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1 Introduction

Our main result is a technique for embedding graph metrics into ¢, with dis-
tortion depending only upon the bandwidth of the original graph. A graph has
bandwidth £ if there exists some ordering of the vertices such that any two ver-
tices with an edge between them are at most k apart in the ordering. While this
ordering could be viewed as an embedding into one-dimensional ¢; with bounded
expansion (any two vertices connected by an edge must be close in the ordering),
the contraction of such an embedding is unbounded (there may be two vertices
which are close in the ordering but not in the original metric). Obtaining an em-
bedding with bounded distortion (in terms of both expansion and contraction)
turns out to be non-trivial.

In fact, our results can be extended to a new graph parameter that we call
tree-bandwidth. We observe that metrics based on trees are easy to embed into /1
isometrically, despite the fact that even a binary tree can have large bandwidth.
The tree-bandwidth parameter is a natural extension of bandwidth, where ver-
tices are placed along a tree instead of being ordered linearly. We prove that the
shortest path metric of an unweighted graph can be embedded into ¢; with dis-
tortion depending only upon the tree-bandwidth of the graph (thus independent
of the number of vertices).

We achieve these results by introducing a novel technique for iterative em-
bedding of graph metrics into £;. The idea is to partition the graph into small
sets and embed each set separately. The coordinates of each specific point are
determined when the set containing that point is embedded. Two embeddings
will be computed for each set of points. One is generated via some local em-
bedding technique, and maintains accurate distances between the members of
the same set. The other embedding copies a set of “parent” points; the goal is
to maintain small distances between points and their parents. These two sets of
coordinates will be carefully combined to generate the final coordinates for the
new set of points. We then proceed to the next set in the ordering.

For ease of exposition we use a very simple local embedding technique in this
paper. However, we have also proven a more general result in which we show
that with iterative embedding, any reasonable local embedding technique suffices
for embedding into ¢; with distortion dependent only upon the tree-bandwidth
(proof omitted). This leaves open the possibility that the dependence on the
tree-bandwidth could be improved with a different local embedding technique.

The motivation for our work is a conjecture (stated by Gupta et al. [9] and
others) that excluded-minor graph families can be embedded into ¢; with distor-
tion dependent only upon the set of excluded minors. This is one of the major
conjectures in metric embedding, and many previous results have resolved special
cases of this conjecture. However, all previous ¢; embedding results either yield
distortion dependent upon the number of points in the metric [4,15], or apply
only to a subset of the planar graphs [13, 9, 6]. While our results do not resolve the
conjecture, we are able to embed a well-studied subclass of graphs (bandwidth-k
graphs) with distortion independent of the number of points in the metric. This
is the first such result for a non-planar graph class. In addition, our definition of



tree-bandwidth is similar to (although possibly weaker than) treewidth. While we
conjecture that there exist families of graphs with low treewidth but unbounded
tree-bandwidth, it is interesting to note that weighted treewidth-k graphs can be
embedded with constant distortion into weighted tree-bandwidth-O(k) graphs.

We note that at each step, our embedding technique requires the existence of
a previously embedded “parent” set such that each point of the new set is close
to one of the parents, but no point in the new set is close to any other previously
embedded set. This property implies the existence of a hierarchy of small node
separators (small sets of nodes which partition the graph), which is exactly the
requirement for a graph of low treewidth. However, we also need each point to
be close to some member of the parent set, which motivates our definition of the
tree-bandwidth parameter.

1.1 Related Work

A great deal of recent work has concentrated on achieving tight distortion bounds
for ¢; embedding of restricted classes of metrics. For general metrics with n
points, the result of Bourgain[4] showed that embedding into ¢; with O(logn)
distortion is possible. A matching lower bound (using expander graphs) was
introduced by LLR [11]. It has been conjectured by Gupta et al. [9], and In-
dyk [10] that the shortest-path metrics of planar graphs can be embedded into
£y with constant distortion. Gupta et al. [9] also conjecture that excluded-minor
graph families can be embedded into ¢; with distortion that depends only on
the excluded minors. In particular, this would mean that for any & the family of
treewidth-k graphs could be embedded with distortion f(k) independent of the
number of nodes in the graph®. Such results would be the best possible for very
general and natural classes of graphs.

