Skip to main content

Approximating Rational Objectives Is as Easy as Approximating Linear Ones

  • Conference paper
  • 965 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4059))

Abstract

In the late seventies, Megiddo proposed a way to use an algorithm for the problem of minimizing a linear function a 0+a 1 x 1+⋯+a n x n subject to certain constraints to solve the problem of minimizing a rational function of the form (a 0+a 1 x 1+⋯+a n x n )/(b 0+b 1 x 1+⋯+b n x n ) subject to the same set of constraints, assuming that the denominator is always positive. Using a rather strong assumption, Hashizume et al. extended Megiddo’s result to include approximation algorithms. Their assumption essentially asks for the existence of good approximation algorithms for optimization problems with possibly negative coefficients in the (linear) objective function, which is rather unusual for most combinatorial problems. In this paper, we present an alternative extension of Megiddo’s result for approximations that avoids this issue and applies to a large class of optimization problems. Specifically, we show that, if there is an α-approximation for the problem of minimizing a nonnegative linear function subject to constraints satisfying a certain increasing property then there is an α-approximation (1/α-approximation) for the problem of minimizing (maximizing) a nonnegative rational function subject to the same constraints. Our framework applies to covering problems and network design problems, among others.

Research partially supported by CNPq Prosul Proc. no. 490333/04-4 (Brazil).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billionnet, A.: Approximation algorithms for fractional knapsack problems. Operations Research Letters 30(5), 336–342 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bitran, G.R., Magnanti, T.L.: Duality and sensitivity analysis for fractional programs. Operations Research 24, 675–699 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carlson, J., Eppstein, D.: The weighted maximum-mean subtree and other bicriterion subtree problems. In: ACM Computing Research Repository(2005) cs.CG/0503023

    Google Scholar 

  4. Chen, D.Z., Daescu, O., Dai, Y., Katoh, N., Wu, X., Xu, J.: Efficient algorithms and implementations for optimizing the sum of linear fractional functions, with applications. Journal of Combinatorial Optimization 9, 69–90 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dantzig, G.B., Blattner, W., Rao, M.R.: Finding a cycle in a graph with minimum cost to time ratio with applications to a ship routing problem. In: Rosensthiel, P. (ed.) Theory of Graphs: Int. Symposium, Dunod, Paris, pp. 77–84 (1967)

    Google Scholar 

  6. Dasdan, A., Gupta, R.K.: Faster maximum and minimum mean cycle algorithms for system-performance analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 17(10), 889–899 (1998)

    Article  Google Scholar 

  7. Dasdan, A., Irani, S.S., Gupta, R.K.: Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems. In: Proceedings of the 36th ACM/IEEE Conference on Design Automation, pp. 37–42 (1999)

    Google Scholar 

  8. Dinkelbach, W.: On nonlinear fractional programming. Management Science 13, 492–498 (1967)

    Article  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  10. Gubbala, P., Raghavachari, B.: Finding k-connected subgraphs with minimum average weight. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 212–221. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Hashizume, S., Fukushima, M., Katoh, N., Ibaraki, T.: Approximation algorithms for combinatorial fractional programming problems. Mathematical Programming 37, 255–267 (1987)

    Article  MathSciNet  Google Scholar 

  12. Jagannathan, R.: On some properties of programming problems in parametric form pertaining to fractional programming. Management Science 12, 609–615 (1966)

    Article  MathSciNet  Google Scholar 

  13. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jain, K., Măndoiu, I., Vazirani, V.V., Williamson, D.P.: A primal-dual schema based approximation algorithm for the element connectivity problem. Journal of Algorithms 45(1), 1–15 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Katoh, N.: A fully polynomial-time approximation scheme for minimum cost-reliability ratio problems. Discrete Applied Mathematics 35(2), 143–155 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. Journal of the Association for Computing Machinery 41(2), 214–235 (1994)

    MATH  MathSciNet  Google Scholar 

  17. Klau, G., Ljubi, I., Mutzel, P., Pferschy, U., Weiskircher, R.: The fractional prize collecting Steiner tree problem on trees. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 691–702. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Lawler, E.L.: Optimal cycles in doubly weighted directed linear graphs. In: Rosensthiel, P. (ed.) Theory of Graphs: Int. Symposium, Dunod, Paris, pp. 209–214 (1967)

    Google Scholar 

  19. Megiddo, N.: Combinatorial optimization with rational objective functions. Mathematics of Operations Research 4(4), 414–424 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Orlin, J.B., Ahuja, R.K.: New scaling algorithms for the assignment and minimum mean cycle problems. Mathematical Programming 54(1), 41–56 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Radzik, T.: Newton’s method for fractional combinatorial optimization. In: Proc. 33rd Annual Symposium on Foundations of Computer Science, pp. 659–669 (1992)

    Google Scholar 

  22. Shigeno, M., Saruwatari, Y., Matsui, T.: An algorithm for fractional assignment problems. Discrete Applied Mathematics 56(2–3), 333–343 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Skiscim, C.C., Palocsay, S.W.: The complexity of minimum ratio spanning tree problems. Journal of Global Optimization 30, 335–346 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Correa, J.R., Fernandes, C.G., Wakabayashi, Y. (2006). Approximating Rational Objectives Is as Easy as Approximating Linear Ones. In: Arge, L., Freivalds, R. (eds) Algorithm Theory – SWAT 2006. SWAT 2006. Lecture Notes in Computer Science, vol 4059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785293_33

Download citation

  • DOI: https://doi.org/10.1007/11785293_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35753-7

  • Online ISBN: 978-3-540-35755-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics