Skip to main content

Finite-State Dimension and Real Arithmetic

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4051))

Abstract

We use entropy rates and Schur concavity to prove that, for every integer k ≥2, every nonzero rational number q, and every real number α, the base-k expansions of α, q + α, and all have the same finite-state dimension and the same finite-state strong dimension. This extends, and gives a new proof of, Wall’s 1949 theorem stating that the sum or product of a nonzero rational number and a Borel normal number is always Borel normal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agafonov, V.N.: Normal sequences and finite automata. Soviet Mathematics Doklady 9, 324–325 (1968)

    MATH  Google Scholar 

  2. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension, algorithmic information, and computational complexity. SIAM Journal on Computing (to appear)

    Google Scholar 

  3. Bhatia, R.: Matrix Analysis. Springer, Heidelberg (1997)

    Google Scholar 

  4. Borel, E.: Sur les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo 27, 247–271 (1909)

    Article  MATH  Google Scholar 

  5. Borwein, J., Bailey, D.: Mathematics by Experiment: Plausible Reasoning in the 21st Century. A. K. Peters, Ltd., Natick (2004)

    MATH  Google Scholar 

  6. Bourke, C., Hitchcock, J.M., Vinodchandran, N.V.: Entropy rates and finite-state dimension. Theoretical Computer Science 349, 392–406 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cassels, J.W.S.: On a problem of Steinhaus about normal numbers. Colloquium Mathematicum 7, 95–101 (1959)

    MATH  MathSciNet  Google Scholar 

  8. Champernowne, D.G.: Construction of decimals normal in the scale of ten. J. London Math. Soc. 2(8), 254–260 (1933)

    Article  Google Scholar 

  9. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theoretical Computer Science 310, 1–33 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers. The Mathematical Association of America (2002)

    Google Scholar 

  11. Edgar, G.A.: Classics on Fractals. Westview Press, Oxford (2004)

    MATH  Google Scholar 

  12. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, Chichester (1990)

    MATH  Google Scholar 

  13. Gu, X., Lutz, J.H., Moser, P.: Dimensions of Copeland-Erdös sequences. In: Information and Computation (2005)

    Google Scholar 

  14. Harman, G.: One hundred years of normal numbers. In: Bennett, M.A., Berndt, B.C., Boston, N., Diamond, H.G., Hildebrand, A.J., Philip, W. (eds.) Surveys in Number Theory: Papers from the Millennial Conference on Number Theory, pp. 57–74 (2003)

    Google Scholar 

  15. Hausdorff, F.: Dimension und äusseres Mass. Mathematische Annalen 79, 157–179 (1919): English version appears in [11], pp. 75-99.

    Google Scholar 

  16. Hitchcock, J.M.: Fractal dimension and logarithmic loss unpredictability. Theoretical Computer Science 304(1–3), 431–441 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kamae, T.: Subsequences of normal sequences. Israel Journal of Mathematics 16, 121–149 (1973)

    Article  MathSciNet  Google Scholar 

  18. Kamae, T., Weiss, B.: Normal numbers and selection rules. Israel Journal of Mathematics 21, 101–110 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, Chichester (1974)

    MATH  Google Scholar 

  20. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Berlin (1997)

    MATH  Google Scholar 

  21. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32, 1236–1259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lutz, J.H.: The dimensions of individual strings and sequences. Information and Computation 187, 49–79 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications. Academic Press, New York (1979)

    MATH  Google Scholar 

  24. Merkle, W., Reimann, J.: On selection functions that do not preserve normality. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 602–611. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Niven, I.: Irrational Numbers. Wiley, Chichester (1956)

    MATH  Google Scholar 

  26. Schmidt, W.: On normal numbers. Pacific Journal of Mathematics 10, 661–672 (1960)

    MATH  MathSciNet  Google Scholar 

  27. Schnorr, C.P., Stimm, H.: Endliche Automaten und Zufallsfolgen. Acta Informatica 1, 345–359 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schur, I.: Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzungsberichte der Berliner Mathematischen Gesellschaft 22, 9–20 (1923)

    Google Scholar 

  29. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Mathematica 153, 259–277 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tricot, C.: Two definitions of fractional dimension. Mathematical Proceedings of the Cambridge Philosophical Society 91, 57–74 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wall, D.D.: Normal Numbers. PhD thesis, University of California, Berkeley, California, USA (1949)

    Google Scholar 

  32. Weiss, B.: Single Orbit Dynamics. American Mathematical Society, Providence, RI (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doty, D., Lutz, J.H., Nandakumar, S. (2006). Finite-State Dimension and Real Arithmetic. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_47

Download citation

  • DOI: https://doi.org/10.1007/11786986_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35904-3

  • Online ISBN: 978-3-540-35905-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics