or thousands of soldiers fighting in a battle. As we mentioned above,

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 78–89, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Skeleton-Driven Animation Transfer 79

the process of creating or editing a character animation is a time-consuming
task. To create a crowd animation including huge amount of different charac-
ter models is thus extremely tedious. Although we can create only few char-
acter models and repeatedly put the same set of models everywhere in the
scene to form the crowd animation, this method leads to low quality of visual
feelings.

Therefore, in this paper we propose a system to transfer the skeleton of a
given 3D character model to any other models which originally have only mesh
data. Furthermore, the motion data well-edited previously for the given charac-
ter model could also be transferred to the target models, such as binding weights,
key-poses, and texture coordinates, as shown in Fig. 2. Hence, our system makes
it much easier to create a huge amount of character models performing the same
actions in a scene. Besides, the animators can also import the transferred skele-
ton, binding weights, and other data to an animating software for further editing.
The whole system is fully automatic except few feature points are specified by
the user to establish the correspondence between the source model and the target
one at the beginning.

In order to transfer the skeleton from the source character model to the target
one, a mapping between two mesh surfaces is first required. We use cross para-
meterization proposed by Kraevoy and Sheffer in [1] to construct this mapping
relationship. Generally, parameterization refers to mapping a geometry to a do-
main of lower dimension, and makes it easier to be processed. We consistently
parameterize two mesh surfaces to the same base domain, which is basically
a simplicial complex consists of all the user-specified feature points. The sys-
tem then automatically partitions and cross-parameterizes the surfaces of the
two models. Right after the correspondence between the two surfaces is estab-
lished, the consistent volume parameterization, which is a mapping from the
space of the source model body to that of the target one, is generated by us-
ing the 3D mean value coordinates adapted from [2]. The space of a 3D model
body is defined as the space around and inside the model body in this paper.
For each joint of the source model skeleton, which usually lies inside the mesh
surface, a corresponding 3D position is found for the target model by applying
a smooth and continuous function. The skeleton of the source model is thus
appropriately transferred to the target model. Then, the key-poses can be also
transferred through the skeleton transferring. The binding weights and other
attributes of the source model, such as texture coordinates, can be transferred
through consistent surface parameterization which has already been established
before generating consistent volume parameterization.

2 Related Work

In this paper, we take the advantages from several parameterization methods to
develop a best way to construct the correspondence between two or more mod-
els. In order to parameterize a 3D mesh with or without holes to a 2D domain,
most of the methods cuts the mesh surfaces into some patches which are

80 Y.-T. Chang et al.

homeomorphic to disks. Eck et al. [3] proposed a classic method to parameterize
a model of any topology. The triangular mesh is partitioned using Voronoi
diagram and Delaunay triangulation. However, this method is hard to adapt
into consistent parameterization because the Voronoi sites are selected ran-
domly. Zhou et al. [4] partitioned the mesh without any user specified features.
Their system analyzes the spectrum information along the surface and automat-
ically cut the mesh into some charts according to a stretch-minimizing criterion.
Although this approach gained both the advantage on efficiency and the stretch-
minimization of parameterization, it is still rather hard to be applied to make
correspondence between two or more models.

Cross parameterization or inter-surface mapping refers to the mapping be-
tween two models. Lee et al. [5] used MAPS [6] to get the base domains of two
models after some corresponding feature points and lines are specified by the
user. They then created an inter-surface parameterization between the two mod-
els by mapping the two models to their base domains first, and constructing a
correspondence between the two base domains with user assistance. Praun et al.
[7] provided consistent mesh parameterization to get the inter-surface mapping.
In their method, the user first specifies a common base domain and maps it
to all models manually. Then, the consistent parameterization can be done by
subdividing the base domain for each model. Schreiner et al. [8] established a
common base domain of two models based on the corresponding feature points
specified by the user. They created the common base domain by linking all com-
mon feature pairs together, then used progressive meshes [9] with constraints
to create multiresolution meshes of the path networks and used a coarse-to-fine
mapping optimization method to find a continuous mapping between the mul-
tiresolution meshes. Kraevoy and Sheffer [1] created the common base domain
in a similar way as in [8]. They then used mean value parameterization to map
the vertices of a model to their belonging triangle on the common base domain.
The inter-surface mapping was finally constructed through mapping the base
domains.

In the topic of representing a position in 3D space by other primitives, convex
combination is usually used for parameterization in several different approaches.
It means that every vertex can be represented as a convex combination of its
neighboring vertices. Ju et al. [2] applied the mean value coordinate [10] into
triangular mesh parameterization, and made it possible to represent a vertex in
a closed 3D mean-value domain.

For transferring the animation to other static models, Sumner and Popović
[11] proposed a method to transfer the deformation by first matching the fea-
tures of the inputs and then transforming each triangle with this mapping. Bre-
gler et al. [12] transferred the motion of a 2D character animation to other
3D models by analyzing its affine transformations and key-poses on the plane.
Zhou et al. [13] turned a 3D static model into a solid wire-frame, then the
deformation can be edited according to graphical Laplacian. Their system also
accomplishes the transfer of planar deformation from 2D cartoons. However, all
these animation transfer methods are not able to generate the skeleton or other

Skeleton-Driven Animation Transfer 81

animation data for the target static model, to use the transferred animation for
further editing is not easy. Allen et al. [14] also presented a method which is
able to transfer the skeleton of a 3D human model to other ones. Their method
records the position of each joint with only two or three vertices around, thus it
may introduce great distortion in most of our cases.

3 System Overview

As shown in Fig. 4, our system takes the animated source model and a sta-
tic target one as the input (upper-left two squares in the figure), and requires
the user to specify some corresponding feature points as the first step of the
whole processes (upper-middle). The rest processes of our system are fully auto-
matic. The common base domain derives from the corresponding feature points
on the surface of each model (middle blue-shaded figure in upper-right rectan-
gle). Then, the two input meshes are partitioned and mapped to the common
base domain to construct the consistent surface parameterization (upper-right).
We then apply the 3D mean value coordinates to achieve the consistent vol-
ume parameterization using the constructed consistent surface parameterization
(middle-left). Due to the consistent volume parameterization, the skeleton of
the source model can be transferred to the target one (middle-right), and the
binding weights and other attributes are also copied according to the consistent
surface parameterization to complete the animation transfer process (lower two
figures).

4 Consistent Surface Parameterization

To construct the consistent surface parameterization of two meshes is to find
a correspondence map Mts, so that for each vertex vt

i ∈ Vt, i = 1, ..., Nt of a
target mesh Mt with Nt vertices can have a meaningful position Mts(vt

i) on the
surface of a source mesh Ms with Ns vertices, where Vt is a set of vertices of Mt.
The correspondence position Mts(vt

i) may be a vertex vs
i ∈ Vs, i = 1, ..., Ns of

Ms or inside a triangle of Ms which consists of three vertices in Vs. The quality
of the consistent surface parameterization Mts depends on how much the new
position Mts(vt

i) of each vertex vt
i signifies its original position.

The first step of our system is to specify the corresponding feature points of
two models manually by the user through a typical user interface as shown in
Fig. 3. The feature points should be the vertices of the two models. Hence, we
can define a correspondence map of U pairs of the common feature points as
Mts(vt

i) = vs
i for i = 1, ..., U , where U < Nt, Ns, and vise versa, i.e., Mst(vs

i) =
vt

i = M−1
ts (vs

i). After specifying U pairs of the common feature points on the
surfaces of the two models, we adapt Kraevoy and Sheffer’s method [1] to create
the cross parameterization Mts of the two models for the rest vertices vt

i , i =
U + 1, ..., Nt of Mt.

