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Abstract

Suffix trees and suffix arrays are two of the most widely used data structures for text indexing.
Each uses linear space and can be constructed in linear time for polynomially sized alphabets.
However, when it comes to answering queries with worst-case deterministic time bounds, the
prior does so in O(m log |Σ|) time, where m is the query size, |Σ| is the alphabet size, and
the latter does so in O(m + log n) time, where n is the text size. If one wants to output all
appearances of the query, an additive cost of O(occ) time is sufficient, where occ is the size of
the output. Notice that it is possible to obtain a worst case, deterministic query time of O(m)
but at the cost of super-linear construction time or space usage.

We propose a novel way of combining the two into, what we call, a suffix tray. The space
and construction time remain linear and the query time improves to O(m + log |Σ|) for integer
alphabets from a linear range, i.e. Σ ⊂ {1, · · · , cn}, for an arbitrary constant c. The construction
and query are deterministic. Here also an additive O(occ) time is sufficient if one desires to
output all appearances of the query.

We also consider the online version of indexing, where the text arrives online, one character
at a time, and indexing queries are answered in tandem. In this variant we create a cross between
a suffix tree and a suffix list (a dynamic variant of suffix array) to be called a suffix trist; it
supports queries in O(m + log |Σ|) time. The suffix trist also uses linear space. Furthermore,
if there exists an online construction for a linear-space suffix tree such that the cost of adding
a character is worst-case deterministic f(n, |Σ|) (n is the size of the current text), then one can
further update the suffix trist in O(f(n, |Σ|) + log |Σ|) time. The best currently known worst-
case deterministic bound for f(n, |Σ|) is O(log n) time.

1 Introduction

Indexing is one of the most important paradigms in searching. The idea is to preprocess a text
and construct a mechanism that will later provide answers to queries of the form ”does a pattern
P occur in the text” in time proportional to the size of the pattern rather than the text. The suffix
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tree [7, 16, 20, 21] and suffix array [10, 11, 12, 15] have proven to be invaluable data structures for
indexing.

Both suffix trees and suffix arrays use O(n) space, where n is the text length. In fact, for
alphabets from a polynomially sized range, both can be constructed in linear time, see [7, 10, 11, 12].

The query time is slightly different in the two data structures. Namely, using suffix trees queries
are answered in O(m log |Σ| + occ) time, where m is the length of the query, Σ is the alphabet, |Σ|
is the alphabet size and occ is the number of occurrences of the query. Using suffix arrays the time is
O(m+ log n+ occ). In [5] it was shown that the search time of O(m+ log n+ occ) is possible also
on suffix trees. For the rest of this paper we assume that we are only interested in one occurrence
of the pattern in the text, and note that we can find all of the occurrences of the pattern with another
additive occ cost in the query time.

The differences in the running times follows from the different ways queries are answered. In
a suffix tree, queries are answered by traversing the tree from the root. At each node one needs to
know how to continue the traversal and one needs to decide between at most |Σ| options which are
sorted, which explains the O(log |Σ|) factor. In suffix arrays one performs a binary search on all
suffixes (hence the log n factor) and uses longest common prefix (LCP) queries to quickly decide
whether the pattern needs to be compared to a specific suffix (see [15] for full details).

It is straightforward to construct a data structure that will yield optimal O(m) time to answer
queries. This can be done by putting a |Σ| length array at every node of the suffix tree. Hence,
when traversing the suffix tree with the query we will spend constant time at each node. However,
the size of this structure is O(n|Σ|). Also, notice that this method assumes Σ is comprised of
{1, 2, ..., |Σ| − 1} ∪ {$}1 as we need to be able to random access locations in the array based on the
current character, and so we need our alphabet to be proper indices. While this can be overcome
using renaming schemes, it will provide an extra O(m log |Σ|) time for the query process, as one
would need to rename each of the characters in the pattern.

Another variant of suffix trees that will yield optimal O(m) time to answer queries is as follows.
Construct a suffix tree which maintains a static dictionary at each node, hv : Σv → Ev where Ev is
the set of edges exiting v and Σv is the set of first characters onEv edges. We set hv(σ) = x, where x
is the edge associated with the first character σ. This scheme can be built in linear randomized time
and linear space. If one desires determinism, as we do, the downside is that the construction of the
deterministic static dictionary takes, in the best (and complicated) case,O(nmin{log |Σ|, log log n})
preprocessing time [18].

The question of interest here is whether one can deterministically construct an indexing data
structure usingO(n) space and time that will answer queries faster than suffix arrays and suffix trees.
We indeed propose to do so with the Suffix Tray, a new data structure that extracts the advantages
of suffix trees and suffix arrays by combining their structures. This yields an O(m + log |Σ|) query
time. However, our solution uses some |Σ| length arrays to allow for quick navigation, and as such
it seems that we are also confined to using integer alphabets. However, this can be improved to
alphabets Σ ⊂ {1, · · · , cn}, for arbitrary constant c, since the text can be sorted and a renaming
array A of length cn can be maintained saving the rank (relative to Σ) of the element, i.e. A[σ] is
the rank of σ in Σ and A[i] is 0 if there is no character i in T . For each pattern character evaluated a

1Note that the special $ character is a special delimiter which has only appears at the end of the text and is considered
to be lexicographically larger than all of the other integers in Σ.
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constant time lookup in A gives the rank of the character.

We also consider the natural extension to the online case, that is the scenario where online update
of the text are allowed. In other words, given an indexing structure supporting indexing queries on
S, we would also like to support extensions of the text to Sa, where a ∈ Σ. We assume that the
text is given in reverse, i.e. from the last character towards the beginning. So, an indexing structure
of our desire when representing S will support extensions to aS where a ∈ Σ. We call the change
of S to aS a text extension. The ”reverse” assumption that we use is not strict, as most indexing
structures can handle online texts that are reversed (e.g. instead of a suffix tree one can construct a
prefix tree and answer the queries in reverse. Likewise, a prefix array can be constructed instead of
a suffix array).

Online constructions of indexing structures have been suggested previously. McCreight’s suffix
tree algorithm [16] was the first online construction. It was a reverse construction (in the sense
mentioned above). Ukkonen’s algorithm [20] was the first online algorithm that was not reversed.
In both these algorithms text extensions take O(log |Σ|) amortized time, but in the worst-case a
text extension could take Ω(n log |Σ|) time. In [3] an online suffix tree construction (under the
reverse assumption) was proposed with O(log n) worst-case time per text extension. In all of these
constructions a full suffix tree is constructed and hence queries are answered in O(m log |Σ|) time.
An online variant of suffix arrays was also proposed in [3] with O(log n) worst-case time per text
extension and O(m + log n) time for answering queries. Similar results can be obtained by using
the results in [9].

The problem we deal with in the second part of the paper is how to build an indexing structure
that supports both text extensions (to the beginning of the text) and supports fast(er) indexing. We
will show that if there exists an online construction for a linear-space suffix tree such that the cost
of adding a character is f(n, |Σ|) (n is the size of the current text), then we can construct an online
linear-space data-structure for indexing that supports indexing queries inO(m+log |Σ|) time, where
the cost of adding a character isO(f(n, |Σ|)+log |Σ|) time. We will call this data structure the Suffix
Trist.

As mentioned in the previous paragraph the best currently known worst-case deterministic bound
for f(n, |Σ|) is O(log n) time [3]. Breslauer and Italiano [4] have improved this result for the
case that |Σ| is o(log n). Specifically, they show how to support text extensions in deterministic
O(|Σ| + log log n) time. In [13] an indexing data structure was shown for which text extensions
can be implemented in O(log log n+ log log |Σ|) expected time. However, the construction there is
randomized and does not suit our needs.

2 Suffix Trees, Suffix Arrays and Suffix Intervals

Consider a text S of length n and let S1, · · · , Sn be the suffixes of S. Two classical data structures
for indexing are the suffix tree and the suffix array. It is assumed that the reader is familiar with the
suffix tree. Let Si1 , ..., Sin be the lexicographic ordering of the suffixes. The suffix array of S is
defined to be SA(S) =< i1, ..., in >, i.e. the indices of the lexicographic ordering of the suffixes.
Location j of the suffix array is sometimes referred to as the location of Sij (instead of the location
of ij).

3
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Figure 1: A suffix tree with a suffix array at leaves.

Let ST (S) and SA(S) denote the suffix tree and suffix array of S, respectively. As with all
suffix tree constructions to date, assume that every node in a suffix tree maintains its children in
lexicographic order. Therefore, the leaves ordered by an inorder traversal correspond to the suffixes
in lexicographic order, which is also the order maintained in the suffix array. Hence, one can view
the suffix tree as a tree over the suffix array. See Figure 1.

We further comment on the connection between suffix arrays and suffix trees. For strings R
and R′ say that R <L R′ if R is lexicographically smaller than R′. leaf(Si) denotes the leaf
corresponding to Si in ST (S), the suffix tree of S. Define L(v) to be the location of Si in the suffix
array where leaf(Si) is the leftmost leaf of the subtree of v. Notice that since the children of a node
in a suffix tree are assumed to be maintained in lexicographic order, it follows that for all Sj such
that leaf(Sj) is a descendant of v, Si ≤L S

j . Likewise, define R(v) to be the location of Si in the
suffix array where leaf(Si) is the rightmost leaf of the subtree of v. Therefore, for all Sj such that
leaf(Sj) is a descendant of v, Si ≥L S

j . Hence, the interval [L(v), R(v)] is an interval of the suffix
array which contains exactly all the suffixes Sj for which leaf(Sj) is a descendant of v. Notice that
interval representations have already been discussed in [1].

Moreover, under the assumption that the children of a node in a suffix tree are maintained in
lexicographic ordering one can state the following.

Observation 1 Let S be a string and ST (S) its suffix tree. Let v be a node in ST (S) and let
v1, ..., vr be its children in lexicographic order. Let 1 ≤ i ≤ j ≤ r, and let [L(vi), R(vj)] be an
interval of the suffix array. Then k ∈ [L(vi), R(vj)] if and only if leaf(Sk) is in one of the subtrees
rooted at vi, ..., vj .

This leads to the following concept.

Definition 1 Let S be a string and {Si1 , ..., Sin} be the lexicographic ordering of its suffixes. The
interval [j, k] = {ij, ..., ik}, for j ≤ k, is called a suffix interval.

4



Obviously, suffix intervals are intervals of the suffix array. Notice that, as mentioned above,
for a node v in a suffix tree, [L(v), R(v)] is a suffix interval and the interval is called v’s suffix
interval. Also, by Observation 1, for v’s children v1, ..., vr and for any 1 ≤ i ≤ j ≤ r, we have that
[L(vi), R(vj)] is a suffix interval and this interval is called the (i, j)-suffix interval.

3 Suffix Trays

The suffix tray is now introduced. The suffix tray will use the concept of suffix intervals from the
previous section which, as has been seen, forms a connection between the nodes of the suffix trees
and intervals in the suffix array.

For suffix trays, special nodes are created, which correspond to suffix intervals. These nodes are
called suffix interval nodes. Notice that these nodes are not suffix tree nodes. Part of the suffix tray
will be a suffix array. Each suffix interval node can be viewed as a node that maintains the endpoints
of the interval within the complete suffix array.

Secondly, the idea of the space-inefficient O(n|Σ|) suffix tree solution mentioned in the intro-
duction is used. We construct |Σ|-length arrays for a selected subset of nodes, a subset that contains
no more than n

|Σ| nodes, which retains theO(n) space bound. To choose this selected subset of nodes
we define the following.

Definition 2 Let S be a string over alphabet Σ. A node u in ST (S) is called a σ-node if the number
of leaves in the subtree of ST (S) rooted at u is at least |Σ|. A σ-node u is called a branching-σ-
node, if at least two of u’s children in ST (S) are σ-nodes and is called a σ-leaf if all its children in
ST (S) are not σ-nodes.

See Figure 2 for an illustration of the different node types.
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Figure 2: A suffix tree with different node types.
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The following property of branching-σ-nodes is crucial to our result.

Lemma 1 Let S be a string of size n over an alphabet Σ and let ST (S) be its suffix tree. The
number of branching-σ-nodes in ST (S) is O( n

|Σ|).

Proof: The number of σ-leaves is at most n
|Σ| because (1) they each have at least |Σ| leaves

in their subtree and (2) their subtrees are disjoint. Let T be the tree induced by the σ-nodes and
contracted onto the branching-σ-nodes and σ-leaves only. Then T is a tree with n

|Σ| leaves and with
every internal node having at least 2 children. Hence, the lemma follows.

This implies that one can afford to construct arrays at every branching-σ-node which will be
used for answering queries quickly as shall be seen in Section 3.2.

3.1 Suffix Tray Construction

A suffix tray is constructed from a suffix tree as follows. The suffix tray contains all the σ-nodes of
the suffix tree. Some suffix interval nodes are also added to the suffix tray as children of σ-nodes.
Here is how each σ-node is converted from the suffix tree to the suffix tray.

• σ-leaf u: u becomes a suffix interval node with suffix interval [L(u), R(u)].

• non-leaf σ-node u: Let u1, ..., ur be u’s children in the suffix tree and ul1 , ..., ulx be the subset
of children that are σ-nodes. Then u will be in the suffix tray and its children will be interleav-
ing suffix interval nodes and σ-nodes, i.e. (1, l1 − 1)-suffix interval node, ul1 , (l1 + 1, l2 − 1)-
suffix interval node, ul2 , ..., ulx , (lx + 1, r)-suffix interval node.

At each branching-σ-node u in the suffix tray we construct an array of size |Σ|, denoted by Au,
that contains the following data. For every child v of u that is a σ-node, location τ in Au where
τ is the first character on the edge (u, v), points to v. The rest of the locations in Au point to the
appropriate suffix interval node, or to a NIL pointer if no such suffix interval exists.

At each σ-node u which is not a branching-σ-node and not a σ-leaf, i.e. it has exactly one child
v which is a σ-node, store the first character τ on the edge (u, v), which is called the separating
character, together with two pointers to its two interleaving suffix intervals. See Figure 3 for an
example of a suffix tray.

The suffix tray is now claimed to be of linear size.

Lemma 2 Let S be a string of size n. Then the size of the suffix tray for S is O(n).

Proof: The suffix array is clearly of sizeO(n) and the number of suffix interval nodes is bounded
by the number of nodes in ST (S). Also, for each non branching-σ-node the auxiliary information
is of constant size.

The auxiliary information held in each branching-σ-node is of size O(|Σ|). By Lemma 1 there
are O( n

|Σ|) branching-σ-nodes. Hence, the overall size is O(n).

Obviously, given a suffix tree and suffix array, a suffix tray can be constructed in linear time
(using depth-first searches, and standard techniques). Since both suffix arrays and suffix trees can
be constructed in linear time for alphabets from a polynomially sized range [7, 10, 11, 12], so can
suffix trays.

6
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Figure 3: A suffix tray (on running example) with chunks of suffix array at the bottom.

3.2 Navigating on Index Queries

Suffix trays main goal is answering index queries. Now we explain how to do so.

Upon receiving a query P = p1...pm, we traverse the suffix tray from the root. Say that we have
already traversed the suffix tray with p1...pi−1 and need to continue with pi...pm. At each branching-
σ-node u, access array Au at location pi in order to determine which suffix tray node to navigate
to. Obviously, since this is an array lookup this takes constant time. For other σ-nodes that are not
σ-leaves and not branching-σ-nodes, compare pi with the separator character τ . Recall that these
nodes have only one child v that is a σ-node. Hence, the children of u in the suffix tray are (1) a
suffix interval node to the left of v, say u’s left interval, (2) v, and (3) a suffix interval node to the
right of v, say u’s right interval. If pi < τ , navigate to u’s left interval. If pi > τ , navigate to u’s
right interval. If pi = τ , navigate to the only child of u that is a σ-node. If u is a σ-leaf then we
search within u’s suffix interval.

To search within a suffix interval [j, k], the suffix array search is applied beginning with bound-
aries [j, k]2. The time to search in this structure is O(m+ log I), where I is the interval size. Hence,
the following lemma is helpful.

Lemma 3 Every suffix interval in a suffix tray is of size O(|Σ|2).

Proof: Consider an (i, j)-suffix interval, i.e. the interval [L(vi), R(vj)] which stems from a node
v with children v1, ..., vr. Notice that, by Observation 1, the (i, j)-suffix interval contains the suffixes
which are represented by leaves in the subtrees of vi, ..., vj . However, vi, ..., vj are not σ-nodes (by
suffix tray construction). Hence, each subtree of those nodes contains at most |Σ| − 1 leaves. Since
j − i+ 1 ≤ |Σ| the overall size of the (i, j)-suffix interval is O(|Σ|2).

2This can easily be done with the RMQ data structure. However, the original result of Manber and Myers [15] is
slightly more rigid. The more expansive view is described in [14].
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A suffix interval [L(v), R(v)] is maintained only for σ-leaves. As none of the children of v are
σ-nodes this is a special case of the (i, j)-suffix interval.

By the discussion above and Lemma 3 the running time for answering an indexing query is
O(m+ log |Σ|). In summary we have proven the following.

Theorem 1 Let S be a length n string over an alphabet Σ ⊂ {1, · · · , cn}. The suffix tray of S is (1)
of size O(n), (2) can be constructed in O(n) time, and (3) supports indexing queries (of size m) in
O(m+ log |Σ|) time.

4 Suffix Trists - The Online Scenario

In this section the problem of how to build an indexing structure that supports both text extensions
and supports fast(er) indexing is addressed. It is shown that if there exists an online construction
for a linear-space suffix tree such that the cost of adding a character is f(n, |Σ|) (n is the size of the
current text), then one can construct an online linear-space data-structure for indexing that supports
indexing queries inO(m+log |Σ|) time, where the cost of adding a character isO(f(n, |Σ|)+log |Σ|)
time. As text extensions occur, the online linear-space suffix-tree construction is treated as a suffix-
tree oracle; it performs the appropriate updates to the suffix tree as a result of the text extension,
and maintains the on-line suffix-tree as a result. Specifically, the best known current construction
supports text extensions in O(log n) time (see [3]). When |Σ| is small one can obtain an improved
O(|Σ|+ log log n) time [4].

We propose an online version of the Suffix Tray data structure which we call a Suffix Trist (a
cross between a suffix tree and an enhanced linked list). The suffix trist intends to imitate the suffix
tray. The σ-nodes and branching-σ-nodes are still used in the suffix tree part of the suffix trist, and
the method for answering indexing queries is similar. However, new issues arise in the online model:

1. Suffix arrays are static data structures and, hence, do not support insertions of new suffixes.

2. The arrays Av, for the branching-σ-nodes, need to be initialized and made dynamic.

3. The status of nodes changes as time progresses (non-σ-nodes become σ-nodes, and σ-nodes
become branching-σ-nodes).

We will show in Section 4.1 how to overcome (1) by using an alternative data structure. We will
have many of these alternative data structures, each representing a suffix interval. In Section 4.2
we show how to find the correct alternative data structure (among those representing the different
suffix intervals) when implementing text extensions. In Section 4.3 we propose an alternative way
to handling the array Av of branching-σ-nodes. Section 5 is dedicated to solving (3) and is a direct
worst-case solution.

4.1 Balanced Indexing Structures for Suffix Trists

Since we mimic the Suffix Tray with the Suffix Trist in an online (dynamic) manner we need to
show how to replace the (static) suffix arrays with dynamic data structures. On the other hand, we
also want to make sure that the new data structures can answer queries efficiently in the worst case.

8



The two data structures to be used are: (1) a suffix list which is a doubly linked list of the
lexicographically ordered suffix collection, and (2) a balanced indexing structure, BIS for short,
which is a balanced binary search tree over the lexicographically ordered suffix collection, fully
described by Amir et al. [3]. The BIS augments the suffix list with the dynamic order maintenance
data structure of Dietz and Sleator [6] (see [13] for a simplification). The BIS contains a suffix list
within. Moreover, it contains the longest common prefix (LCP) data structure from [8] in order to
allow indexing queries to be answered efficiently. A BIS supports a text extension in O(log n) time
and indexing queries inO(m+log n) time (see [3] and the next paragraph for a synopsis). The log n
term in the indexing query time follows from the height of the tree.

