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3 Eidgenössische Technische Hochschule Zürich, Switzerland
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Abstract. Good components need precise contracts. In the practice of
Design by ContractTM, applications and libraries typically express, in
their postconditions and class invariants, only a subset of the relevant
properties. We present:

– An approach to making these contract elements complete without
extending the assertion language, by relying on “model classes” di-
rectly deduced from mathematical concepts.

– An actual “Mathematical Model Library” (MML) built for that pur-
pose

– A method for using MML to express complete contracts through ab-
straction functions, and an associated theory of specification sound-
ness.

– As a direct application of these ideas, a new version of a widely
used data structure and algorithms library equipped with complete
contracts through MML.

All the software is available for download. The approach retains the prag-
matism of the Design by Contract method, suitable for ordinary appli-
cations and understandable to ordinary programmers, while potentially
achieving the benefits of much heavier formal specifications.
The article concludes with a discussion of applications to testing and
program proving, and of remaining issues.

1 Introduction

Professional-quality components should be accompanied by precise spec-
ifications, or “contracts”, of their functionality. Contracts as written to-
day are often incomplete; we will discuss how to make them complete
through the use of a model library.
The rest of section 1 discusses contracts and the problem of how to
make them complete. Section 2 outlines the key element of our solution:
the notion of model. Section 3 describes our application of this concept:
the Mathematical Model Library (MML) which we have developed for
this work. Section 4 explains how then to use MML to turn incomplete
contracts into complete ones. Section 5 describes how we applied this
approach to provide a completely contracted version of a widely used
data structure and fundamental algorithms library. Section 6 presents a
comparison with earlier uses of models for specification. Section 7 is a
conclusion and presentation of future work.



1.1 Contracts

Before they will accept a large-scale switch to Component-Based Devel-
opment, organizations with a significant stake in the correct functioning
of their software need some guarantee that the components they include
in their applications will themselves perform correctly. The first step is
to know what exactly each of these components is supposed to do.
The Design by ContractTMtechniques of Eiffel address this issue: every
component is characterized by contract elements specifying its abstract
relationship to other software elements. An individual operation (feature)
has a precondition, stating what initial conditions it expects from its
callers, and a postcondition stating what it provides in return; a group of
operations (class) has an invariant, stating consistency conditions which
each of these operations must preserve and each initialization mechanism
(creation procedure) must ensure initially.
Design by Contract provides a number of advantages [18]: a methodolog-
ical basis for analysis, design and implementation of correct software;
automatic documentation, such as the class abstracters present in Eiffel
environments extract from the class texts themselves; help for project
management; a disciplined approach to inheritance, polymorphism and
dynamic binding; and support for testing and debugging, including [6]
component tests automatically generated and run from the contracts. An
important characteristic of these techniques as available in Eiffel is that
they are not for academic research but for practical use by developers,
and indeed libraries such as EiffelBase [17, 15, 8] covering fundamental
data structures and algorithms are extensively equipped with contracts.
This distinguishes the context of the present study from extensions to
Java or other languages (such as JML [14] or iContract [12]), which re-
quire the use of tools, libraries and language extensions different from
what most.
This pragmatic focus also explains why Design by Contract distinguishes
itself from more heavy-duty “formal methods” in its attitude to speci-
fication completeness: you can benefit from the various advantages of
contracts mentioned above even if your contracts express only part of
the relevant specification properties. More precisely, in the practice of
Design by Contract as illustrated by the Eiffel libraries:

– Preconditions tend to be complete. Specifying “require cond” en-
ables the routine to assume that condition cond will hold on entry,
and not to provide any guarantee if it doesn’t. Clearly, this is safe
only if the routine specifies such conditions exhaustively.

– Postconditions and class invariants, however, are often underspec-
ified; the next section will give typical examples. Unlike with pre-
conditions, there is no obviously disastrous consequence; operations
simply advertise less than they guarantee or (in the invariant case)
maintain. The same holds for other uses of contracts: loop invariants
and loop variants.

Why are such specification elements incomplete? There are three com-
mon justifications:

– Economy of effort (or, less politely, laziness): expressing complete
specifications would require more effort than is deemed beneficial.



– Limitations of the specification language: in the absence of higher-
level mechanisms, such as first-order predicate calculus (“for all”,
and “there exists” quantifiers), some specifications appear impossible
to express; an example would be “All the elements of this list are
positive”.

– The difficulty of expressing postconditions that depend on a previous
state of the computation

This discussion will show that there is no theoretical impossibility, and
will propose an approach that makes it possible to express complete
specifications and apply them to practical libraries such as EiffelBase
[8].

1.2 Incomplete contracts

A typical feature exhibiting incomplete postconditions is put from class
STACK of EiffelBase describing the abstract notion of stack, and its
descendants providing various implementations of stacks. It implements
the “push” operation on stacks (the name put is a result of the strict
consistency policy of Eiffel libraries [15, 17]). In its “flat” form taking
inheritance of assertions into account, it reads

put (v: like item)

-- Push ‘v’ onto top.

require

not full: not full

. . . Implementation, or “deferred” mark . . .

ensure

item on top: item = v

count increased: count = old count + 1

end

The query item yields the top of the stack, and the query count its
number of items; full tells whether a stack’s representation is full (never
true for an unbounded stack).
The precondition is complete: if the stack is not full, you may always
push an element onto it. The postcondition, however, is not: it only
talks about the number of items and the top item after the operation,
but doesn’t say what happens to the items already present. As a result:
– It leaves some questions unanswered, for example, what will get

printed by

create stack.make empty

stack.put (1)

stack.put (2)

stack.remove

print (stack.item)

whereas the corresponding abstract data type specification [18] is
sufficient to compute the corresponding mathematical expression:
item (remove (put (put (new, 1), 2))).



– It leaves the possibility of manifestly erroneous or hostile implemen-
tations, for example one that would push v but change some of the
previously present items.

The specification of STACK, like most specifications in existing libraries,
tells the truth, and tells only the truth; but it does not tell the whole
truth.
For most practical applications of Design by Contract, these limitations
have so far been considered acceptable. But it is desirable to go further,
in particular to achieve the prospect of actual proofs of class correctness.
Proving a class correct means proving that its implementation satisfies
its contracts; this will require the specifications to be complete.

1.3 Approaches to completing the contracts

To address the issue of incomplete specifications, and obtain contracts
that tell the whole truth, we may envision several possibilities.
A first solution is to extend the assertion language. In Eiffel and most
other formalisms that have applied similar ideas, assertions are essen-
tially Boolean expressions, with two important additions:

– The old notation, as used in the last postcondition clause (labeled
count increased:), making it possible to refer to the value of an ex-
pression as captured on routine entry (a “previous state of the com-
putation” as mentioned in the earlier terminology).

– The only clause of ECMA Eiffel [21] (similar to the “modifies” clause
of some other formalisms), stating that the modifying effect of a
feature is limited to a specific set of queries; a clause only a, b, . . .
is equivalent to a set of clauses of the form q = old q for all the
queries q not listed in a, b, . . . .

This conspicuously does not include first-order predicate calculus mech-
anisms.
It is conceivable to extend the assertion language to include first-order
constructs; the Object Constraint Language [27] for UML has some built-
in quantifiers for that purpose. We do not adopt this approach for several
reasons. One is that first-order calculus is often insufficient anyway; it
doesn’t help us much to express (in a graph class) an assertion such as
“the graph has no cycles”. Another more practical reason is that it is im-
portant in the spirit of Design by Contract to retain the close connection
between the assertion language and the rest of the language, part of the
general seamlessness of the method. In particular, for applications to
testing and debugging — which will remain essential until proofs become
widely practical — it is important to continue ensuring that assertions
can be evaluated at reasonable cost during execution. This rules out
properties of the form “For all objects, . . . ” or “For all objects of type
T, . . . ”. Properties of the form “For all objects in data structure D, . . . ”,
on the other hand, easy to handle through Eiffel’s agent mechanism [7,
22]. For example, we state that “all values in the list of integers il are
positive” through the simple Boolean expression

il.for all (agent is positive)



using a simple query is positive. In the absence of an agent mechanism,
it would be still possible, although far more tedious and less elegant, to
write a special function for any such case, here all positive applying to a
list of integers.
A second solution is to rely on extra features that express all the prop-
erties of interest. all positive is a simple example, but we may extend it
to more specific features; for example a class such as STACK may have
a query body yielding the stack consisting of all the items except the top
one (the same that would result from a “pop” command). We can then
add to put a postcondition

body === old Current

where === is object equality. This technique works and has the ad-
vantage that it is not subject to the limitations of first-order predicate
calculus; in our graph example we may write a query acyclic — a rou-
tine in the corresponding class — that ascertains the absence of cycles.
The disadvantage, however, is to pollute classes with numerous extra fea-
tures useful for specification only. In addition, we must be particularly
careful to ensure that such features can produce no state change. The
solution retained below is in part inspired by this approach but puts the
specification features in separate classes with impeccable mathematical
credentials.
A third solution would be to refer explicitly, in contracts, to internal
(non-exported) elements of the objects’ state. This is partially what a
query such as body does, in a more abstract way. But the need for com-
plete specification is not a reason to break the fundamental rules of
information hiding and data abstraction.
For the record, we may mention here a fourth solution, as used in some
specifications of the ELKS library standard [26], based on [23] and relying
on recursive specifications. In the absence of a precise semantic theory it
is not clear to us that the specifications are mathematically well-founded.

2 Using Models

The approach we have adopted for specifying libraries retains some of
the elements of the second and third solutions above, but through a more
abstract technique for describing the state.

2.1 The notion of model

The basic idea is to consider that a software object — an instance of
any particular class — is a certain computer representation of a certain
mathematical entity, simple or complex, called a model for the object,
and to define the semantics of the applicable operations through their
effect on the model.
As model for a stack, for example we may choose a sequence, with the
convention that the last element of the sequence corresponds to the top



model.extended(x)old
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modelold x

Fig. 1. Sequence model of a stack

of the stack (although the reverse convention would work too). Figure 1
illustrates this.

Then the effect of put can be specified through the model: put simply
adds the new element at the end of the sequence. We will express this
below and see that the existing postconditions (count increased by one,
item denoting the new element) become immediate consequences of this
property.

2.2 A model library

The model for a software object, as noted, is a mathematical object,
such as a set, a sequence, a number, or some combination of any such
elementary objects. But we still want to preserve the seamlessness of the
approach; this would not be the case if we expressed contracts in a sep-
arate mathematical notation, for example a mathematical specification
language.

It turns out that a language such as Eiffel is perfectly appropriate to ex-
press such concepts. For example we can write a class MML SEQUENCE
[G] that directly models the mathematical notion of sequence, and use
it in lieu of the mathematical equivalents, as long as we observe a golden
rule:

Model Library Principle

Model classes may not have com-
mands.

A command (as opposed to query), also called a procedure, is a feature
that modifies the object state; this is also excluded for purposes of spec-
ification. (“Creation procedures” will, however, be permitted, as they
are necessary to obtain the mathematical objects in the first place.) For
example the MML SEQUENCE class may not have a procedure extend,
which would modify a sequence by adding an element at the end; but it
has a query extended such that s.extended (v) denotes another sequence
with the elements of s complemented by an extra one, v, at the end.



In Eiffel a query may be implemented as either a function (“method”
in some programming languages’ terminology) or an attribute (“field”,
“data member”, “instance variable”). The “Principle of Uniform Ac-
cess” implies that the difference is not visible from the outside. As de-
tailed below, the basic model classes will be deferred, meaning that they
stay away from any choice of implementation; this is how client classes
will see them. Implementation classes are also provided (section 3.7) for
testing purposes; these classes, representing mathematical objects, may
implement some queries as attributes. In other words the corresponding
objects have a state, but this causes no conceptual problem since the
Model Library principle guarantees that the state is immutable.
Our library of such model classes is called the Mathematical Model Li-
brary (MML). It is important to note that MML is couched in the pro-
gramming language — Eiffel — for purposes of expressiveness, conve-
nience and seamlessness only; underneath the syntax, it is a direct expres-
sion of well-known and unimpeachable mathematical concepts as could
be expressed in a mathematical textbook or in a formal specification
language such as Z [30] or B [1].
Instead of relying on explicit knowledge of the state, the contracts will
rely on abstract properties of the associated model. We add to every
relevant class a query

model: SOME MML TYPE

and then rely on model to express complete contracts for the class and
its features. Taking advantage of the “selective export” facility of Eiffel
[16, 22], we declare model in a clause labeled

feature {SPECIFICATION}

which implies that, depending on the view they choose, client program-
mers will, through the documentation tools in the environment, either
see it or not. For simple-minded uses, it is preferable to ignore it; as
soon as one is interested in advanced specification, tests or proofs, it is
preferable to retain it.
The model describes a kind of abstract implementation of the concept
underlying a class. As an implementation, however, it is purely mathe-
matical and does not interfere with the rest of the class. In particular,
the approach described here has no effect whatsoever on performance in
normal operational circumstances, where contract monitoring is usually
disabled. If contract monitoring is on (for debugging or testing), options
should be available to include or exclude the extra “model contracts”.

2.3 Model example

Let us now express how to use the notion of model on our earlier example
of an unbounded stack. We use an MML SEQUENCE as model for a
stack. To this effect we add to class STACK a query:



feature {SPECIFICATION} -- Model

model: MML SEQUENCE [G]

ensure

not void: Result / = Void

Based on this model, we can complete the contract of put by adding the
model-based properties:

put (v: like item)

-- Push ‘v’ onto top.

require

not full: not full

do

. . . Implementation . . .

ensure

model extended: model === old model.extended (v)

item on top: item = v

count increased: count = old count + 1

end

The assertion model === old model.extended (v) states that the model
after the feature invocation is the same as the model before the feature
invocation except that v has been added to the end of the sequence. In a
formalism such as Z it would be expressed as the following before-after
predicate (where :: is the operator for appending a value to a sequence):

model′ = model :: v

We now have a completely contracted version of put: the postcondition
specifies the full effect, without revealing details about the implementa-
tion [32].

2.4 Theories and models

As detailed in section 6 (devoted to the comparison with earlier work),
models have already been used in several approaches to program speci-
fication and verification, notably Larch and JML.
In general, these approaches treat models as additions to the specification
framework, each created in response to a particular specification need.
The model classes themselves have to be contracted in the existing spec-
ification language (without model features); the meaning of the model
is based solely on its own contracts. We again get into the problems of
underspecification, this time within the model library.
MML does not integrate the models into the specification framework, but
into the specification language. We postulate that the models correctly
reflect their theoretical counterparts which, as a consequence, define their
semantics. To reason about assertions using models, we translate them
into the underlying theory. The contracts of model classes directly reflect



axioms and theorems of the associated theory, assumed to have been
proved (often long ago, and documented in mathematical textbooks), so
we can just take them for granted.
As our basic theory, we choose typed set theory. It is a well-defined for-
malism, easy to understand for the average software developer; the typed
nature of modern programming languages such as Eiffel makes types a
familiar concept. A formalization intended for software modelling pur-
poses can be found in the language of the B method [1] (whose program
refinement aspects, studied in [28] in relation to contracts, are not rele-
vant for this work). The availability of theorem provers for this theory
[25, 31] is an added advantage.

3 Model Library Design

The model library is designed around a set of deferred classes describing
the interfaces of the modeling abstractions.

3.1 Model classes

Eiffel’s inheritance and genericity mechanisms enable us to model the
definition of powersets, relations, functions, sequences, bag and graphs
in terms of sets and pairs. The result reflects the definitions of [1]. In-
heritance in particular provides a direct way to represent the subtype
relation.
Figure 2 on the next page is a BON diagram of the inheritance structure
of the principal deferred classes. The top type is MML ANY, with two
direct heirs MML SET and MML PAIR. (All the class names have the
MML suffix, omitted in the figure except for MML ANY.)

3.2 Specifics of model objects

Mathematical objects are different from software objects:

– Mathematical objects are normally immutable: the operation 5 + 1
does not change 5, but instead describes another number. Similarly,
we cannot “add” an element to a set; rather, we describe new sets
by union or intersection of existing sets like in {a, b, c} ∪ {d} =
{a, b, c, d}.

– They have no notion of identity distinct from their value.

Software objects do not have these properties: they have a mutable state,
and an identity independent from their value. MML classes, although ex-
pressed in Eiffel, represent mathematical objects and hence must satisfy
immutability and not rely on object identity.

3.3 Immutability

Enforcing immutability means that an instance of an MML class, once
created, will never change its state. All features of the class other than
creation procedures are pure (side-effect-free) queries.



Fig. 2. A BON diagram of MML

3.4 Comparing mathematical objects

Not relying on object identity means that comparison operations will
never apply to references, but to objects.

Object equality in Eiffel has a predefined version, default is equal, which
compares objects field-by-field, and a redefinable version, is equal, whose
semantics also governs the equality operator. Neither is adequate, how-
ever, for defining the equality of model objects, because two Eiffel objects
cannot be equal unless they have the same type; in mathematics this is
too strong a requirement, even with the type approach we are following.
For example an object of type MML RELATION [X, Y] can never be
equal, in the Eiffel sense, to an object of type MML SET [MML PAIR
[X, Y]], whereas mathematically they may represent the same concept
(a relation is a set of pairs).

For that reason, MML ANY introduces a special query equals to repre-
sent mathematical object equality. Its descendants redefine it to describe
their specific notions of equality. Every comparison of MML objects
should use equals, not is equal. To guarantee this and avoid mistakes,
MML ANY and descendants do not export is equal.

Here is the specification of equal in MML ANY:

equals alias “===” (other: MML ANY): BOOLEAN

-- Is other mathematically equivalent to current object?

require

other not void: other / = Void

ensure



symmetric: Result implies (other.equals (Current))

yes if equal as objects: is equal (other) implies Result

The first postcondition clause expresses symmetry, the second that object
equality implies mathematical equality (although, as noted, not neces-
sarily the other way around).

The precondition refers to Void values, which will not arise with math-
ematical objects. This clause will go away thanks to the ECMA Eiffel
standard [21] which deals with this issue statically; all MML types will
be attached [20] and hence statically guaranteed non-void.

The alias clause makes it possible to use a === b as shorthand for
a.equals (b).

3.5 Class overview

Here are some of the features of the MML classes in the top part of the
hierarchy as shown in figure 2.

MML SET is the basic class for the definition of sets as models. It im-
plements most basic operators. Examples of available predicates on sets
are is member (x ∈ A), is subset (A ⊆ B), is proper subset (A ⊂ B) or
is disjoint (A ∩ B = ∅). Other operators include united (A ∪ B), inter-
sected (A ∩ B), subtracted (A − B), cartesian product (A × B) and so
on. The class also provides a non-deterministic choice operator called
any item.

MML PAIR represents tuples of cardinality two. All other types can be
described in terms of MML PAIR and MML SET.

MML RELATION describes relations viewed as sets of pairs. Thanks to
inheritance we adapt set operations into operations on relations.

The class then adds another substantial set of relation-specific features:
queries such as is reflexive and is transitive, transformations such as im-
age and inversed.

Relational composition causes the only problem with using the lan-
guage’s type mechanisms to model set-theoretical type rules. The notion
of relation involves two generic parameters, representing the types of the
source and target sets. But the expression r1.composed (r2) requires a
third generic type, the target set of r2. This cannot be modelled directly
since only classes, not features, may have generic parameters.

Our solution is to take ANY as the type of the second argument. This
has sufficed for the examples we have encountered so far, but we may
have in the future to add a third generic parameter to the class just for
the sake of the composition operator.

MML FUNCTION describes possibly partial functions, viewed as a spe-
cial case of relations. It defines such concepts as partiality and surjectiv-
ity.

MML SEQUENCE, MML BAG, MML GRAPH provide the library with
a richer set of modeling concepts. Sequences in particular provide part
or all of the model for many concepts, including lists, strings, files and
others for which the ordering of data is important.



3.6 Quantifiers

To model quantifiers, we use Eiffel’s agent mechanism. Agents are ob-
jects encapsulating features, and hence functionality. These objects are
immutable, so the introduction of agents does not affect the “pure” (side-
effect-free) requirement on the model library.
The agents we use for our model-based specifications represent predi-
cates. For example ∀x ∈ S.P (x) will appear as S.for all(agent P(?))
where the question mark represents the bound variable — “open argu-
ment”’ in Eiffel terminology; an agent expression like agent P(?) where
all arguments are open can be abbreviated into just agent P.
For modularity and ease of use, all the basic quantifier mechanisms based
on this technique are grouped into a specific class (a “facet” abstraction
[32]) called MML QUANTIFIABLE, with the following two features.

feature -- Quantifiers

there exists (predicate: FUNCTION [ANY, TUPLE [G], BOOLEAN]):
BOOLEAN is

-- Does current contain an element which satisfies

-- predicate ?

require

predicate not void: predicate / = Void

deferred

ensure

definition: Result =

(not for all (agent negated (?, predicate)))

end

for all (predicate: FUNCTION [ANY, TUPLE [G], BOOLEAN]):
BOOLEAN is

-- Does current contain only elements which satisfy

-- predicate ?

require

predicate not void: predicate / = Void

deferred

ensure

definition: Result =

(not there exists (agent negated (?, predicate)))

end

The contracts capture the relations of ∀ and ∃. negated is a feature
from the class MML FUNCTIONALS offering generic functionals such
as negation and composition on predicates defined by agents. We may
note in passing that this class and MML QUANTIFIABLE achieve —
thanks in particular to agents — the side goal of providing, within the
Eiffel framework, a substantial subset of the mechanisms of functional
languages such as Haskell.



3.7 Implementing the model classes

MML classes as seen so far are all deferred (abstract). A deferred class
may have no direct instances; correspondingly, it need not provide any
implementation for its features. Non-deferred (concrete) classes, directly
describing software objects, are called effective [18].

If we are interested in completely contracted classes for proving purposes,
deferred classes are clearly sufficient. There is no need for direct instances
of model objects, for implementation of model features, or more generally
for execution.