82 Y.-T. Chang et al.

Fig. 1. The motion of the fat-man model
(left) is transferred to the alien (middle)
and Mario (right) models

Fig. 2. The transferred skeleton and bind-
ing weights

Fig. 3. Few pairs of feature points are
specified on the surfaces of the dog (upper-
left) and triceratops (upper-right) models,
and also for the fat-man (lower-left) and
Mario (lower-right) models

Source Animation

Target Mesh

Feature
Specification

Consistent
Surface

Parameterization

Consistent
Volume

Parameterization

Skeleton
Transfer

Binding Weights and Other Attributes Transfer

Target Animation

Fig. 4. System flowchart of our method

Fig. 5. The meshes are partitioned into
some patches according to the paths of the
base domain. This leads to a meaningful
mapping between the segments of the dog
(upper-left) and triceratops (upper-right)
models, and also for the fat-man (lower-
left) and Mario (lower-right) models.

Skeleton-Driven Animation Transfer 83

Before constructing the cross parameterization of the two models, we first
connect the feature points to establish the base domains Bs and Bt of the two
models Ms and Mt, respectively. The base domains are required to be consistent,
which means that there are one-to-one correspondences among the vertices and
paths of the two base domains. To connect two feature points, we use the Dijk-
stra’s algorithm to trace the shortest paths along the edges between two feature
points on the surface of the mesh and add some Steiner points to subdivide the
edges while tracing if necessary.

When connecting the feature points, we also keep the consistence of the cor-
responding paths on both meshes in each tracing step. Hence, when we connect
two feature points vt

i and vt
j of Mt, we must connect their corresponding feature

points vs
i and vs

j of Ms to check if the two paths are both valid to add to the
base domains Bs and Bt, where i, j = 1, ..., U . To identify a path is valid or not,
we test if it intersects any existing path. The cyclical order of the paths emitted
from one feature point is also compared to those of its corresponding feature
point on the other model to check if they are consistent. The same-sidedness
of a vertex relative to a path is also examined on both models to ensure the
correctness of the topology. If there is no valid path when connecting two fea-
ture points, we will try to add some Steiner points to the faces between the two
feature points, so that a valid path can be found for the two feature points.

Finally, the base domains Bs and Bt of the two models Ms and Mt are con-
structed and guaranteed to be consistent. Then, the two models are partitioned
to be some patches and the number of patches of the two models are the same
as shown in Fig. 5. Moreover, every patch consists of three feature points and
three paths connected the three feature points, so that when replacing the paths
with straight lines, the base domains consist of some planar triangles as shown
in Fig. 6.

The partitioned model is then parameterized to its base domain. Initially,
a mean value parameterization approach in [10] is applied to every patch and
put all triangles of the patch onto the corresponding planar triangle of the base
domain. The corner vertices are fixed on the feature location of the base do-
main, while the interior vertices are placed with barycentric coordinates. The
algorithm then applies a smoothing step to improve the distribution of the pa-
rameterization by refining the shapes of the patches. To avoid too sparse or too
dense distribution on a parameterization which introduces large distortion, the
vertices are shifted to its neighboring patches and thus relax the unbalancing on
the surface.

Finally, we establish the mapping MB
ts between the two consistent base do-

mains Bt and Bs of the two models Mt and Ms by just mapping their patches
one-by-one. Hence, the mapping Mts between the target model Mt and the
source one Ms can be constructed through the following equation:

Mts = Π−1
s · MB

ts · Πt,

where Πt refers to the parameterization between model Mt and its base domain
Bt, and so does Πs.

84 Y.-T. Chang et al.

5 Consistent Volume Parameterization

After the consistent surface parameterization between two models is established,
in this section, a mapping called consistent volume parameterization is then
constructed for the 3D space of two models. For representing the volumetric
space around a surface model, we adapt the 3D mean value coordinates proposed
by Ju et al. [2]. The original 2D mean value coordinates was proposed by Floater
[10], which is used to construct a continuous distribution of an attribute value
f [x] of a weighting function f for all points x inside or outside a planar polygon.
The value can be any kind of data such as color, heat, or texture coordinate.
Ju et al. extended this approach to compute the 3D mean value coordinates
inside a closed triangular mesh.

The mean value coordinates has the following general form:

f [x] =
∑n

i=1 wifi∑n
i=1 wi

,

where f [x] is the interpolated value, wi and fi are the weight and attribute value
of each vertex vi of the closed triangular mesh M . By applying this algorithm, a
set of weights wi are determined to represent the relationship between a specific
position x inside the mesh M and all the triangles that have a projection area
on the unit sphere of x. The value fi on the vertices vi of all these triangles are
interpolated according to the weights wi, and then the value f [x] for x can be
obtained.