In a nutshell, a BIS is defined for a string S and supports text extensions to aS and indexing
queries. We give an outline of text extensions (queries are similar) from [3]. We ”insert” the new
suffix aS into the BIS by following the binary search tree from the root to the appropriate location
of aS in the tree, as one would for a standard binary search. However, a straightforward comparison
may take Ω(|S|) time as aS and the string represented by a node may be of length Ω(|S|). To reduce
the time to O(1) an LCP (longest common prefix) data structure is used on all suffixes. So, at a node
representing suffix S ′ we compare aS to S ′ by first comparing their first character. If they are not
equal then the walk down the binary search tree continues according to the comparison. If they are
equal we use the LCP data structure to compare S and S ′′, where S ′ = aS ′′. Notice that we compare
S and S ′′ and not aS and S ′ because aS is new and not yet in the LCP data structure. Once aS is
in place in the binary search tree one adds it to the LCP data structure. This is done using a method
very similar to the results in [8] and is out of scope of this paper. For more details see [3].

The above suggests replacing a suffix array of the Suffix Tray with a BIS in the Suffix Trist
thereby creating a separate BIS for every suffix interval. Since the suffix intervals are of sizeO(|Σ|2)
the search time in the small BISs will be O(m+ log |Σ|).

However, while the search is within the desired time bounds, one has to be more careful during
the execution of a text extension. There are two issues that need to be considered. The first is that
we assume that we are given an online suffix tree construction. Hence, the suffix tree is updated with
a new node representing the new suffix of aS. However, one needs to find the appropriate BIS into
which the new node needs to be inserted. This is discussed in Section 4.2.

The second issue is that each BIS contains only some of the suffixes, whereas the search of
the location of aS in the BIS relies on the underlying LCP data structure, described above, which
requires that all the suffixes of S be in the BIS (which is almost always not the case). However,
this may be solved by letting the LCP data structure work on all suffixes in all BISs. To make this
work we need to show how to insert the new suffix aS (the text extension) into the data structure.
We observe that once we find the location of aS in the current BIS this will be its location (not only
in the current BIS but also) among all suffixes in all BISs. This is true because the BISs represent
suffix intervals (i.e. contiguous suffixes).

4.2 Inserting New Nodes into BISs

When a text extension from S to aS is performed, the suffix tree is updated to represent the new text
aS (by our suffix-tree oracle). Specifically, a new leaf, corresponding to the new suffix, is added to
the suffix tree, and perhaps one internal node is also added. If such an internal node is inserted, then
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that node is the parent of the new leaf and this happens in the event that the new suffix diverges from
an edge (in the suffix tree of S) at a location where no node previously existed. In this case an edge
needs to be broken into two and the internal node is added at that point.

We now show how to update the suffix trist using the output of the online suffix tree oracle. The
steps are (1) finding the correct BIS into which the new suffix is to be inserted and (2) performing
the insertion of the new suffix into this BIS. Of course, this may change the status of internal nodes,
which are handled in Section 5. The focus is on solving (1) while mentioning that (2) can be solved
by the text extension method of the BIS whose synopsis was given in Section 4.1.

The following useful observation is immediately derived from the definition of suffix trists.

Observation 2 For a node u in a suffix tree, if u is not a σ-node, then all of the leaves in u’s subtree
are in the same BIS.

For every node u in the suffix tree it will be useful to maintain a pointer leaf(u) to some leaf
in u’s subtree. This invariant can easily be maintained under text extensions since an internal node
is always created together with a new leaf, and this leaf will always be a leaf of the subtree of the
internal node.

In order to find the correct BIS in which the new node is to be inserted we first consider the
situation in the suffix tree. We consider the following two cases.

(a) The new leaf u in the suffix tree (representing the new suffix) is inserted as a child of an
already existing internal node v.

(b) The new leaf u in the suffix tree is inserted as a child of a new internal node v.

First, consider the case where the new leaf u in the suffix tree is inserted as a child of an already
existing internal node v. If v is either a σ-leaf or not a σ-node, then from Observation 2 it is known
that leaf(v) and u need to be in the same BIS. So, we may ”move” to the BIS in which leaf(v)
is positioned and traverse up from leaf(v) to the root of the BIS (in O(log |Σ|) time). If v is a
branching-σ-node, then the BIS is found in O(log |Σ|) time from Av (we show how to do this in
Section 4.3). Otherwise, v is a σ-node which is not a σ-leaf and not a branching-σ-node. In this
case the correct BIS of the two possible BISs can be found by examining the separating character
maintained in v.

Next, consider the case where the new leaf u in the suffix tree is inserted as a child of a new
internal node v. Let w be v’s parent, and let w′ be v’s other child (not u). We consider this case in
two steps. First we insert v and then we insert u. After we show how to update the suffix trist to
include v, u can be added as explained above.

