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Abstract. In the design of an interpretable fuzzy rule-based classifi-
cation system (FRBCS) the precision as much as the simplicity of the
extracted knowledge must be considered as objectives. In any inductive
learning algorithm, when we deal with problems with a large number of
features, the exponential growth of the fuzzy rule search space makes
the learning process more difficult. Moreover it leads to an FRBCS
with a rule base with a high cardinality. In this paper, we propose a
genetic-programming-based method for the learning of an FRBCS, where
disjunctive normal form (DNF) rules compete and cooperate among
themselves in order to obtain an understandable and compact set of
fuzzy rules, which presents a good classification performance with high
dimensionality problems. This proposal uses a token competition me-
chanism to maintain the diversity of the population. The good results
obtained with several classification problems support our proposal.

1 Introduction

The Fuzzy Rule-Based Systems have been successfully applied to various fields
such as control, modelling and classification. Traditionally, the main goal in the
design of this kind of fuzzy systems has been the maximization of the precision,
although the interpretability has also been taken into account in some recent
studies [1]. This objective is more difficult to reach when the number of features
for the problem increase due the exponential growth of the fuzzy rule search
space. This growth makes the learning process more difficult and, in most cases,
it leads to an FRBCS with a rule base with a high cardinality (with respect to
the number of rules and the number of features included in each rule).

An analysis of the specialized literature indicates that exist two principal ways
to tackle the problem of the high dimensionality:

1. Compacting and reducing the previously learned rule set in a postprocessing
stage ([10], [13]), and
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2. Carrying out a feature selection process, that determines the most relevant
variables before or during the inductive learning process of the FRBCS ([7],
[16], [17]).

In this paper, we tackle the learning of FRBCSs with high interpretability by
means of a genetic-programming (GP) based approach. The genetic programming
[12] is a kind of evolutionary algorithm that uses variable-length trees to represent
the different individuals in the population, instead of fixed-sized vectors (with bi-
nary, integer or real codification) as the Genetics Algorithms (GAs) do.

The FRBCSs learning has already been done previously in the specialized
literature by means the GP. An initial paper in this topic is Fuzzy GP, developed
by Geyer-Schulz [6], which combines a simple GA that operates on a context-
free language with a context-free fuzzy rule language. Sánchez et al. propose
an FRBCS learning process in [18] and [5] by combining GP operators with
simulated annealing and GA respectively to establish the membership functions.
Mendes et al. develop in [14] a co-evolutionary algorithm which includes a GP
based algorithm for FRBCS learning and an evolutionary algorithm to evolve
membership functions. Tsakonas et al. propose in [19] a GP-based algorithm
with a Pittsburgh representation for the learning of FRBCSs.

In our proposal, the definition of a context-free grammar that allows the
learning of DNF fuzzy rules, together with the use of a competition mechanism
between rules which deletes irrelevant rules during the learning process, allow
us to obtain of compact FRBCSs (with few rules and conditions per rule) with
a high-generalization capability.

The paper is organized as follows. Our proposal is explained in Section 2.
Section 3 presents the experimental study and the analysis carried out. Finally,
the conclusions obtained are presented in Section 4.

2 The Genetic-Programming-Based Proposal

The first feature of our proposal is the kind of fuzzy rule used. Our method
learns DNF fuzzy rules, which have the following form:

If X1 is Â1 and . . . and Xn is Ân then Y is C with CD

where each input variable Xi takes as a value a set of linguistic terms or labels
Âi = {Ai1 or . . . or AiLi} joined by a disjunctive operator, whilst the output
variable (Y ) has one of the class values. The definition of the fuzzy sets that specify
the meaning of each linguistic term or label, is done by using expert knowledge,
or in its absence, by using triangular fuzzy sets divided in a uniform way.

This rule also includes a certainty degree (CD ∈ [0, 1]), which represents the
confidence of the classification in the class represented by the consequent. In our
proposal, this certainty degree is obtained as the quotient Sj / S, where Sj is
the sum of the matching degrees for the training examples belonging to class
represented by the consequent which are covered by the antecedent of the rule,
and S the sum of the matching degrees for all the training examples which are
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covered by the antecedent of the rule, independently of the class they belong to.
Is important to point out that, in our proposal, this kind of rule is generated
according to the production rules of a context-free grammar. The definition of
this grammar is completely explained in subsection 2.1.