If, on the other hand if we are also interested in equipping classes with
complete contracts for the purpose of testing them more effectively, we
will need implementations — effective versions of the original classes.

As a result of these observations, MML includes a set of reference im-
plementations, one provided (as an effective descendant) for each of the
directly usable deferred classes.

All implementations assume that the sets are finite and small enough to
be represented through ARRAY or LINKED LIST data structures. This
is sufficient for the problems we have tackled so far.

Most of the work for the default implementation is done in the two classes
MML SET and MML PAIR. MML SET uses the ARRAYED SET data
structure of EiffelBase. MML PAIR just defines two variables one and
two to represent the values of a pair.

Because typed set theory allows describing all other structures (bags,
sequences etc.) in terms of these two, their implementation builds on
implementations of sets and pairs.

4 Using models to achieve complete contracts

The model library as sketched in the previous section enables us to reach
our original goal of equipping realistic, practical classes with complete
contracts. We now explore this process and its application to some im-
portant classes of the EiffelBase library.

4.1 Devising a model

The first step in equipping a class with model-based complete contracts is
to choose a model that will adequately capture the state of its instances;
in the STACK example the choice was sequences.

As with the basic object-oriented design issue of of finding the right
inheritance or client relation, there is no general, infallible process. [32]
gives some hints.

For example, a mathematical relation is probably the right model for
classes describing hash tables or other dictionary-like structures. As an-
other hint, the EiffelBase placement of the random number generator
class as as a descendant of COUNTABLE SEQUENCE suggests sequences
as the model for this notion.



4.2 The abstraction function

We may call the relationship between a concrete software object and its
MML model its “abstraction function” (a notion introduced in [11] in the
form of the “representation function”, its inverse, actually multi-valued).
For the ARRAYED STACK class we use the following model:

feature{SPECIFICATION} -- Model

model: MML SEQUENCE [G] is

-- Model of the stack

local

l: LINEAR[G]

do

create {MML DEFAULT SEQUENCE [G]}Result.make empty

l := linear representation

from

l.start

until

l.off

loop

Result := Result.prepended (l.item)

l.forth

end

end

Model queries always return an attached (non-void) result in the sense
of ECMA Eiffel. They have no feature-specific contracts (preconditions
or postconditions), but may have associated constraints as part of the
class invariant. Any implementation of the abstraction function (poten-
tially useful, as noted, for applications to testing) may only rely on the
invariant.

4.3 Composite models

In many of the more advanced examples it is not realistic to capture the
complete state of a data structure through an atomic model built directly
from one of the classes of MML, such as a single sequence in the examples
above. As an example, consider the EiffelBase class LINKED LIST, de-
scribing a sequence of values equipped with a cursor to facilitate traversal
and manipulation (figure 3).
To describe the full state, we may use a tuple of a sequence s and a
cursor position n, yielding an abstraction function of type:

model : LINKED LIST [G] ⇒ SEQUENCE[G] × N

To build this abstraction function into the class we first define an ab-
straction for each component of the model:
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Fig. 3. LINKED LIST with active cursor

feature{SPECIFICATION} -- Model

model index: INTEGER is

-- Model of the cursor position

do

Result := index

end

model sequence: MML SEQUENCE [G] is

-- Model of the list when regarded as a sequence

do

. . .

end

Then we create a common model by pairing the two components:

model: MML PAIR [SEQUENCE [G],INTEGER] is

-- Model of the list

do

create {MML DEFAULT PAIR}Result.

make(model sequence,model index)

end

Our experience shows that this is a convenient practice. In particular
we have retained the technique, illustrated in all the above examples,
of always using a single model query expressing the entire abstraction
function and yielding a single object; if the model conceptually involves
several components — in the last example, a sequence and an integer —
we turn them into a single one by taking advantage of the MML classes
for pairs and sets. This rule yields a consistent style and enables us to
refer for any class to “the model” and “the abstraction function”.



4.4 Classic and model contracts

Most Eiffel classes, especially in libraries, are equipped with some con-
tracts expressing important elements of their intended semantics. We will
call them classic contracts in contrast to contracts relying on the model
library, called model contracts.
Classic contracts are usually easy to understand for programmers, even
those who may be put off by more formal approaches. But, as noted, they
are often incomplete, especially postconditions and invariants. With the
help of model contracts we should be able to check that they are at least
sound, according to the following definition:

Definition: Soundness of a Model

A classic contract for a model-equipped class is sound if:

1. Every classic precondition implies the corresponding
model precondition.

2. Every model postcondition implies the corresponding
classic postcondition.

3. Every model invariant implies the corresponding
classic invariant.

In the informal terms used at the beginning of this discussion: model
contracts give us “all the truth”; classic contracts, the only ones that
less advanced or less interested programmers will see, are sound if what
they tell, while perhaps not the full truth, is still “the truth”.
To this effect, condition 1 guarantees that every call that appears correct
to a client programmer working on the sole knowledge of the classic
contracts will indeed satisfy all the required conditions — even if it might
satisfy more than strictly needed.
Condition 2 guarantees that every call will, on return, deliver every con-
dition promised to clients - even if it might deliver more than classically
advertised.
Condition 3 guarantees that the consistency constraints expected of in-
stances of a class actually hold.
On the basis of this definition, let us examine the soundness of the
STACK specification extract. The interesting part is the postcondition,
consisting of three clauses, two classic and one model-related:

ensure

model is extended: model === old model.extended (v)

item pushed: item = v

count increased: count = old count + 1

From the invariant, we know that

invariant

count defined through model: count = model.count

item defined through model: item = model.last



By combining the assertions of the postcondition and the invariant, we
can derive the following two proof obligations to verify the soundness of
the classical contracts:

(model === old model.extended (v)) and

(item = model.last)

implies

(v = item)

(model === old model.extended (v)) and

(old count = old model.count) and

(count = model.count)

implies

(count = old count + 1)

Both properties can be easily verified using a theory for sequences. The
notion of soundness is particularly interesting in combination with in-
heritance. It is possible to prove soundness at an abstract level, in a
deferred class such as STACK, without having to redo the proof in effec-
tive descendants such as ARRAYED STACK. This point was discussed
in [19].

5 Specification of a Full Library

As a testbed for the approach described here, and a major application of
interest in its own stake, we considered EiffelBase [8], a reusable, open-
source library of data structures provided with the Eiffel environment.
Making heavy use of multiple-inheritance and genericity,the classes of
EiffelBase include not only implementations of the data structures but
also offer a rich set of deferred classes that capture useful concepts such
as abstract containers, common traversal strategies, and mathematical
structures such as “ring” and total order. The full design of the library
is discussed in [17].

5.1 Overall structure

We produced a fully contracted version of the structural classes of Eif-
felBase; a significant endeavor since that part of the library includes 36
classes totalling 1853 exported (public) features.

The process of completing the specifications brought to light numerous
inconsistencies in the library. Using model specifications, we were able
to come up with a cleaned up hierarchy for EiffelBase. Figure 4 on the
following page presents a BON diagram of this hierarchy. A full specifi-
cation for each class appears in [32].



Fig. 4. The inheritance hierarchy of EiffelBase

5.2 Models of DYNAMIC LIST

As an illustration of the work involved in this reengineering of EiffelBase
for complete contracts, we consider a typical class. DYNAMIC LIST is
the parent for the implementation of lists through arrays (ARRAYED LIST)
and linked structures LINKED LIST. Dynamic lists, like EiffelBase lists
in general (see figure 4) are “active”: they contain a movable cursor with
a current cursor position.
The classes of our reengineered library bear the names of the corre-
sponding EiffelBase classes prefixed by SPECIFICATION , for example
SPECIFICATION DYNAMIC LIST.
Four different models are available to describe the state of the dynamic
list. They are inherited from the parent classes and describe different
possible views of lists:

feature{SPECIFICATION} -- Model

model bag: MML BAG [G]

-- Bag model for the list

-- (from SPECIFICATION BAG)

model indexable: MML RELATION [INTEGER,G]

-- Table model for the list

-- (from SPECIFICATION TABLE)

model cursor: INTEGER



-- Cursor model for the list

-- (form SPECIFICATION TRAVERSABLE)

model sequence: MML SEQUENCE [G]

-- Sequence model for the list

-- (from SPECIFICATION TRAVERSABLE)

All four relations are connected by the invariant of SPECIFICATION
DYNAMIC LIST. For example the value of the cursor is limited by the
size of the sequence:

model cursor >= model sequence.lower bound − 1

model cursor <= model sequence.upper bound + 1

The domain of the bag has to be the range of the sequence:

model bag.domain === model sequence.range

This shows how the class invariant can be used as a so-called gluing
invariant between the different mathematical abstractions of the list.

5.3 Problems discovered

Most problems we found in EiffelBase were caused by heavy underspec-
ifications, contradictions in contracts and flaws in the taxonomy. Here
are some examples:

– The equality relation of “active” (cursor-based) data structures might
involve not only elements of the structure, but also a cursor position
and other internal data. All active data structures were missing a
clear specification of whether they should be regarded equivalent if
they have the same data but different cursor positions.

– The class TRAVERSABLE SUBSET does not inherit from class
TRAVERSABLE, even though it implements all features offered by
TRAVERSABLE. This design decision prohibits polymorphic use.

– The features prune and prune all in class SEQUENCE move the
cursor to off, even if the element to be pruned is not present in the
sequence.

– The feature wipe out in class ARRAY is marked as obsolete. Obso-
lete feature clauses are not the proper way to declare a feature as
inapplicable.

– The class BILINEAR inherits twice from LINEAR to implement bi-
linearity. This makes specification difficult, as it is not always clear
which iteration features are derived for which inheritance relation.

– Internal cursors and functionals such as for all, there exists and do all
do not represent the same concept and should be distinguished. The
linearity is not necessary for an implementation of logic quantifiers.

A full list of problems discovered can be found in [32].



6 Related Work

Models have been used before for software specification. Early work
by Hoare [11] suggested the use of models. The Larch language and
toolset [10] relies on models for program verification. In contrast to our
approach, Larch introduces a special language for the specifications of
models. This creates a conceptual separation between the model-based
specifications and the programming language. Special projects provide
embedding mechanisms of Larch models into such languages as Smalltalk
[4] and C++ [13].
JML [14, 3] applies models to the domain of modular specifications of
Java programs. JML includes an extensive model library for the speci-
fication of object-oriented programs, offering more than a hundred Java
classes describing very diverse specification mechanisms. The core of the
library comprises structural classes such as JMLSequence and JMLVal-
ueSet. The technique presented in this paper is strongly related to the
model variables of JML [5]. The major difference is that JML model
variables introduce the notion of state into the contractual specification.
We view models as abstraction functions, without model variables. In
addition, as explained earlier, we treat models as an extension to the
contractual language and not as part of the surrounding framework.
Müller, Poetzsch-Heffter and Leavens [24] extend the use of model vari-
ables and procedures to the field of frame properties. We have not ex-
plicitly addressed this important issue here. Our working hypothesis is
that to the extent that the model expresses all the properties of interest
any effect the software’s operations may have on properties not covered
by the model is irrelevant. (Eiffel can, as noted, express frame properties
through the newly introduced only postcondition clause, but the precise
relation between models and the only clause still needs to be explored).
The Z specification language [30, 29] and the B method [1] have both
been used to apply set theory to specify software in conjunction with
before-after predicates. Our work is intended to provide Eiffel contracts
with the same expressive power.
ASMs [9] and AsmL [2] use the concept of models and introduce model
variables with a related notion of model programs. This yields executable
specifications since one may treat the model as an abstract program
that operates on the abstract state denoted by the model variables. By
this, AsmL can provide executable specifications. The verification process
consists of showing that the implementation is a behavioral subtype of
the specification.
Mitchell and McKim [23] introduced models in the context of Eiffel and
Design by Contract.

7 Conclusion

The framework described here appears to allow the development of li-
braries with complete contracts, not too difficult to write yet still under-
standable by any programmer who cares to learn a few basic concepts.
We are continuing to apply this process to the EiffelBase library, which



lies at the core of many applications and hence plays a major practi-
cal role. Research work that will immediately benefit from this effort
includes:

– Our ongoing effort to produce proofs that the classes indeed satisfy
their contracts.

– Complementary work on entirely automatic (“push-button”) tests
of components based on their contracts [6], evidently made all the
more interesting if the contracts are more extensive.

So far we have mostly applied our model-based techniques to libraries
such as EiffelBase describing fundamental computer science concepts. Al-
though we believe they can also be fruitfully applied to more application-
oriented classes, or to graphical libraries such as EiffelVision, this remains
to be demonstrated and is one of the next challenges.
The effort of producing complete contracts for EiffelBase has already
born fruit: while the library has been carefully designed and is reused
in many commercial and non-commercial applications, the process has
uncovered a number of technical and conceptual flaws. These will be re-
ported and fixed in the “classic” EiffelBase, although we definitely hope
that — in line with the applied nature of this work and its intention,
thanks to Eiffel’s built-in contracts, to serve the direct needs of opera-
tional developments — the version with complete contracts will become
the reference.
The mere process of writing the complete contracts and the resulting
improvements to classic EiffelBase has already shown that more complete
specifications improve the Design by Contract process and lead to clearer
abstractions.
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