We need to determine the status of v. Obviously, v cannot be a branching-σ-node. Moreover,
the number of leaves in v’s subtree is the same as the number of leaves in the subtree rooted at w′

(as u is currently being ignored). So, if w′ is not a σ-node, v is not a σ-node, and otherwise, v is
a non-branching-σ-node with a separating character that is the first character of the label of edge
(v, w′). The entire process takes O(log |Σ|) time, as required.
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4.3 The Branching-σ-Node Array in a Dynamic Setting

The array Av for a branching-σ-node v has to be adapted to work for the dynamic setting. First
of all, it will be necessary to initialize the array when a node becomes a branching-σ-node (which
naively takes O(|Σ|) time). The other challenge is that the values of the array might be changing.
Most notably, a suffix interval, represented by a BIS, might contain a node that changes to a σ-node
thereby dividing the suffix interval. This requires updates to all the array locations of characters rep-
resented by the suffix interval. We will discuss these issues in more depth in Section 5.4. However,
we present upfront the change in data structure format from that of the Suffix Tray. This will be
useful for the discussion throughout Section 5.

The array Av in the (static) suffix tray contains a pointer for each character to its appropriate
suffix interval. Specifically, pointers to the same suffix interval appear in all of the array cells that
go to that suffix interval. This is fine in the static case but may be costly for text extensions since
splitting a BIS can cause many pointers to need to be changed. Hence, we change our strategy and
let an array cell representing character a in the array point to the edge in the suffix tree leaving v
with a. During a traversal we implement the pointer to the appropriate BIS from a character a by
accessing the edge from Av at the location representing a. Say this edge leads to node u. Then
from leaf(u) we can access the appropriate BIS. Notice that while we will no longer need suffix
interval nodes, we will still refer to them as if they exist while keeping in mind that accessing the
appropriate BIS is done through the the appropriate edge (in a manner to be shown later) without the
actual suffix interval node. The advantage is that, when a BIS representing a suffix interval is split,
nothing in the array needs to be changed (only the new σ-node needs to be marked). We point out
that the procedure we will describe to find the appropriate BIS will work regardless of the changing
BISs.

We solve the problem of initializing Av as follows. Since we are in a dynamic environment,
nodes will change status to become branching-σ-nodes as the text grows, thereby requiring new
arrays. We discuss this later in Section 5.4. However, we do point out that it is helpful to maintain
(throughout the algorithm) a balanced search tree at each node v of the suffix tree, which we denote
BSTv, containing the characters which exit the node (not all characters) with pointers to the edges
exiting v with the corresponding characters. We will use this data structure during the time Av is
being constructed. It will be shown later that this will not affect the query time.

4.4 Search Outline

We outline the procedure of the search for a pattern in a Suffix Trist. However, we point out that it
is an outline and the reader is advised to reread the outline after reading Section 5.

Search

1. σ-leaf v: Go to the BIS that represents the suffixes in the subtree of v in the suffix tree.

2. Non-branching-σ-node v: Compare τ , the separating character, with ρ, the current character
of the search.
If ρ = τ then go the child vi where (v, vi) is marked starting with τ .
If ρ < τ then go to the left BIS and if ρ > τ then go to the right BIS.
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3. Branching-σ-node v:

(a) If Av exists then go to Av(ρ) leading to edge e = (v, u) exiting v with ρ. Check the text
on the edge for a match. If u is a σ-node then continue the search in the suffix tree. If
not, then go to leaf(u), move to the BIS containing leaf(u) and find the root of the BIS
by going up the binary search tree of that BIS. Continue the search for the pattern within
the BIS (as described in Section 4.1).

(b) If Av is still under construction, compare ρ with the first character on each of the edges
leading to vi and vj (the first two children that became σ-nodes and caused v to become
a branching-σ-node). If ρ matches one of them go to vi or vj accordingly, checking for
a match on the way. If not, use BSTv to find ρ and then repeat the procedure described
when Av exists.

5 When a Node Changes Status

At this stage of our description of the suffix trist we have assumed that we have an online suffix tree
oracle. We have also described how to maintain the BISs that replace the suffix array intervals of the
Suffix Tray. Finally we have shown how to find the correct BIS into which a new suffix is inserted
during a text extension, and how to execute the insertion. We are left with the task of maintaining the
auxiliary data on the nodes of the suffix tree, namely maintaining the data for σ-nodes, branching-
σ-nodes and knowing when a σ-node is a σ-leaf. Of course, the status of a node may change since
the text is now arriving online.

In 5.1 we begin by describing how to detect when a node reaches the status of a σ-node. In 5.2
we describe what needs to be updated when a node becomes a σ-node. In 5.3 we describe what
happens when a σ-leaf ”loses” its leaf status. In 5.4 we describe the updates necessary when a
σ-node becomes a branching-σ-node.

5.1 Detecting a New σ-Node

Let u be a new σ-node and let v be its parent. Just before u becomes a σ-node, (1) v must have
already been a σ-node and (2) u ∈ {vi, ..., vj} and is associated with an (i, j)-suffix interval rep-
resented by a suffix interval node w that is a child of v in the suffix trist. Hence, one will be able
to detect when a new σ-node is created by maintaining counters for each of the (suffix tree) nodes
vi, ..., vj to count the number of leaves in their subtrees (in the suffix tree). These counters are
maintained on the suffix tree edges and each counter vk is indexed by the first character on the edge
(v, vk).

These counters only need to be maintained for nodes which are not σ-nodes and have a parent
which is a σ-node. Thus, maintaining the counters can be done as follows. When a new leaf is added
into a given BIS of the suffix trist at suffix interval node w of the BIS, where v is the parent of w, the
counter of vk in the BIS needs to be increased, where vk is the one node (of the nodes of vi, ..., vj
of the suffix interval of the BIS) which is an ancestor of the new leaf. The node vk can be found
in O(log |Σ|) time by using BSTv with the search key being the character that appears at location
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|label(v)|+ 1 in the text; this character can be found in constant time with a direct access. Then, the
counter of vk is incremented.

Notice that when a new internal node was inserted into the suffix tree as described in Section 4, it
is possible that the newly inserted internal node is now one of the nodes vi, ..., vj for an (i, j)-suffix
interval. In such a case, when the new node is inserted, it copies the number of leaves in its subtree
from its only child (as was explained in Section 4 the newly inserted leaf is initially ignored and
then treated as an independent insertion), as that child previously maintained the number of leaves
in its subtree. Furthermore, from now on only the size of the subtree of the newly inserted node is
updated, and not the size of its child subtree.

Finally, when a node becomes a σ-node for the first time, the counters of all of its children will
need to be updated. This is explained in further detail in Section 5.2.

5.2 Updating the New σ-Node

Let u be the new σ-node (which is, of course, a σ-leaf) and let v be its parent. As discussed in the
previous subsection u ∈ {vi, ..., vj} where vi, ..., vj are children of v (in the suffix tree) and just
before becoming a σ-node there was a suffix interval node w that was an (i, j)-suffix interval with a
BIS representing it.

Updating the new σ-node will require two things. First, the BIS is split into 3 parts; two new
BISs and the new σ-leaf that separates them. Second, for the new σ-leaf the separating character is
added (easy) and a new set of counters for the children of u is created (more complicated).

The first goal will be to split the BIS that has just been updated into three - the nodes correspond-
ing to suffixes in u’s subtree, the nodes corresponding to suffixes that are lexicographically smaller
than the suffixes in u’s subtree, and the nodes corresponding to suffixes that are lexicographically
larger than the suffixes in u’s subtree.

As is well-known, for a given a value x, splitting a BST, balanced search tree, into two BSTs at
value x can be implemented in O(h) time, where h is the height of the BST (see Sections 4.1 and
4.2 in [19]). The same is true for BISs (although some straightforward technicalities are necessary
to handle the auxiliary information). Since the height of BISs is O(log |Σ|) one can split a BIS into
two BISs in O(log |Σ|) time and by finding the suffixes (nodes in the BIS) that correspond to the
rightmost and leftmost leaves of the subtree of u, one can split the BIS into the three desired parts in
O(log |Σ|) time. Fortunately, one can find the two nodes in the BIS in O(log |Σ|) time by accessing
the BIS directly through leaf(u), and then walking up and down the BIS.

Recall that we need to maintain counters for nodes in the suffix tree which are not σ-nodes and
have a parent which is a σ-node. So we need to initialize counters for all of the children of u in
the suffix tree. Denote these children of u by u1, ..., uk. First notice that the number of suffixes in a
subtree of ui can be computed in O(log |Σ|) time by a traversal in the BIS using classical methods
of binary search trees. It is now shown that there is enough time to initialize all the counters of
u1, ..., uk before one of them becomes a σ-node, while still maintaining the O(log |Σ|) time bound
per update.

Specifically, the counters will be updated during the first k insertions into the BIS of u (following
the event of u becoming a σ-node). At each insertion two of the counters are updated. What is
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required is for the counters to be completely updated prior to the next time they will be used, i.e. in
time to detect a new σ-node occurring in the subtree of u. The following lemma is precisely what is
needed.

Lemma 4 Let u be a node in the suffix tree, and let u1, ..., uk be u’s children (in the suffix tree). Say
u has just become a σ-node. Then at this time, the number of leaves in each of the subtrees of u’s
children is at most |Σ| − k + 1.

Proof: Assume by contradiction that this is not the case. Specifically, assume that child vi has
at least |Σ| − k + 2 leaves in its subtree at this time. Clearly, the number of leaves in each of the
subtrees is at least one. So summing up the number of leaves in all of the subtrees of u1, ..., uk is at
least |Σ| − k + 2 + k − 1 = |Σ| + 1, contradicting the fact that u just became a σ-node (it should
have already been a σ-node).

Since the size of the subtree of a child of u, say ui, is no more than |Σ| − k + 1 at least k − 1
insertions will be required into the subtree of ui, and hence into the subtree of u, before ui becomes a
σ-node. Now, after each insertion into the subtree of u (regardless of which child’s subtree the new
node was inserted into) we initialize the next two counters (by a continuous traversal on BSTu).
Hence, after k

2
insertions all counters are initialized.

5.3 When a σ-Leaf Loses its Status

The situation where a σ-leaf becomes a non-leaf σ-node is a case that has already been implicitly
covered. Let v be a σ-leaf that is about to change its status to a non-branching-σ-node which is not a
leaf. This happens because one of its children vk is about to become a σ-leaf. Notice that just before
the change v is a suffix interval node. Hence, the BIS representing the suffix interval needs to be
split into three parts, and the details are exactly the same as in Section 5.2. As before this is done in
O(log |Σ|) time.

5.4 When a σ-Node Becomes a Branching-σ-Node

Let v be a σ-node that is changing its status to a branching-σ-node. Just before it changes its status it
had exactly one child vj which was a σ-node. The change in status must occur because another child
(in the suffix tree), say vi, has become a σ-leaf (and now that v has two children that are σ-nodes it
has become a branching-σ-node).

Assume, without loss of generality, that vi precedes vj in the list of v’s children. Just before
becoming a branching-σ-node, v contained a separating character τ , the first character on the edge
(v, vj), and two suffix interval nodes w and x, corresponding to the left interval of v and the right
interval of v, respectively. Now that vi became a σ-leaf w was split into three parts (as described in
Section 5.2). So, in the suffix trist the children of v are (1) a suffix interval node wL, (2) a σ-leaf vi,
(3) a suffix interval node wR, (4) a σ-node vj , and (5) a suffix interval node x. Denote with B1, B2

and B3 the BISs that represent the suffix interval nodes wL, wR and x.

The main problem here is that constructing the array Av takes too much time, so one must use
a different approach and spread the construction over some time. A solution for which the Av

construction charges its cost on future insertions (some of which may never occur) is shown first.
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Then we show how to make it a worst-case solution. The charges will be over the insertions into the
BISs B1, B2 and B3 and will be described in the following lemma.

Lemma 5 From the time that v becomes a branching-σ-node, at least |Σ| insertions are required
into B1, B2 or B3 before any node in the subtree of v (in the suffix tree) that is not in the subtrees of
vi or vj becomes a branching-σ-node.

Proof: Clearly, at this time, any node in the subtree of v (in the suffix tree) that is not in the
subtrees of vi or vj has fewer than |Σ| leaves in its subtree. On the other hand, note that any
branching-σ-node must have at least 2|Σ| leaves in its subtree, as it has at least two children that are
σ-nodes, each contributing at least |Σ| leaves. Thus, in order for a node in the subtree of v (in the
suffix tree) that is not in the subtrees of vi or vj to become a branching-σ-node, at least |Σ| leaves
need to be added into its subtree, as required.

This yields desired result, as one can always charge the Av construction over its insertions into
B1, B2 and B3. The crucial observation that follows from Lemma 5 is that Av will be constructed
before a branching-σ-node that is a descendant of v but not of vi or vj is handled.

We now use a lazy approach that yields the worst-case result. We begin by using the folklore
trick of initializing the array Av in constant time, see [2] (Ex. 2.12, page 71) and [17] (Section
III.8.1). Then every time an insertion takes place into one of B1, B2 or B3, one more element is
added to the array Av. Lemma 5 assures that Av will be constructed before a branching-σ-node that
is a descendant of v but not of vi or vj is handled.

We note that in the interim, until Av is fully constructed, we use BSTv during an indexing query
as follows. First we compare the next character ρ of the search with the first characters on vi and vj .
If there is a match on either we continue the search in the direction of vi or vj accordingly. This is
to make sure that the time spent at node v is constant if we continue to vi or vj . If this is not the case
then we use BSTv to search for the edge leaving v starting with ρ. This can be done in O(log |Σ|)
time. The following corollary of Lemma 5 assures us that we will use this access to a binary search
tree only once in the whole search and, hence, the O(log |Σ|) time is additive.

Corollary 1 Let v be a branching-σ-node with children vi and vj being the first σ-nodes. Let x be
a branching-σ-node that is a descendant of v, but not of vi or vj . Then Av is fully constructed.

Proof: By Lemma 5 there must be at least |Σ| insertions into the subtree of v that is not a subtree
of vi or vj before x can be a branching-σ-node. By then Av is fully constructed.

We can finally conclude with the following theorem.

Theorem 2 Let S be a string over an alphabet Σ. The suffix trist of S is (1) of size O(n), (2)
supports text extensions in time O(log |Σ|) + extensionST (n,Σ)) time (where fST (n,Σ) is the time
for a text extension in the suffix tree) and (3) supports indexing queries (of size m) in O(m+log |Σ|)
time.

6 Conclusions

We have shown how to create and maintain linear sized indexing structures that allow searches in
O(m+log |Σ|) time for m length patterns. We have shown this both for the static and online scenar-
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ios. In the static version we have produced the Suffix Tray data structure and in the online version
we have produced the Suffix Trist data structure. The advantage of the Suffix Tray is its simplic-
ity, while allowing fast searches. The Suffix Trist, although more involved, is a clean generalized
dynamization of the Suffix Tray. One future challenge is in allowing deletions to take place in ad-
dition to the insertions. For example, one may be interested in a generalized suffix trist managing a
collection of texts so you can insert new texts and delete texts from the collection.
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