One of the most important aspects in any evolutionary approach is its coding
scheme. The different evolutionary methods follow two approaches in order to
encode rules within a population of individuals [4]:

– The ”Chromosome = Set of rules”, also called the Pittsburgh approach, in
which each individual represents a rule set.

– The ”Chromosome = Rule” approach, in which each individual codifies a sin-
gle rule, and the whole rule set is provided by combining several individuals
in the population.

In turn, within the ”Chromosome = Rule” approach, there are three generic
proposals:

– The Michigan approach, in which each individual codifies a single rule. This
kind of system is usually called a learning classifier system. It is rule-based,
message-passing system that employs reinforcement learning and the GA to
learn rules that guide its performance in a given environment [11].

– The IRL (Iterative Rule Learning) approach, in which each chromosome
represents a rule, but the solution is the best individual obtained and the
global solution is formed by the best individuals obtained when the algorithm
is run multiple times. SLAVE [8] is a proposal that follows this approach.

– The cooperative-competitive approach, in which the complete population or
a subset of it codifies the rule base. LOGENPRO [21] is an example with
this kind of representation.

Our method follows the cooperative-competitive approach. However, this kind
of representation makes necessary to introduce a mechanism to maintain the
diversity of the population. In this proposal we use a token competition mecha-
nism to promote the diversity in order to avoid that all the individuals in the
population converge into the same area of the search space. This mechanism
is described in subsection 2.1, together with the remaining components of the
evolutionary learning process.

Finally, is important to point out that our proposal is made up by two different
stages:

– The first stage consists in an evolutionary learning process that uses GP to
obtain a compact fuzzy rule base with a good classification performance.

– The second one, consists in a postprocessing stage that eliminates redundant
rules from the rule base in order to increase the interpretability.

In the following two subsections we describe these two stages.

2.1 Evolutionary Learning Process

The GP process starts with an initial population of rules that is randomly ge-
nerated according to the grammar production rules.
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In each iteration of the evolutionary process, parents are selected to generate
offspring by the ranking selection scheme. All the individuals in the new popula-
tion generate one descendant by means one of the genetic operators. Individuals
in the population and offspring obtained by the application of the genetic opera-
tors, are joined to form a new population. The size of the resulting population is
double the original. The individuals of this new population are ordered by their
fitness score and the token competition is carried out. The token competition
modifies the fitness of the individuals in order to maintain the diversity of the
population. Once token competition is finished, the individuals in the population
are ordered again by their modified fitness score, and the population size is set
to its original one. This evolutionary process is repeated until a certain number
of calls to the fitness function is reached.

Once the evolutionary process is concluded, the best evolved population is
returned as the final rule set. The best population obtained in the evolutionary
process is selected according to a certain measure of global fitness score.

In the following, the most important components of our method are described.

1. Grammar Definition: In our method, is necessary to define a grammar that
allows the learning of DNF fuzzy rules and the absence of some input features.
In Table 1, an example of the grammar for a classification problem with two
features (X1, X2), three linguistic labels per feature (Low, Medium, High) and
three classes (C1, C2, C3) is shown.

Table 1. Grammar example

Start −→ [If ], antec, [then], conseq, [.].
antec −→ descriptor1, [and], descriptor2.
descriptor1 −→ [any].
descriptor1 −→ [X1 is] label.
descriptor2 −→ [any].
descriptor2 −→ [X2 is] label.
label −→ {member(?a, [L, M, H, L or M, L or H,

M or H, L or M or H ])}, [?a].
conseq −→ [Class is] descriptorClass.
descriptorClass −→ {member(?a, [C1, C2, C3])}, [?a].

2. Genetic Operators: Offspring are generated by one of the next three genetic
operators (these operators are selected in a probabilistic way):

1. Crossover: Produces one child from two parents. A part in the first parent is
randomly selected and replaced by another part, randomly selected, in the
second one, but under the constraint that the offspring produced must be
valid according to the grammar.

2. Mutation: A part of the rule is selected and replaced by a randomly generated
new part. Since the offspring have to be valid according to the grammar, a
selected part can only mutate to another part with a compatible structure.
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3. Dropping Condition: Due the probabilistic nature of GP, redundant cons-
traints may be generated in the rule. Thus, it is necessary to generalize the
rules, to represent the actual knowledge in a more concise form. Dropping
condition selects randomly one descriptor in the antecedent part and then
turns it into ”any”. The attribute in the descriptor is no longer considered
in the rule, hence, the rule can be generalized.

3. Fitness Function: Our method uses a fitness function based on the estima-
tion of two measures:

1. Confidence, which measures the accuracy of an individual, that is, the con-
fidence of the consequent to be true if the antecedent is verified

confidence =
tp

(tp + fp)
∗ tn

(fn + tn)
. (1)

2. Support, which measures the coverage of the knowledge represented in the
individual

support =
tp

(tp + fn)
∗ tn

(fp + tn)
. (2)

where tp and fp are the sums of the matching degrees for true and false positives,
and tn and fn are the number of true and false negatives, respectively.

Both measures are combined to make up the fitness function in the following
way

raw fitness =
{

support, if support < min support
support ∗ confidence, otherwise . (3)

If the support of the rule is below a user-defined minimum threshold, the
confidence value should not be considered to avoid the waste of effort to evolve
those individuals with a high confidence but low support.

4. Maintaining the Diversity of the Population: Token Competition [21]
has been used as mechanism to maintain the diversity in the population in our
approach. It assumes that each example in the training set can provide a resource
called a token, for which all chromosomes in the population will compete to
capture. If an individual (i.e. a rule) can match the example, it sets a flag to
indicate that the token is seized. Other weaker individuals then cannot get the
token.

The priority of receiving tokens is determined by the strength of the indi-
viduals. The individuals with a high fitness score will seize as many tokens as
they can. The other ones will have their strength decreased because they cannot
compete with the stronger ones. The fitness score of each individual is penalized
based on the tokens it can seize. The penalized fitness is defined as:

Penalized fitness = raw fitness ∗ count

ideal
. (4)

where raw fitness is the fitness score obtained from the evaluation function, count
is the number of tokens that the individual actually seized and ideal is the total
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number of tokens that it can seize, which is equal to the number of examples
that the individual matches.

As a result of token competition, there exist individuals that cannot seize any
token. These individuals are considered as irrelevant, and they can be eliminated
from the population due to all of their examples are covered by other stronger
individuals.

In order to increase the diversity into the population, new rules are also ge-
nerated to cover those examples whose tokens have not been seized by any rule
(if those examples exist).

5. Selecting the Best Population: At the end of each iteration in the evolu-
tionary process, a process that keeps the best evolved population is carried out.
This process checks if the current population is better than the others that have
been evolved. One population A is considered better than other B if the global
fitness score of A is greater than the global fitness score of B. The global fitness
score is calculated adding four different measures

Global fitness = Percent + Nvar + Ncond + Nrules . (5)

where Percent indicates the correct percentage on training, Nvar the average
number of variables per individual (rule) in the population, Ncond the average
number of labels per individual (rule) in the population and Nrules the number
of rules in the population. These four measures are defined in the following way

Percent = W1 ∗ %Tra . (6)

Nvar = W2 ∗ (1.0 − #V ) . (7)

Ncond = W3 ∗ (1.0 − #C) . (8)

Nrules = W4 ∗ (1.0 − #R) . (9)

where %Tra is the normalized value of the correct percentage on training, #V is
the normalized value of the number of variables per rule, #C is the normalized
value of the number of labels per rule, #R is the normalized value of the number
of rules and Wi are some weights that allows give more importance to any of
the four measures (in our experiments we have used the same value for all the
weights, Wi = 1).

2.2 Rule Base Simplification

Once the evolutionary process has finished, a postprocessing stage is carried
out for eliminating redundant rules. During the rule base learning process it
may happen that the algorithm learns two rules, one included in the other. For
example, in the following two rules

R1 : If X1 is Low then Class is C1 with α1

R2 : If X1 is Low or Medium then Class is C1 with α2
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the second rule includes the first one, hence, it does not make sense to keep both
of them in the rule set. In this case, it must be deleted the first rule because
the examples that it covers are also covered by the second rule. Sometimes, it
is also necessary to recalculate the certainty degree of the remaining rule. This
process aims to increase the interpretability of the previously learned FRBCS,
by deleting redundant rules.

3 Experimental Study

In order to analyse the behaviour of the proposed method, we use Pima, Wiscon-
sin, and Wine databases from the UCI repository of machine learning Databases
(http://www.ics.uci.edu/mlearn/MLRepository.html). Our method (from now on
called FRBCS GP) has been compared to other fuzzy rule learning techniques:

1. An extension of Wang & Mendel algorithm [20] for classification problems
proposed by Chi et al. [2], that generates a fuzzy rule for each example in
the training set and does not carry out any feature selection process.

2. A process for deriving fuzzy rules for high-dimensionality classification pro-
blems developed by Ravi et al. [16]. This approach uses a reduced set of
features extracted from the original ones by the principal component ana-
lysis. After that, a fuzzy rule learning process is carried out following the
method proposed in [9] which divides the pattern space in several fuzzy sub-
spaces, learning a rule for each one. Finally, a modified threshold accepting
algorithm [17] is used to build a compact rule subset with a high classification
accuracy, from rule set obtained in the previous stage.

3. SLAVE, a GA-based method for the learning of DNF fuzzy rules proposed
by Gonzalez et al. [8]. In [7], this method is extended by the inclusion of a
feature selection process. This extension will be called 2SLAVE from now.

4. A GP-based FRBCS learning process designed by Tsakonas et al. [19] which
uses a Pittsburgh approach to represent the solutions.

5. C4.5, a classification algorithm proposed by Quinlan [15] that constructs a
decision tree, which can be later transformed into a crisp rule set.

The parameters of our algorithm are the following: It stops after 5000 evalua-
tions, initial population size is 20, crossover probability is 0.5, mutation probabi-
lity is 0.4, dropping condition probability is 0.1, and the minimum threshold for
the support used in fitness function is 0.01. We have used 5 linguistic labels per
variable in all the experiments. For each different database, we have used 10-fold
cross-validation (except for the Sonar database, where only two partitions for
training and test, with a distribution of 50%, have been used).

The results are showed in Table 2, where #R indicates the average rule num-
ber, #Var the average antecedent variables per rule, #Cond the average an-
tecedent conditions number per rule and the %Test the correct percentage with
test examples. The subscripts in %Test are related to the fuzzy reasoning method
(FRM) [3] used, so 1 corresponds to the classical FRM (max-min) and 2 with
the normalised sum respectively (except in the C4.5 algorithm in where FRM is
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Table 2. Databases results

Pima
Method #R #Var #Cond %Test1 %Test2

WM 472.6 8 8 70.18 70.70
Ravi 354.9 5 5 70.06 70.06

2SLAVE 3.43 4.26 11.28 65.47 65.37
Tsakonas 17.4 1.41 1.74 52.8 51.6

C4.5 47.2 4.47 5.6 71.46 -
FRBCS GP 10.27 1.14 2.29 71.37 72.73

Sonar
Method #R #Var #Cond %Test1 %Test2

WM 104 60 60 43.27 43.27
Ravi 277 6 6 73.08 75

2SLAVE 7.67 22.39 41.43 68.33 68.33
Tsakonas 18.33 1.65 1.73 49 50.67

C4.5 10 3.1 3.1 74 -
FRBCS GP 11.33 6.5 14.62 75.33 75.33

Wisconsin
Method #R #Var #Cond %Test1 %Test2

WM 296.5 9 9 66.34 66.19
Ravi 344.3 5 5 93.85 93.85

2SLAVE 5.73 6.02 16.09 88.53 91.93
Tsakonas 22.7 1.15 1.19 72.2 56.9

C4.5 38.4 4.46 5.11 94.29 -
FRBCS GP 11.6 1.67 3.81 93.87 94.5

Wine
Method #R #Var #Cond %Test1 %Test2

WM 159.4 13 13 78.56 79.74
Ravi 231.8 5 5 92.22 92.22

2SLAVE 5.67 6.9 16.86 89.87 89.87
Tsakonas 19.53 1.38 1.49 35.63 39.13

C4.5 7.1 2.15 2.28 90.51 -
FRBCS GP 8.53 1.69 3.15 91.77 92.43

not used, so it has been decided to place the results in the first of the last two
columns).