Since Okamura and Seymour [13] showed that outerplanar graphs can be
embedded isometrically into ¢, there has been significant progress towards re-
solving several special cases of the aforementioned conjecture. Gupta et al. [9)
showed that treewidth-2 graphs can be embedded into ¢; with constant distor-
tion. Chekuri et al. [6] then followed this by proving that k-outerplanar graphs
can be embedded into ¢; with constant distortion. Note that all these graph
classes not only have low treewidth, but are planar. We give the first constant
distortion embedding for a non-planar subclass of the bounded treewidth graphs.

Rao [15] proved that any minor excluded family can be embedded into ¢;
with distortion O(y/Togn). This is the strongest general result for minor-excluded
families. Rabinovich [14] introduced the idea of average distortion and showed
that any minor excluded family can be embedded into ¢; with constant average
distortion.

Graphs of low treewidth have been the subject of a great deal of study.
For a survey of definitions and results on graphs of bounded treewidth, see
Bodlaender [2]. More restrictive graph parameters include domino treewidth [3]
and bandwidth [7], [8].

3 There is a lower bound of £2(log k) arising from expander graphs.



2 Definitions and Preliminaries

Given two metric spaces (G,v) and (H, p) and an embedding ¢ : G — H, we
say that the distortion of the embedding is ||®|| - ||#~!|| where

bot = s “EETE 1o = S

Parameter ||®|| will be called the expansion of the embedding and parameter
[®~ 1| is called the contraction. We will define bandwidth and then present our
definition of the generalization tree-bandwidth.

Definition 1. Given graph G = (V, E) and linear ordering f : V — {1,2,...,|V|}
the bandwidth of f is maz{|f(v) — f(w)||(v,w) € E}. The bandwidth of G is
the minimum bandwidth over all linear orderings f.

Definition 2. Given a graph G = (V, E), we say that it has tree-bandwidth &
if there is a rooted tree T = (I, F) and a collection of sets {S; C V|i € I} such
that:

V=US:

the S; are disjoint

Y(u,v) € E, u and v lie in the same set S; or u € S; and v € S; and
(i,j) € F.

if ¢ has parent p in T, then Yv € S¢,3u € Sp such that d(u,v) < k.

oo~

&

We claimed that tree-bandwidth was a generalization of bandwidth. Intuitively,
we can divide a graph of low bandwidth into sets of size k (the first & points in
the ordering, the next k points in the ordering, and so forth). We then connect
these sets into a path. This gives us all the properties required for tree-bandwidth
except for the fifth property — there may be some node which is not close to any
node which appeared prior to it in the linear ordering. We can fix this problem
by defining a new linear ordering of comparable bandwidth. The proof of this
fact has been deferred until the full version of the paper.

Lemma 1. Graph G = (V, E) with bandwidth b has tree-bandwidth at most 2b.

We will now define treewidth and show the close relationship between the
definitions of treewidth and tree-bandwidth.

Definition 3. (i) Given a connected graph G = (V, E), a DFS-tree is a rooted
spanning subtree T = (V,F C E) such that for each edge (u,v) € E, v is an
ancestor of u or u is an ancestor of v in T.

(i) The value of DFS-tree T is the mazimum over all v € V' of the number
of ancestors that are adjacent to v or a descendent of v.

(iii) The edge stretch of DFS-tree T is the the mazimum over all v,w € V
of the distance d(v,w) where w is an ancestor of v and w is adjacent to v or a
descendent of v.



We use the following definition of treewidth due to T. Kloks and related in
a paper of Bodlaender [2]:

Definition 4. Given a connected graph G = (V, E), the treewidth of G is the
minimum value of a DFS-tree of a supergraph G' = (V, E') of G where E C F'.

The following proposition follows immediately from the definition of tree-
bandwidth:

Proposition 1. Given a connected graph G = (V, E), the tree-bandwidth of G
is the minimum edge stretch of a DFS-tree of G.

Thus, treewidth and tree-bandwidth appear to be related in much the same
way that cutwidth and bandwidth are related (see [2] for instance). The close
relationship between treewidth and tree-bandwidth is cemented by the following
observation (the proof is deferred until the full version of the paper):

Lemma 2. Any metric supported on a weighted graph G = (V, E) of treewidth-k
can be embedded with distortion 4 into a weighted graph with tree-bandwidth-O (k)

Thus, a technique for embedding weighted tree-bandwidth-k graphs into ¢;
with O(f(k)) distortion would immediately result in constant distortion ¢;-
embeddings of weighted treewidth-k graphs.

2.1 Bounded Bandwidth Example

To see that previous constant distortion embedding techniques do not handle
bounded bandwidth graphs consider the following example. Construct a graph G
by connecting k points in an arbitrary way, then adding k new points connected
to each other and the previous k points in an arbitrary way, and repeat many
times.

Clearly the graph G generated in this way has bandwidth < 2k —1. However,
note that if £ > 3 and some set of 2k consecutively added points contains K3 3
or K5 then G is not planar and thus previous constant distortion ¢;-embedding
techniques cannot be applied [13,9, 6]. G does have bounded treewidth, so Rao’s
algorithm [15] can be applied but it only guarantees O(1/logn) distortion.

2.2 Bounded Tree-Bandwidth Example

To show that bounded tree-bandwidth graphs form a broader class than the
bounded bandwidth graphs consider the following example. Let G = (V', E')
consist of k copies of an arbitrary tree T' = (V| E). Construct G’ from G as
follows:

1. For z € V, let {x1,...,x} be the k copies of z in V.
2. For each x € V, connect {z1,...,z;} in an arbitrary way.



While the resulting graph G’ clearly has tree-bandwidth k, a complete binary

tree of depth d has bandwidth 2(d) [7], thus G’ may have bandwidth £2(logn).
Note again that if k¥ > 5 and G’ contains K3 3 or K5 then G’ is not planar and

thus previous constant distortion ¢;-embedding techniques cannot be applied.

Also note that there are trees T' with |V| = n such that any ¢3-embedding of
T has distortion £2(v/loglogn) [5]. Since Rao’s technique embeds first into £ this
gives a lower bound of 2(y/loglogn) on the distortion achievable using Rao’s
technique to embed G’ into ¢;. The technique presented in this paper embeds
these examples into ¢; with distortion depending only on k.

Apart from being interesting from a technical viewpoint, bounded tree-band-
width graphs may also be a good model for phylogenentic networks with limited
introgression/reticulation [12]. This is a fruitful connection to explore, though it
is outside the scope of this paper.

3 Algorithm

Given a graph G of tree-bandwidth k, it must have a tree-bandwidth-k decompo-
sition (T, {X;}). We will embed the sets X; one set at a time according to a DFS
ordering of T'. When set X is embedded, all members of that set will be assigned
values for each coordinate. Note that once a point is embedded, its coordinates
will never change - all subsequently defined coordinates will be assigned value
zero for these points. Note that when new coordinates are introduced, these are
considered to be coordinates that were never used at any previous point in the
algorithm.

For each set we will obtain two embeddings: one derived by extending the
embedding of the parent of X; in T and one local embedding using a simple
deterministic embedding technique. We prove the existence of a method for
combining these two embeddings to provide an acceptable embedding of the set
X;.

At stage i, our algorithm will compute a weight for each partition S of X;.
We would like these weights to look like wj/(.9) - the distance between the closest
pair of points separated by S. The embedded distance between two points z,y in
X; will be the sum of weights over partitions separating x from y. The weights
suggested above will guarantee no contraction and bounded expansion within X;.
We can transform weighted partitions into coordinates by introducing wys(.S)
coordinates for each partition .S, such that the coordinate has value 1 for each
x € S and value —1 for each x € X; — S.

This approach will create entirely new coordinates for each point. Since points
in X; are supposed to be close to points in X,(;), this can create large distortion
between sets. Instead of introducing all new coordinates, we would like to “reuse”
existing coordinates by forcing points in X; to take on values similar to those
taken on by points in X;).

To reuse existing coordinates we will choose a “parent” in X, for each
point © € X; and identify x with its parent p(x). The critical observation here
is that each point in X; is within distance k of some point in X,;y. Therefore,



the partition weights (and hence distances) established by these coordinates are
good approximations of the target values we would like to assign.

More precisely, for each point € X; there is at least one closest point in
Xp(i)- Choose an arbitrary such point to be the parent of z. After identifying
points in this way, each parent coordinate induces a partition S on X; between
points whose parents have values 1 and —1 in that coordinate. We can define
wp(S) to be the number of parent coordinates inducing partition S. If jwp(S) —
wpr(9)| is always small then the independent local weightings agree and we get
a good global embedding.

Unfortunately, there are cases in which wp(S) — wps(S) can be large. How-
ever, we can successfully combine the two metrics by using the following weight-
ing: wp(S) = max(war(S),wp(S)—p). The key property of this weighting is that
we do not activate too many new coordinates (since wp(S) not much less than
wr(S)) nor do we deactivate too many existing coordinates (wp(S) not much
more than wg(S)). In addition, we can show that wp(S) does not contract nor
greatly expand distances between points of X;.

3.1 MIN-SEPARATOR Embedding

We can prove that any reasonable local embedding technique suffices to obtain
O(f(k)) distortion. However, that proof is quite involved and is omitted from
this abstract. Instead, for ease of exposition, we will employ a simple local em-
bedding technique which we call a MIN-SEPARATOR embedding and which
is described below. The MIN-SEPARATOR embedding returns similar embed-
dings for independently embedded metrics with similar distances. This is a very
useful property and greatly simplifies our overall algorithm and analysis®.

MIN-SEPARATOR embedding: Given metric (G,d), we assign a weight for
each of the distinct partitions of G. To each partition S we assign weight
ware) (S) = d(S,G — S) = min{d(z,y)|zr € S,y € G — S}. Note that when
the source metric is clear we will denote these weights as wpr(S). We then
transform these weighted partitions into coordinates by introducing was(S) co-
ordinates for each partition S such that the coordinate has value 1 for each
x € S and value —1 for each z € G —S. The distances in this embedding become

dyay(z,y) = > war@)(S) = > d(s,G - S)
Se2G:xeS,yeG—-S Se2G:xeS,yeG-S

Lemma 3. The MIN-SEPARATOR embedding does not contract distances and
does not expand distances by more than 2F.

Proof. First we show that MIN-SEPARATOR does not contract the distance
between x and y. The proof is by induction on the number of points in the
metric (G, d).

4 Tt is conceivable that a different local embedding technique might result in a better
dependence on k.



If |G| = 2, then there is only one non-trivial partition and it has weight
d(x,y). For larger graphs, there must be some point z other than z,y. Let
B = G —{z}; by the inductive hypothesis the claim holds on set B. However, we
observe that the embedded distance dp;(p)(z,y) is at most the embedded dis-
tance dpr(@)(z,y). For any partition of B, we can consider two new partitions of
G (one with z on each side) and observe that the total weight MIN-SEPARATOR
places on these partitions must be at least the weight MIN-SEPARATOR placed
on the original partition of B (this because of triangle inequality).