To construct the consistent volume parameterization is to define a correspon-
dence map MV

ts, so that for each point xt inside or closely outside the target
closed triangular mesh Mt can have a meaningful position xs = MV

ts(x
t) inside

or closely outside the source closed triangular mesh Ms. Hence, we define the
weighting function fs

i for each vertex vs
i of the source model Ms as the map-

ping position of xt, then we can obtain the mapping from xt to xs through fs
i .

According to the consistent surface parameterization,

fs
i =

∑m

j=1
αjMts(f t

j),

where αj is the weights for barycentric coordinate and
∑m

j=1 αj = 1, m = 1 or
3. If vt

j is mapped to a vertex vs
i , m is set to be 1, i.e., vs

i = Mts(vt
j), otherwise

m is set to be 3, since vs
i is mapped by a triangle of Mt. Using the 3D mean

value coordinates:

f [xs] =
∑n

i=1 wif
s
i∑n

i=1 wi
,

we define a mapping function xs = Ωs(fs
i) from the vertices vs

i on the surface
of Ms to one of their interior points xs through the 3D mean value coordinates.

Thus, the consistent volume parameterization is established by interpolating
the mapping value generated by the consistent surface parameterization, and
finding a corresponding position xt around Mt for any specified position xs

around Ms by
xs = Ωs(

∑m

j=1
αjMts(f t

j)),

Skeleton-Driven Animation Transfer 85

and f t
j = Ω−1

t (xt). Hence, the mapping MV
ts between the space of the target

model Mt and that of the source one Ms can be constructed through the following
equation:

MV
ts = Ωs · Mts · Ω−1

t .

As shown in Fig. 7, the consistent volume parameterization is constructed
between the two models. For each point of the source (fat man on left side)
model, we can find its corresponding point around the target (Mario on right
side) model. The points inside the models are corresponding joints. Other places
inside the models are also mapped smoothly.

Although we call this method as consistent volume parameterization, it does
not always find a mapping position inside the target mesh for a joint inside
the source. The exception may happen when the source mesh is convex but the
target is not. The mapped position may be closely outside the target surface, but
it still belongs to the volumetric space of the character. Fortunately, the joints
of a skeleton are not necessary to be all inside the mesh surface. The transferred
animation still looks well under this circumstances.

6 Animation Transfer

To transfer the animation data from a skeleton-driven source animation model
to a target static one, we first transfer the skeleton of the source animation
model through the consistent volume parameterization of the two models. Then,
the binding weights and other attributes of the source animation model can be
transferred to the target static one through the consistent surface parameteri-
zation of the two models. Finally, the key-poses are transferred by applying the
same animation data to the generated skeleton of the target model as that of
the source animation model. If an animator wishes to modify the transferred
animation, he or she can use model editing tools to edit the transferred skeleton,
binding wights, key-poses, or other attributes of the target model.

6.1 Skeleton Transfer

The skeleton of a 3D character model is defined to be a set of ”joint and bone”
pairs. The definition basically imitates the skeleton structure of a vertebrate, in
which bones are rigid sticks and connect each other by a set of joints. Each joint
has a rotation vector representing the current direction which the bone connected
to it points toward. Therefore, transferring a skeleton is identical to transferring
the positions of all the joints of a given skeleton to their new positions, and
connects them with bones according to the structure of the original one.

Our system automatically finds the corresponding position of each joint inside
the target model through the consistent volume parameterization. After the
skeleton is transferred from the source animation model to the target static one,
the skeletons of the two models are consistent which means there are one-to-
one correspondences among their joints and bones. Hence, the key-poses of the
source animation model can easily be transferred by assigning the same motion

86 Y.-T. Chang et al.

Fig. 6. The triangular patches are para-
meterized onto the base domain and form
a pair of coarse meshes with the same
topology of shape

Fig. 7. The graphical representation of
mapping a joint in the center of the head
of the fat man model (left) to a corre-
sponding position inside the Mario model
(right) by applying the 3D mean value co-
ordinates

Fig. 8. A transferred skeleton-driven an-
imation generated by our system. The
skeleton is nicely shaped according to the
character model (upper-left) and the mo-
tion can also be transferred from the fat
man model shown in Fig. 1 (left).

Fig. 9. The binding weights of the black
dog model (upper) is transferred to the
pig (middle) and brown dog (lower) mod-
els. The black dog model is shown in
Fig. 10 (upper) and Fig. 11 (upper), the
pig model is shown in Fig. 11 (middle),
and the brown dog model is shown in
Fig. 10 (lower).

Fig. 10. The motion of the black dog
model (upper) is transferred to the cat
(middle) and brown dog (lower) models

Fig. 11. The motion of the black dog
model (upper) is transferred to the pig
(middle) and can (lower) models

Skeleton-Driven Animation Transfer 87

data, such as the rotation angle of a joint of the source model, to its correspond-
ing joint of the target model as shown in Fig. 8.

6.2 Binding Weights Transfer

The binding weights, like other surface attributes such as texture coordinate, are
assigned to the vertices on the surface of the model. Hence, we can transfer the
binding weights from the source model to the target one through the consistent
surface parameterization as shown in Fig. 9.

7 Results

Fig. 10 and Fig. 11 show the animation transfer results from a black dog model to
a cat model, a brown dog model, a pig model, and a can model, which originally
have only mesh data. Hence, our system works well when the target model has
a shape similar to the source one, as was expected.

According to the experiments, our system processes with a desirable efficiency
in all cases. For a novel user who can use a 3D model viewing system with a
mouse, he or she can use our system with nearly no training in advance. As
shown in Table 1, 15 ∼ 30 features are required to produce a good parameteri-
zation. This takes about 5 ∼ 10 minutes in specifying the corresponding feature
points on the surface of the two models. After the feature specifying stage, our
system is fully automatic. In all cases, the bottleneck of performance is the con-
struction of the consistent surface parameterization. Besides this stage, the rest
processes of our system is typically performed in real-time. As shown in Table 1,
the construction of the consistent surface parameterization consists of partition-
ing two models consistently according to the corresponding feature points, and
parameterizing the patches to the base domain. Although the processing time
of the construction of the consistent surface parameterization requires from sec-
onds to few minutes, this is still extremely tolerable to the user, since it may be
an off-line process. The testing platform is a desktop PC with an Intel Pentium
4 3.4GHz CPU and 1.5GB memory.

Table 1. The performance testing of four pairs of animation transfer, including the time
for partitioning and parameterization, which are the two main steps of constructing the
consistent surface parameterization. The numbers of vertices and faces of the source
and target models and the number of corresponding feature points specified on the
two models are also listed. The dog and cat models are shown in Fig. 10 (upper and
middle), the fat man and Mario models are shown in Fig. 1 (left and right), and the
dog and pig models are shown in Fig. 11 (upper and middle).

time for time for
Source #vertex/#face Target #vertex/#face #feature partitioning parameterization

of Source of Target (sec.) (sec.)
dog 4070/8136 cat 2702/5400 17 50 67

fat man 3426/6848 Mario 2934/5864 25 107 17
dog 4070/8136 pig 5570/11136 22 276 23

88 Y.-T. Chang et al.

8 Conclusions and Future Work

In this paper, we propose a system to transfer the skeleton and animation data
from a source animation model to a target static one which has only mesh data.
The system requires the user to mark few feature points, and then generates
the output skeleton and animation data for the target model automatically. The
skeleton has a nice shape and can be edited to produce other animation by the
animator by importing the generated skeleton and animation data to a model
editing tool. Our system runs in a range from 30 seconds to 5 minutes, thus
enormously saves the time and work for the animators.

For our future work, there are some possible ways to improve the efficiency
and quality of our system. Surazhsky et al. [15] proposed a robust algorithm
to trace the geodesic directly on the mesh surface, regardless of the topology
below. It is possible to modify our system to partition the meshes according
to this method. From our experiments, the initial poses of the input models
affect the quality of the transferred animation greatly. Inconsistency in initial
poses may distort the distribution and default angles of each joint, and thus
produce animation that is not concurrent to the source. We can add one more
step to automatically adjust the pose of the target model to fit that of the source
after transferring the skeleton. The adjusted model could be treated as a new
input with the new initial pose, so the system may redo the consistent surface
parameterization process again and find some more accurate position for all the
joints, as long as the output animation. Although the feature specification is
regarded necessary, it is still desirable to derive some methods to automatically
detect and specify the common feature points.

Finally, the consistent volume parameterization may benefit a lot of areas
in computer graphics. It is possible to transfer the inside structure of a model
to another, thus may reduce many work in 3D modeling. It can also be used
to transfer the internal texture, layered information, or the structure needed to
shade with translucency.

Acknowledgements

This work was supported in part by the National Science Council of Taiwan
under Grant No. NSC93-2213-E-002-084 and NSC94-2213-E-002-097.

References

1. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3d
models. ACM Transactions on Graphics (SIGGRAPH 2004 Conference Proceed-
ings) 23(3) (2004) 861–869

2. Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular
meshes. ACM Transactions on Graphics (SIGGRAPH 2005 Conference Proceed-
ings) 24(3) (2005) 561–566

Skeleton-Driven Animation Transfer 89

3. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Mul-
tiresolution analysis of arbitrary meshes. In: ACM SIGGRAPH 1995 Conference
Proceedings. (1995) 173–182

4. Zhou, K., Synder, J., Guo, B., Shum, H.Y.: Iso-charts: stretch-driven mesh pa-
rameterization using spectral analysis. In: Proceedings of the 2004 Eurographics
Symposium on Geometry Processing. (2004) 45–54

5. Lee, A.W.F., Dobkin, D., Sweldens, W., Schröder, P.: Multiresolution mesh mor-
phing. In: ACM SIGGRAPH 1999 Conference Proceedings. (1999) 343–350

6. Lee, A.W.F., Sweldens, W., Schröder, P., Cowsar, L., Dobkin, D.: Maps: mul-
tiresolution adaptive parameterization of surfaces. In: ACM SIGGRAPH 1998
Conference Proceedings. (1998) 95–104

7. Praun, E., Sweldens, W., Schröder, P.: Consistent mesh parameterizations. In:
ACM SIGGRAPH 2001 Conference Proceedings. (2001) 179–184

8. Schreiner, J., Asirvatham, A., Praun, E., Hoppe, H.: Inter-surface mapping. ACM
Transactions on Graphics (SIGGRAPH 2004 Conference Proceedings) 23(3) (2004)
870–877

9. Hoppe, H.: Progressive meshes. In: ACM SIGGRAPH 1996 Conference Proceed-
ings. (1996) 99–108

10. Floater, M.S.: Mean value coordinates. Computer Aided Geometric Design 20(1)
(2003) 19–27

11. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans-
actions on Graphics (SIGGRAPH 2004 Conference Proceedings) 23(3) (2004) 399–
405

12. Bregler, C., Loeb, L., Chuang, E., Deshpande, H.: Turning to the masters: motion
capturing cartoons. In: ACM SIGGRAPH 2002 Conference Proceedings. (2002)
399–407

13. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.Y.: Large
mesh deformation using the volumetric graph laplacian. ACM Transactions on
Graphics (SIGGRAPH 2005 Conference Proceedings) 24(3) (2005) 496–503

14. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: recon-
struction and parameterization from range scans. ACM Transactions on Graphics
(SIGGRAPH 2003 Conference Proceedings) 22(3) (2003) 587–594

15. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and
approximate geodesics on meshes. ACM Transactions on Graphics (SIGGRAPH
2005 Conference Proceedings) 24(3) (2005) 553–560

	Introduction
	Related Work
	System Overview
	Consistent Surface Parameterization
	Consistent Volume Parameterization
	Animation Transfer
	Skeleton Transfer
	Binding Weights Transfer

	Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