Analysing the results, we can point out the following considerations:

– Our method learns rule sets with a low number of variables and labels per
rule. It also learns rule bases with a small number of rules. Therefore the
resulting FRBCSs have a high interpretability level. Our results are compa-
rable with the ones obtained by 2SLAVE.
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– Analysing the performance of our approach, it presents a good performance
in test for all the problems, obtaining the best results for all the different
databases with the normalised sum FRM.

4 Conclusions

In this work, we have proposed a genetic-programming-based method to obtain
FRBCSs with a high interpretability. The definition of a context-free grammar
that allows the learning of DNF fuzzy rules and the absence of some input
features, allows the obtaining of rules with fewer antecedent conditions. On the
other hand, the use of token competition mechanism to increase the diversity
into the population makes the rules compete among themselves giving out a
smaller number of rules with a high-generalization capability.

The effectiveness of the method has been demonstrated over several classifica-
tion problems and the results are promising. Therefore, we consider this approach
to be an interesting alternative for the learning of interpretable FRBCSs.

As future work we will incorporate a proper multiobjective approach within
the learning process.
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8. González A. Pérez R.: SLAVE: A genetic learning system based on an iterative
approach. IEEE Transactions on Fuzzy Systems 27 (1999) 176–191

9. Ishibuchi H., Nozaki K., Tanaka H.: Distributed representation of fuzzy rules and
its application to pattern classification. Fuzzy Sets and Systems 52 (1992) 21–32

10. Ishibuchi H., Nozaki K., Yamamoto N., Tanaka N.: Selecting fuzzy if-then rules for
classification problems using genetic algorithms. IEEE Trans. Fuzzy Systems 3:3
(1995) 260–270



A Genetic-Programming-Based Approach 191

11. Kovacs T.: Strength or Accuracy: Credit Assignment in Learning Classifier Sys-
tems. Springer-Verlag (2004).

12. Koza J.R.: Genetic programming on the programming of computers by means of
natural selection. Cambridge MA, USA: The MIT Press (1992)

13. Krone A., Krause P., Slawinski T.: A new rule reduction method for finding inter-
pretable and small rule bases in high dimensional search spaces. Proc. of the 9th
IEEE International Conference on Fuzzy Systems vol. 2 (2000) 694–699

14. Mendes R.R.F., Voznika F. de B., Freitas A.A., Nievola J.C.: Discovering Fuzzy
Classification Rules with Genetic Programming and Co-evolution. Principles of
Data Mining and Knowledge Discovery: 5th European Conference (PKDD’01).
Springer-Verlag. Lecture Notes in Computer Science, Vol. 2168 (2001) 314

15. Quinlan J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
16. Ravi V., Reddy P.J., Zimmermann H.J.: Pattern classification with principal com-

ponent analysis and fuzzy rule bases. European Journal of Operational Research
126:3 (2000) 526–533

17. Ravi V., Zimmermann H.J.: Fuzzy rule based classification with FeatureSelector
and modified threshold accepting. European Journal of Operational Research 123:1
(2000) 16–28

18. Sánchez L., Couso I., Corrales J.A.: Combining GP operators with SA search to
evolve fuzzy rule based classifiers. Information Sciences 136:1–4 (2001) 175–191

19. Tsakonas A., Dounias G., Jantzen J., Axer H., Bjerregaard B., von Keyserlingk
D.G.: Evolving rule-based systems in two medical domains using genetic program-
ming. Artificial Intelligence in Medicine 32:3 (2004) 195–216

20. Wang L.X., Mendel J.M.: Generating fuzzy rules by learning from examples. IEEE
Transactions on Systems, Man, and Cybernetics 22:6 (1992) 1414–1427

21. Wong M.L., Leung K.S.: Data Mining using grammar based genetic programming
and applications. Kluwer Academics Publishers (2000)


	Introduction
	The Genetic-Programming-Based Proposal
	Evolutionary Learning Process
	Rule Base Simplification

	Experimental Study
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