We now show that MIN-SEPARATOR does not expand distances by more
than 2%, For each partition S which separates z, y, war()(S) < d(x,y) and since
there are < 2¥ partitions which separate z, y, darey(z,y) < 2kd(z,y).

3.2 Combining the Local Embeddings

The algorithm EMBED-BAND relies on three critical properties of the tree-
bandwidth decomposition:

1. Each node in X, is within distance k of a node in the parent of Xj.

2. The nodes of X; are not adjacent to any previously embedded nodes except
those in the parent of X;.

3. The number of points in X; is at most k.

The first property enables us to prove that
wp(S) = p < wi(S) < wp(S) + 2k (1)

This is key in bounding the distortion between sets, since it indicates that we
never introduce or “zero-out” too many coordinates for any partition S of Xj.

The second property means that we don’t need to bound expansion between
too many pairs of points. As long as we can prove that distances between points
in X; and X,(;) don’t expand too much, the triangle inequality will allow us to
bound expansion between all pairs of points.

The third property allows us to bound the distortion of the local embed-
ding (MIN-SEPARATOR) as well as to bound the total number of coordinates
introduced or zeroed out, since there are only 2* partitions of set X; with k
points.

3.3 Example: Embedding a Cycle

It is instructive to observe what happens when embedding a cycle (see figure 1). It
is clear that the first two points in the cycle (X;) can be embedded acceptably.
As we embed subsequent sets we embed the descendents of these two points.
Because the pairs of points in consecutive sets diverge, each new point inherits
the values of all of the coordinates of its parent. Additionally, new coordinates
are added to separate the pairs of points. The union of these coordinates is
enough to establish the distances between these pairs of points as they diverge.



Fig. 1. Embedding a Cycle

After embedding half the points in the cycle, the pairs of points in sub-
sequent sets begin to converge. Whenever the distance induced by the parent
points exceeds the target distance of the current points (represented by the
MIN-SEPARATOR distance), we set the values of u coordinates establishing
that distance to zero for the new points. Because points in consecutive sets are
within distance k of their parents, the distances between consecutive pairs of
points cannot decrease by more than 2k per step. Thus, zeroing p coordinates
at each step is more than sufficient to compensate for the decreasing distances.

It might appear that zeroing u coordinates at each step would contract dis-
tances between points and their ancestors, but recall that we also define 5 new
coordinates at each step to separate the current points from all previously em-
bedded points and prevent such contractions.

4 Analysis

The central result of this paper follows directly from the lemmas below:

Theorem 1. Algorithm EMBED-BAND embeds tree-bandwidth-k graphs into
0y with distortion < 23 =4 - 2% = 16k - 22F.

Lemma 4. The distances between points embedded simultaneously are not con-
tracted.

Proof. If z,y are in the same tree node X;, then the distance dg(z,y) is at least
as large as the distance dys(x,)(z,y) returned by MIN-SEPARATOR. This is
because for every partition we use wp(S) = max{w(S), wp(S) — p} > wp(S).
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Input: Assume G = (V, H) has tree-bandwidth decomposition (" = (I, F), {X;|i €
I}). Let p(i) be the parent of ¢ € T'. Assume that p(i) appears before ¢ in the ordering
of the nodes of I. X is the root of 7.

1. p— 4k2F
2. for each of the 2! — 1 non-trivial partitions S of X;:
(a) wap(S) «— min{d(z,y)|z € S,y € X1 — S}
(b) define was(S) new coordinates
(¢) for each new coordinate ¢ set:
Te — 1 ifxe s,
Te — —1 frzeX; -85
3. FOR i — 2 TO |I|

(a) for each x € Xj, let p(x) be the parent of x (closest node to ) in X,;).
(By identifying nodes x with their parents p(x), each existing coordinate in-
duces a partition on the points of Xj;.)
(b) for each of the 2°~! — 1 non-trivial partitions S of X;:
i. wy(S) < min{d(z,y)|z € S,y € X; — S}
il. wp(S) « # of existing coordinates which induce S via X,
iil. wp(S) «— max(wa(S), wp(S) — p)
iv. if wp(S) > wp(S) then:
A. for all the wp(S) coordinates that induce partition S set z. « p(x).
for all x € X;
B. define wr(S) — wp(S) new coordinates
C. for each new coordinate c set:
Te — 1 ifxels,
Te — —1 fzeX;,—S
(zc < 0 for all previously embedded points)
v. If wp(S) <wp(S) then:
A. for wp(S) — wr(S) of the coordinates that induce partition S set
z. «— 0 for all z € X;
B. for the wr(S) remaining coordinates that induce partition S set z. <«
p(x)c for all z € X;
(¢) zc < p(z). for all coordinates ¢ which do not partition X;
(d) define an additional 8 =2 - 2k,u coordinates and set z. < 1 for all z € X;
4. NEXT ¢

Fig. 2. Algorithm EMBED-BAND
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Lemma 5. The distances between points embedded simultaneously are expanded
by at most a factor of 2F

Proof. Recall that for each partition S of X;, we compute three weights: a local
weight, a "parent” weight, and the final weight which we use to embed the
current tree node.

wp(S) = # of existing coordinates that induce S via X))
wp(S) = maz(wy (), wp(S) — p)

If for all partitions S separating x and y, we have wp(S) = was(S), then the
embedded distance will be the same as that from MIN-SEPARATOR, which is
at most 2Fd(x,y).

Otherwise, at least one partition separating x and y has wr(S) = wp(S) —p.
Note that by the triangle equality, d(z,y) < d(p(x),p(y)) + 2k for all z,y. Thus
every such partition has wp(S) < wp(S) + 2k, so by summing and observ-
ing that there are only 2¥ possible partitions of k points, we have dg(z,y) <
de(p(z),p(y)) — pu + 2k2%. Applying our inductive hypothesis to points in the
parent set and using p = 4k2F gives the desired bound.

Lemma 6. The distances between points in different sets are expanded by at
most 23 = 4 - 2% where p = 4k2%.

Proof. Consider x € X; and y € X;. X; and X; are connected by a unique path
Q in T. Assume WLOG that X,; is in Q. Our proof will be by induction on
the length of Q.

If length(Q) = 1, this means X; = X,;) and by triangle inequality we
have dg(y,z) < dg(y,p(z)) + de(p(z),x). The distortion of the first quantity is
bounded because these points are in the same tree node. The second quantity
is bounded by [ plus the sum of differences in partition weights since we re-use
coordinates when possible. Combining these, and observing that p(x) is closer
to z than y is, we obtain dg(y,x) < 28d(y, x). If length(Q) > 1, there must be
a point z € X,(;) such that z lies on a shortest path between x and y in G. By
the induction hypothesis, dg(x, z) < 28d(x, z) and dg(z,y) < 26d(z,y). Thus,
dp(z,y) < dp(e,2) + dp(z,y) < 20d(z, 2) + 28d(2,y) = 20d(z, y) since = is on
the shortest path between x and y.

Lemma 7. The distances between points in different sets are not contracted.

Proof. Consider x € X; and y € X;. X; and X; are connected by a unique path
@ in T. Assume WLOG that X,,(¢) is in path Q. x has a closest ancestor z in
X, which is at distance dg(z,y) from y. Consider the path from z to z that lies
in @. Intuitively, we activate at least § coordinates at each step and deactivate
at most 2%y, so distances increase as ~ (3 — 2¥1)|Q|. So

dg(z,y) > maz((dp(z,y) — 2°4|Ql),0) + BIQ| = dp(z,y) — 2°u|Q| + BIQ)|
> d(z,y) — 2"u|Q| + B|Q| > d(z,y) — 2k|Q| — 2" 1|Q| + B|Q)|
=d(z,y) + (B — 2k — 2°1)|Q| > d(z,y)
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