Skip to main content

Estimation of the Evolution Speed for the Quasispecies Model: Arbitrary Alphabet Case

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4029))

Abstract

The efficiency of the evolutionary search in M. Eigen’s quasispecies model for the case of an arbitrary alphabet (the arbitrary number of possible string symbols) is estimated. Simple analytical formulas for the evolution rate and the total number of fitness function calculations are obtained. Analytical estimations are proved by computer simulations. It is shown that for the case of unimodal fitness function of λ-ary strings of length N, the optimal string can be found during (λ– 1)N generations under condition that the total number of fitness function calculations is of the order of [(λ– 1)N]2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, MI (1975), MIT Press, Boston (1992)

    Google Scholar 

  2. Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  3. Fogel, D.B.: Evolutionary Programming: an Introduction and Some Current Directions. Statistics and Computing 4, 113–130 (1994)

    Article  Google Scholar 

  4. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Boston (1992)

    MATH  Google Scholar 

  5. Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley Inc., New York (1995)

    Google Scholar 

  6. De Jong, K.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Doctoral dissertation, University of Michigan, Ann Arbor, pp. 76–9381 (1975) (University Microfilms No. 76-9381)

    Google Scholar 

  7. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic Algorithms, Noise and the Sizing of Populations. Complex Systems 6, 333–362 (1992)

    MATH  Google Scholar 

  8. Deb, K., Agrawal, S.: Understanding Interactions among Genetic Algorithm Parameters. In: Foundations of Genetic Algorithms 5, pp. 265–286. Morgan Kauffman, San Francisco (1999)

    Google Scholar 

  9. Muhlenbein, H.: How Genetic Algorithms Really Work I: Mutation and Hill-Climbing. In: Parallel Problem Solving from Nature, 2, pp. 15–25. Elsevier Science Publishing, Amsterdam (1992)

    Google Scholar 

  10. Jansen, T., Wegener, I.: On the Analysis of Evolutionary Algorithms - A Proof that Crossover Can Really Help. Technical Report CI-51/98, University of Dortmund, Dortmund (1998)

    Google Scholar 

  11. Eigen, M.: Selforganization of Matter and the Evolution of Biological Macromolecules. Springer, Berlin, Heidelberg, New York (1971)

    Google Scholar 

  12. Eigen, M., Schuster, P.: The Hypercycle: A Principle of Natural Self-Organization. Springer, Berlin, Heidelberg, New York (1979)

    Google Scholar 

  13. Fosterling, H.D., Kuhn, H., Tews, K.H.: Computermodell zur Bildung Selbstorganisierender Systeme. Angewandte Chemie 84, 862–865 (1972)

    Article  Google Scholar 

  14. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)

    Book  Google Scholar 

  15. Red’ko, V.G., Tsoy, Y.R.: Estimation of the Efficiency of Evolution Algorithms. Doklady Mathematics (Doklady Akademii nauk) 72, 810–813 (2005)

    MATH  Google Scholar 

  16. Red’ko, V.G.: Estimation of Evolution Rate in Eigen’s and Kuhn’s Models. Biofizika 31, 511–516 (1986) (in Russian)

    Google Scholar 

  17. Red’ko, V.G.: Spin Glasses and Evolution. Biofizika 35(5), 831–834 (1990) (in Russian), Red’ko, V.G.: Spinglass Model of Evolution. In: Heylighen, F., Joslyn, C., Turchin, V. (eds.): Principia Cybernetica Web (Principia Cybernetica, Brussels) (1998) (Short version of this paper is published), URL: http://pespmc1.vub.ac.be/SPINGL.html

    Google Scholar 

  18. Karlin, S.: A First Course in Stochastic Processes. Academic Press, New York (1968)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Red’ko, V., Tsoy, Y. (2006). Estimation of the Evolution Speed for the Quasispecies Model: Arbitrary Alphabet Case. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_49

Download citation

  • DOI: https://doi.org/10.1007/11785231_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics